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BICONTRACTIVE PROJECTIONS AND REORDERING
OF L,-SPACES

S. J. BERNAU AND H. ELTON LACEY

On a Banach space we call a projection, P, bicontractive,
if [|P|]|=<1 and ||I— P||<1. In this paper we completely
describe bicontractive projections on an L,space (1= p < )
by showing that for every such bicontractive projection P,
2P — I is an involutive linear isometry. Duality then gives
the same result for pre-dual L,-spaces (in particular for M-
spaces). The analysis of bicontractive projections is used,
with » # 2, to describe all Banach lattices which are linearly
isometric to an L,-space.

Such projections on L,(¢t), when 1 < p < o, p# 2, and g is a
probability measure, have been considered by Byrne and Sullivan
[2]. Their analysis gave the basic result, that 2P — I is an isometry.
Their methods are different from ours and depend heavily on
Lamperti’s description [6] of isometries of L,-spaces; and their ap-
proach is weighted much more towards independence of sub c-algebras
rather than the isometry property. Some minor changes in the
formulation of their results were made later in Byrne’s 1972 Ph. D
dissertation at the University of Pittsburg. Our approach relies on
our earlier complete description [1] of contractive projections on an
L,-space. We include, in §3, a rapid survey of some of the Byrne,
Sullivan results where their approach is different and outline very
simple deductions of their results from ours.

The question of Banach lattice orderings of L,, under the usual
norm, have been considered, with 1 < p < « and p # 2, for the
separable case by Lacey and Wojtaszezyk [5]. Their results also
depend on the Lamperti isometry results and crucially on separa-
bility. Our analysis uses our previous discussion of contractive and
bicontractive projections and gives a complete generalization of their
work.

Throughout the paper we assume 1< p < « and p#2. We
will write L, = L,(X, X, ¢ for the standard real or complex L, space
determined by a set X, a o-ring, 3, of subsets of X and a measure
ponl If feL, S(f)={teX:f(t)# 0}, as in [1] the ambiguity
of a set of measure zero is irrelevant. Where our results are true
for either choice of scalar field the field will not be specified. Where
the scalar field is specified the result will be true only for the
specified choice. The case p = 2 is omitted because the theorems
we prove are all trivially true, or trivially false, in this case.
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292 S. J. BERNAU AND H. ELTON LACEY

2. Bicontractive projections. In this section we prove the fol-
lowing:

THEOREM 2.1. If P is a bicontractive projection on L, then
U=2P — 1 is an isometric involution on L,.

The proof of this theorem will follow from the equivalent result.

THEOREM 2.2. If P is a bicontractive projection on L,, f = Pf,
and g = (I — P)g, then ||f + gll = ||/ — gl

The equivalence of these two is based on the observations 2P —
I=P—(I—P)and for f=Pf, g=UI—P)g, f—g=CP—I)f+9).
We obtain these results in a series of technical lemmas.

LEMmA 2.3. If P is a bicontractive projection on L, and J
denotes the band projection on Z(P)*t (the band generated by the
range of P), then P = PJ = JP.

Proof. By [1, Theorem 3.5] this is true, if P is merely con-
tractive, for p = 1. We assume then that p =1 and put A = P — PJ.
Suppose = 1L .Z(P)

2]l + [[A2]| = ||z — Az|| = || — Pz|| < |[2]] ,

because P is bicontractive. Hence Ax = 0. Thus A — J) = 0 and
A=AI—-J)+ AJ=0.

Taking Lemma 2.3 and the uniqueness clause of [1, Theorem 3.5]
into account we conclude that for all », L=< p <o, p#2, if f=Pf
and heftt, then

Ph = f& (2, | f17)(R]f) ,

where 2, = {S(f): fe & (P)} is the sub o-ring of XY consisting of
supports of functions in Z(P) and & (2, |f|?) is the conditional
expectation determined by the finite measure |f|?¢ and the sub o-
ring ¥,. It follows from this that if f= Pf or if Pf=0 (so that
f=— P)f) and J; is the band projection on f**, then PJ; = J,P.
(Again this is automatic for p > 1 by [1, Lemma 2.3].)

LemMA 2.4. Let P be a bicontractive projection on L,, suppose
f=Pf, 9=U~—P)g, and J; =J,. If X;={S(k):hef** N 2P},
2, ={Sk):keg't N HI ~ P)} then the sub o-rings X, X, are
equal.
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Proof. Since PJ;=J;P we have X, ={ANS(f):4e3} and
similarly for ¥,. If S(k)c S(f) and h = Ph, then P, = J,P= PJ,
as noted above. Hence (I — P)J,g = J,(I — P)g = J,g so that S(h) =
S(J,9) € X,. Similarly 3, 3, and equality follows.

