PRODUCTS OF COMPACT SPACES WITH bi-k AND RELATED SPACES

Andrew J. Berner

The main theorem of this paper characterizes bi-k spaces as those spaces whose product with every compact spaces is sequentially k.

1. Introduction. The classes of bi-k spaces, countably bi-k spaces and singly bi-k spaces were studied in [5], and the class of sequentially k spaces was introduced in [3]. The following implications hold among these spaces, without the assumption of any separation axioms: $bi-k \rightarrow$ countably $bi-k \rightarrow$ singly $bi-k \rightarrow$ sequentially k. Also, all k spaces are sequentially k, and all Hausdorff sequentially k spaces are k spaces. (These classes will be defined at the end of this introduction.)

Theorem 1.1. The following are equivalent:

- (a) X is a bi-k space.
- (b) $X \times Y$ is a singly bi k space for every compact Hausdorff space Y.
 - (c) $X \times Y$ is sequentially k for every compact space Y.

This theorem is proved in § 2.

REMARK 1.2. Cohen [4] proved that the product of a k space with a (locally) compact Hausdorff space is a k space. Noble [6] showed this is false without the Hausdorff assumption, but in Noble's example, the product was a bi - k space. Theorem 1.1 ($c \leftrightarrow a$) shows that the product of a k space with a compact space need not even be sequentially k.

REMARK 1.3. Michael [5] has asked whether the product of two countably bi-k spaces must be countably bi-k. Examples have been given showing it is consistent with Zermelo-Fraenkel set theory that this is false. Theorem 1.1 can be used to give an absolute counterexample. All we need is a countably bi-k space that is not bi-k. Let X be the subspace of the product of uncountably many copies of $\{0,1\}$ consisting of points that are 1 on only countably many coordinates (i.e., a Σ -product centered at the point all of whose coordinates are 0). Arhangel'skii proved that this space is countably bi-k (in fact, countably bi-sequential) but not bi-k [2]. Thus, by Theorem 1.1, there is a compact Hausdorff space Y_1 and a

compact T_1 space Y_2 such that $X \times Y_1$ is not singly bi - k, thus not countably bi - k, and $X \times Y_2$ is not even sequentially k.

DEFINITION 1.4. [3] If S is a subset of a topological space X and (S_i) is a nested sequence of subsets of X, then (S_i) is an S-sequence if whenever (s_i) is a sequence of points with $s_i \in S_i$ for each i, then (s_i) has an accumulation point in S.

DEFINITION 1.5. A space X is a bi-k space if whenever \mathscr{F} is a filter base containing the open sets around a point $p \in X$, there is a compact set $S \subset X$ and a nested sequence of sets (S_i) such that (S_i) meshes with \mathscr{F} and (S_i) is an S-sequence.

DEFINITION 1.6. A space X is a countably bi-k space if whenever (F_i) is a nested sequence of sets accumulating at a point p (i.e., $p \in \operatorname{cl}(F_i)$ for each i) there is a nested sequence of sets (S_i) accumulating at p and a compact set S such that $S_i \subset F_i$ for each i and (S_i) is an S-sequence.

DEFINITION 1.7. A space X is a singly bi-k space if whenever $p \in \operatorname{cl}(F)$, there is a compact set S and a nested sequence of sets (S_i) accumulating at p such that $S_i \subset F$ for each i and (S_i) is an S-sequence.

DEFINITION 1.8. A space X is sequentially k if whenever a set F is not closed there is a point $p \in \operatorname{cl}(F) - F$, a compact set S and a nested sequence of sets (S_i) accumulating at p such that $S_i \subset F$ for each i and (S_i) is an S-sequence.

2. Proof of Theorem 1.1. In [2], Michael proved that a space X is countably bi-k if and only if $X\times I$ is singly bi-k (where I is the unit interval). The heart of the proof (in one direction) involves coding a bad nested sequence (S_i) of subsets of X (i.e., a witnessing sequence to the statement 'X is not countably bi-k') as a single bad subset of $X\times I$. This idea of coding is hinted at in the following proof of Theorem 1.1.

$$a \longrightarrow b$$
 and $a \longrightarrow c$:

The product of two (or even countably many) bi - k spaces is bi - k [5]. Since compact spaces are bi - k, the product of a bi - k space and a compact space is bi - k, and thus singly bi - k and sequentially k.

not $a \longrightarrow \text{not } b$ and not $a \longrightarrow \text{not } c$:

Both implications make use of the following construction.

Suppose X is not bi-k. Then there is a point $p \in X$ and a filter base \mathscr{F} of subsets of X such that \mathscr{F} contains the open sets around p, but there is no compact $S \subset X$ and nested sequence of sets (S_i) such that (S_i) meshes with \mathscr{F} and is an S-sequence. Thus, in particular, there is an $F \in \mathscr{F}$ such that $p \notin F$ and therefore if $F_1 \in \mathscr{F}$ and $F_2 \in \mathscr{F}$, then $F_1 \cap F_2 - \{p\} \neq \varnothing$.

Define a base for a new topology on X as follows. If $x \in X - \{p\}$, then $\{x\}$ is open, and if $F \in \mathscr{F}$, then $F \cup \{p\}$ is a neighborhood of p. This refines the original topology on X. Let X' be X with this new topology. Note that X' is completely regular.