Now we start on the proof of Theorem 2.2. Let fe Z(P),
ge (I — P). Since J;, J, commute with each other and with P we
have J,f € Z(P), J;ge H(I — P). Since ||f+ gl = ||f — ¢g]| if and
only if ||J,f + Jrgl| = ||,/ — Jsg|| we may, and will, assume that
J, = J;. Writing ¥, for ¥, = 3, (Lemma 2.4) we have

PJh = f&&, | f1P)R/S)
and

(J; — PIp)h = 9& (2, |gl*t)(h/g) (heL,).

LEMMA 2.5. With notation as im Lemma 2.4, (g/f) is X
measurable, and so is |g/f|.

Proof. Suppose first that 1 < p < 2. Since Pg =0 we have

FE@, | fIPwlglf) = 0; but S(g) = S(f) e 3, so &(Z, |fI7t)(g/f) = 0.
If AeX,

[0511gD7@in) - 1grap = | @i -1rrdp=0.

This gives & (3, |gI”WI(f1/lg))?(g/f)] = 0. Since 1 = p < 2,
[Af gD (@D = 1P Mgl = (] + g = [f] + |gleL,.

We conclude that (J; — PJ)((|f1/|g)*(¢°/f) = 0 so that (([.f1/|g)*(¢*/f)) €
A (PJ;). In particular (f]/|g|7(¢*/f?) is X -measurable.

If 2 < p < o« we consider the bicontractive projection (PJ,)* on
L, where 1/p +1/p'=1. By [1, Lemma 2.2] f* = |f]"'sgnfe
A (PJ}) and g* = |g|"'sgnge Z(J; — PJ;)*). Since the map hi—
|kh|"*sgnk does not change supports we conclude from what we
have just proved that (¢*/f*)* is 2,-measurable, hence, so is (g/f).
Our lemma follows:

LEMMA 2.6. With notation as in Lemma 2.4, define B =
{teS(f): 0 < arg (9/f) < ©} and B’ = S(f) ~ B.

(i) The map hi— h(Ys — Yz) s an involutive linear isometry
of B (PJ;), onto F(J; — PJ;).

(i) If he R2(PJy), |kxs|l? = 1/2]|R|]? = |[hYs |I”, and P(hys) =
(1/2)h = P(hYs).
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Proof. Consider g(X; — Xz)/f. We have [g((s — Xz)/f| = |9/f]
which is X ,-measurable by Lemma 2.5. By definition of B,
arg g(xz — Xz)/f€l0, ) so X -measurability of g(xs — xz)/f follows
from that of ¢*/f* (Lemma 2.5 again). Hence g(yz; — ¥xz)/f is 3,-
measurable so that Pg(xs — X)) = f&QE, [P — X)/f) =
90z — As’)-

Now if he H(J; — PJ;), h/g is X ,-measurable and h(}z — ¥Xz)/f =
/) 9z — xz)/f) is X -measurable. It follows as above that
h(z—Ye) € F(PJ;). Similarly, if h € Z(PJ;), h()z—Yz) € F(J;— PJ;).
This proves (i).

For (ii) take he.Z(PJ;); by (), h(yz — Yz) € P, — PJ;) so
P(hys) = PIp(hys) = P(h)s) = L/2)P(h(Xs + Yz)) = (1/2)Ph.

Apply this to the special case when h = y,f with 4eX. We
have

|\ /P =\ st 1f pae

Il

| & @, a1 £ ra
| P51 £ g

Il

1 »

2| @ninfra
1 »

= ESA|f| ar .

Hence, SBXA |flrdp = SB,xAlfl"d;e = 1/2 Slfl”d/x (Ae€ZX). This extends

to Y,-simple functions and hence to all elements of L,(3, |f|*). In
particular, if h e Z(PJ;), |h/f|e L2, |f|°t) and

Hhys|lP = SB\h/fI”If]"‘dM = |lhye [I* = 1/2][R " .

Proof of Theorem 2.2. We apply Lemma 2.6. By (i), h = f=*
90z — Ap) € 2 (PJy). By (i)

\\f = gPdp = gl = s> = |15 glrdpe.
Hence
1F +gle =\ |7+ gldp+ | |+ gldp
=\ 1f —gpau+ | 1F - gPap
=17 =gl
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Our next lemma will be used in §§3 and 4.

LEMMA 2.7. Let P be a bicontractive projection on L, such that
fe #ZP), ge AL — P)and f++ = g+, and suppose Be X is chosen
as in Lemma 2.6. If heL, and S(h)C B, then h = 2Y;Ph; while
if S(h) C B', h = 2).Ph.

Proof. By Lemma 2.6, h — (Xz — Xs)Ph = (Xz — Xz){ — P)h €
A(P). Hence, h — (X5 — X5 )Ph = P(h — (Az — Xs)Ph) = Ph so that
h = 2Y;Ph as required. The case S(k) C B’ is similar.

We now answer a question raised in conversation with David
Dean and Bill Johnson.

THEOREM 2.8. Let X be a predual L,-space and P a bicontrac-
tive projection on X; then 2P — I is an isometry on X.

Proof. The dual space X* of X is an L,-space and the adjoint
operator P* is a bicontractive projection on X*. By Theorem 2.2,
2P* — I* is an isometry on X*. A routine computation shows that
any linear operator whose adjoint is an isometry of X* onto X*, is
itself an isometry. Our theorem is proved.

3. The results of Byrne and Sullivan. We first summarise
the main definitions and results from [2]. For this discussion 1 <
p< o p=+*2and ¢ is a probability measure.

An isometry U of L, is reduced if for every AecX with 4 >0,
there exists FeXY such that EcC A and S(Uyxz) # E (meaning
H(E4S(Uyz) > 0). A bicontractive projection is total if A (P)** =
L,= (I — P)‘*, and independent if it is total and the o-ring
2, ={S(f): fe #&(P)} and the ratio g/f, for some fe.A(P), g€
#(I — P), are independent for the measure |f|?t. The theorems
concerned follow.

(A) A total bicontractive projection is independent.

(B) The following are equivalent.

(a) There is a reduced reflection U with invariant subspace
M.

(b) There is an independent bicontractive projection P with
range M.

(¢) There is a sub o-ring, ¥, of Y and a set Be X such that
for every E €2 there exist unique A4, Ce X3, (up to sets of measure
zero) such that F=(ANB)U(CNB'). (One way to achieve uni-
queness is to require that B satisfies the condition, if AeX, and
MANB)=0or #(AN B') =0, then pA = 0.)
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For (A) our analysis in §2 applies directly. The totality hy-
pothesis lets us choose fe Z(P), g &I — P) such that J, =J, = I.
Then we use Lemma 2.6 to find B such that f(xz — Xz) € #{ — P)
and check that X, and ¥z — Xz (=F(s — X»)/f) are independent for
Lf I7ee.

To show that (b) implies (c¢) in (B) we use Lemma 2.7. We have
f, 9, B as above and take & = fiz z(E €2). Then fyznz = h = 2)Pk.
Hence A = S(Ph)e 3, and EN B = AN B. Similarly C = S(P(f{zns))
satisfies EN B = CN B.

To show that (a) implies (b) put P = (1/2)(I + U). Since U is
isometric and U?= I, P is a bicontractive projection with range
M. If g 1L #(P) put A= S(g) and find Eec ¥ such that EC A and
S(Uyz) + E. Then y,e Z(P)' c HA(I — P) and Uy = — ¥z. This
gives S(Uyz) = E contrary to our choice of E. We conclude that
L, = Z(P)**. Since U reduced implies — U reduced we see also
that L, = (I — P)**; thus P is total and (b) follows from (A).

Finally for (c) implies (a) we can argue as in [2]. For FeJ¥
defme T(E)=(ANBYUCNB) for E=(ANB)U(CN B) with
A, CeZ). Now set y*(E)=wm(T(E)) and let f* be the Radon
Nikodym derivative of p* with respect to . Then define U by
Uxr = Aoy (B €2) and extend the definition to L, in the obvious
way. It is easy to check that U is an isometry. If AeX take
E = AN B, then T(E) c B’ and S(Uyz) = S(fArx) C B so S{(Uy;) # E.

4. Reordering of L,. Here we consider the question, what are
the vector-lattice orderings on L, such that, under its usual norm,
L, is a Banach lattice. The real separable case has been considered
by Lacey and Wojtaszezyk [5] who show that up to linear isometry
and lattice isomorphism all such are obtained as L, (X, 3, y) =
LA, 2, ) ® LB, 2, E,(2), 1t). Hence L, denotes L, with its new
Banach lattice ordering. The direct sum is in the sense of Banach
lattices, and 4, Be ¥, ANB= @. Finally L,B, 3, E,2), 1t is the
E,(2) valued L,-space on B, where FE,(2) denotes R* with its natural
L,norm but ordered by (§,&) =0 if and only if & + & =0 and
& — & = 0 (equivalently &, = |&,|). We shall show that, apart from
measurability of A, B their result is true in general for real L,.
Also, for complex L, spaces the natural complex Banach lattice
structure is unique.