Let $Y_1 = \beta(X')$, the Stone-Čech compactification of X' (actually, any Hausdorff compactification will do), and let Y_2 be the one point compactification of X'. Note that Y_2 is a T_1 space, but is definitely not Hausdorff.

Claim 1. $X \times Y_1$ is not singly bi - k.

Proof. Let $C = \{(x, x) \colon x \in X - \{p\}\}$. C is a subset of $X \times X' \subset X \times Y_1$. If $U \times V$ is a basic open set around (p, p), then U and $V \cap X'$ are both in \mathscr{F} , so $U \cap V \cap X' - \{p\} \neq \varnothing$. Thus $(U \times V) \cap C \neq \varnothing$, i.e., $(p, p) \in \operatorname{cl}(C) - C$. Suppose $X \times Y_1$ is singly bi - k. Then there is a compact set $K \subset X \times Y_1$, and a nested sequence (K_i) of subsets of C such that $(p, p) \in \operatorname{cl}(K_i)$ for each i, and (K_i) is a K-sequence. Then, if $\pi_X \colon X \times Y_1 \to X$ is the projection map, the sequence $(\pi_X(K_i))$ is a $\pi_X(K)$ -sequence and $\pi_X(K)$ is compact in X. Suppose $F \in \mathscr{F}$. Then there is an open set $V \subset Y_1$ such that $V \cap X' = F \cup \{p\}$. But then for each i, there is an x_i such that $(x_i, x_i) \in K_i \cap (X \times V)$. Then $x_i \in F$, so $\pi_X(K_i) \cap F \neq \varnothing$. Thus $(\pi_X(K_i))$ is a $\pi_X(K)$ -sequence meshing with \mathscr{F} . This violates the choice of \mathscr{F} , so $X \times Y_1$ is not singly bi - k.

Claim 2. $X \times Y_2$ is not sequentially k.

Proof. Let $Y_2 = X' \cup \{\alpha\}$.

Let $C = (X \times \{\alpha\}) \cup \{(y, x): y \in \operatorname{cl}_X(\{x\}) \text{ and } x \in X' - \{p\}\}$. (Nobody said X was a T_1 space!) As in the proof of Claim 1, $(p, p) \in \operatorname{cl}(C) - C$. Suppose $(x, y) \in \operatorname{cl}(C) - C$. Then $y \neq \alpha$. Suppose $y \neq p$. Then since $(x, y) \notin C$, it follows that $x \notin \operatorname{cl}_X(\{y\})$ so there is an open (in X) set U such that $x \in U$ but $y \notin U$. But then $U \times \{y\}$ is open (in $X \times Y_2$) and $(U \times \{y\}) \cap C = \emptyset$. Thus y = p.

Could $X \times Y_2$ be sequentially k? If so, then there is a point $(z, p) \in \operatorname{cl}(C) - C$, a compact set $K \subset K \times Y_2$ and a sequence (K_i)

such that $(z, p) \in \operatorname{cl}(K_i)$ and $K_i \subset C$ for each i, and (K_i) is a K-sequence. Again, let $\pi_X \colon X \times Y_2 \to X$ be the projection map. Let $D_i = \{x \colon \text{there is a } y \in \pi_X(K_i) \text{ such that } y \in \operatorname{cl}_X(\{x\})\}$. Suppose $x_i \in D_i$ for each i. There is, for each i, a point $y_i \in \pi_X(K_i) \cap \operatorname{cl}_X(\{x_i\})$. Since $(\pi_X(K_i))$ is a $\pi_X(K)$ -sequence, the sequence (y_i) has an accumulation point $k \in \pi_X(K)$. But, since any open set containing y_i also contains x_i , k is an accumulation point of (x_i) . Thus (D_i) is a $\pi_X(K)$ -sequence.

Suppose $F \in \mathscr{F}$. Since $F \cup \{p\}$ is open in Y_2 , for each i $(X \times (F \cup \{p\})) \cap K_i \neq \varnothing$. But $\alpha \notin F \cup \{p\}$ so there is a point $(y, x) \in K_i$ with $x \in F$ and $y \in \operatorname{cl}_X(\{x\})$. Thus $x \in D_i \cap F$. Therefore D_i is a $\pi_X(K)$ -sequence meshing with \mathscr{F} , and $\pi_X(K)$ is compact. As in the case of Claim 1, this contradicts the choice of \mathscr{F} , so $X \times Y_2$ is not sequentially-k.

REFERENCES

- 1. A. V. Arhangel'skii, *Bicompact sets and the topology of spaces*, Trudy Moskov. Mat. Obsc., **13** (1965), 3-55 (Trans, Moscow Math. Soc., (1965), 1-62).
- 2. ——, The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Dokl., 13 (1972), 1185-1189.
- 3. A. J. Berner, Spaces defined by sequences, Proc. Amer. Math. Soc., 55 (1976), 193-200.
- D. E. Cohen, Spaces with weak topology, Quart. J. Math. Oxford Ser., (2), 5 (1954), 77-80.
- 5. E. A. Michael, A quintuple quotient quest, General Topology Appl., 2 (1972), 91-138.
- 6. N. Noble, Two examples on preimages of metric spaces, Proc. Amer. Math. Soc., 36 (1972), 586-590.

Received January 15, 1976 and in revised form October 27, 1976.

University of Wisconsin Madison, WI 53706