We now begin our analysis. We write, again L, to denote the
space L, with its usual norm and some vector lattice structure such
that E,, is a Banach lattice. Since L, is weakly complete and ¢, is
not [3], L, contains no linearly isomorphic copy of ¢, and we see
by a result of Meyer-Nieberg [7] that I, has order continuous norm.
Hence every band M in E,, has associated with it a natural band
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projection P,,. (If M = {f} we write P;.) The letters P, @ with and
without subscripts, will usually denote IL,-band projections. The
letters J, K with or without subscripts will denote natural (i.e., L,-)
band projections. The symbol, *, refers to disjointness or polar sets
(bands) in L,.

LEMMA 4.1. Let P be an Ep—band projection, and suppose M C
F(P), M #+ @; then, if J, ts the natural band projection on M*+,
PJM = JUP

{In fact Lemma 4.1 is valid for any bicontractive projective if
» =1 and any contractive projection if » > 1.)

Proof. From the discussion preceding Lemma 2.4 PJ; = J;P for
all fe 2(P). Since the set of supports of elements of Z(P) is a
o-ring {1, Lemma 3.1], the set {J;: fe Z(P)} is upwards directed.
(We only need a subspace of #Z(P), and the first paragraph of the
proof of [1, Lemma 6.1] for this.) Since the norm in L, is order
continuous, J, is the strong limit of a set of band projections each
of which commutes with P. It follows that PJ, = J,P.

LEMMA 4.2. Let P, Q be bicontractive projections on L, such
that . #(Q) C H#(P), then F(P)N B Q)+ N FH(I — Pyt AQ).

Proof. Suppose fe Z(P)N . Z@)*+NHI— P)y*+. By [1, Co-
rollary 3.2] there exist ge .<#(I — P) and he.<#(Q) such that fe
gt Nh**. Since PJ; = J,P we may assume g'*+ = f**, Since g€
F(I—PycHI—Q), I—Q),=J,I—@Q) so J;Q =QJ; and we
may also assume h*+ = f*i.

Write X, = {S(&): ke f*+ N ZZ(P)} and 2, = {S(k): k € f** N.Z2(Q)}.
Clearly ¥ ¥,. By Lemma 2.4 ¥, =23, ,C3;, o= ¢ s0 3, =%,
Now, since f, h e FZ(P), h*+ = f*4, and h € #(Q), we have
f=Pf=h&E(Zp |h[")(f]k)
= h& (Jq, |h[1)(f]h)
=Qf

Our lemma is proved.

LeMMA 4.3, There is ¢ minimal Ep-band projection P such
that Z(P)** = L,.

(Minimality is in the natural ordering of I,-band projections.)
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Proof. Let .# denote the set of I,band projections P such
that A (P)'* =L, and let & be a decreasing chain in _~Z The
infimum P, of . in the set of L,band projections has range
N {#(P): Pe &} Suppose gL H#(P). Choose PecZ and put h =
g — Pg. By [1, Corollary 8.2], using #(P)** = L,, there is fe Z(P)
such that f'*=nh't., Hence [feA@Q)'*NAP)cHI — P)+
Qe & #(Q)c Z(P)). By Lemma 4.2, fe N {FZ(@Q): Qe T} = .2 (P,)
and geft =h* = (g — Pg)*. Hence,

llgll> = || Pgl]” = || Pg — glI” + Ilg]* ,
so that ¢ = Pg (Pe ). Thus,
geN{#(P). Pe F}=2(P) Ly,

and g = 0 so that P,e._# Zorn’s lemma finishes our proof.
Now we must distinguish the real and complex cases.

LEMMA 4.4. In the complex case, if f, g€ L, and P;g = 0, then
flag.

Proof. Let h=J,f, k= J;9. Then since J;, J, commute with
P;, P, we have h = P;h and Pk = 0. Thus P,k = 0. Hence we may,
and do assume that f‘* = g*t. We have fe Z(Py), gc #ZU — Py)
and f** =g't. By Lemma 2.6, there is a set Be€ZX, such that
S — As) € (I — Ps) (where B’ = S(f) ~ B) and

|\ Pde = Frdp =127 1ap = 1201711

Since P; is an L,-band projection,
Nf+ fQs — 1) P = IF + /(s — Az ||?. Now, by Lemma 2.6 again,
If + FOs — %)l = | |27 Pdpe = 271 £1P; and
I+ if G = 1) = | |+ DF Pl + || — i)f P
= 22| P .

Since p # 2, we have f = 0. This proves our lemma.

COROLLARY 4.5. In the complex case the minimal L,-band pro-
jection P such that “#(P)**+ = L, is the identity on L,, and every
L,-band is an L,-band.

LEMMA 4.6. Let P be an L, band projection, then
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R(P)N A — P)* is an L,-band with band projection PK where
I~{ 18 the L,-band projection on FH(I — P)*+. In addition K is an
L,-band projection.

Proof. Since the result is trivial in the complex case, by Co-
rollary 4.5, we assume we are working with real scalars. Since the
norm in I, is order continuous and ZZ(P)N (I — P)** is closed
it is enough to show that <Z(P)N #(I — P)** is a solid L,-sublat-
tice of IL,.

For this it is sufficient [5, Lemma 1] to show that if @ is an
L,band projection such that <2(Q)c <#(P), then Q(#(P)N
H(I-P)*)yc #H#(P)N A — P)'*. Let J be the L,band projec-
tion on #(Q)**. By Lemma 4.1 JP = PJ. Hence, if 2. Z(P)N
(I — P)**+, we have Jx = PJx = JPxec #(P)N #( — P)'*, and
by Lemma 4.2,

Qr = QJx = Jre Z(P)N #(I — P)*+

Now (I — P)K =1— P = K(I — P) so PK = KP is a contractive
projection with range #(P)N #(I — P)**. The uniqueness condi-
tions of [1, Theorem 3.5], combined with Lemma 4.1, show that PK
is the [,-band projection on <Z(P)n (I — P)* .

Finally I — K = P — PK so that I — K is an E,,-band projection
and hence, so is K.

LEMMA 4.7. Let P be a minimal L,-band projection such that
A(P)*+ =L, and suppose f,ge BP) or f,geAHI— P), and
P;g=0, then f1g. (ie., in the ranges of P and of I — P, L,
disjointness implies L,-disjointness.)

Proof. Let J, K be the L,-band projections on .ZZ(P,)** and
R(I — Py)** respectively. By Lemma 4.6, J, K are L,-band projec-
tions. In particular J, K commute with all I,-band projections.

Suppose first that f, g € Z(P) and consider
P,=PI—K)+ P,K+ P(I—-J).

The summands are fp—band projections whose products in pairs are
zero. Hence P, is an L,-band projection with ZZ(P,) < <Z(P). Sup-
pose x € L, and x 1 #(P,). Since P;P,= P; we have Z#Z(P;)C Z(P,)
so Jt=0 and 2= — J)». Let yeL, since PJ=JP, JPy=
PJylz and (I —J)Py = P(I — J)ye ZA(P,)Lx. Hence ze H(P): =
{0} and = = 0.



300 S. J. BERNAU AND H. ELTON LACEY

By minimality, P, = P, so that JPK = PJK = P;K. Now we
have ge Z(I — P;) N A (P) so g = Kg = PKg. Hence Jg = JPKg =
P;Kg = P;,g =0. Since f= Jf we have f1g as required.

If f, ge 2(I — P) then by Lemma 4.6, J(I — P) is an L,band
projection with range Z(P;)*t N H(I — P) = Z(Pp)** N #I — P)n
A (P)*+. Since #(P;)c (I — P), Lemma 4.2 shows that 2 (P;) =
F(P)+ N HU— P). Hence P;=J(I — P). Since ge #( — P),
Jg =JI — P)g = P;g = 0. Since f=Jf, we have f1g as required;

For the rest of this section we consider a fixed minimal I,-
band projection P such that “#(P)** = L,. We write K for the
L,band projection on #(I — P)**. By Lemma 4.6, K is also an
L,-band projection and by Corollary 4.5, K = 0 in the case of com-
plex scalars.

LEMMmA 4.8. If f,ge #(P) or if f, g€ FH(I — P), then f and
g are disjoint in L, if and only if they are disjoint in E,,. Con-
sequently, P; = J;P or P;=J(I — P) according as fe B(P) or
fe @I — P) and in either case J; is an L,-band projection.

Proof. We consider <#(P). By Lemma 4.7, the norm in 2 (P)
is p-additive for the I,-ordering; i.e., if, 2, y € ZZ(P) and P,y = 0
then

ll# + y|P = ||z|]* + ||y|l*, (because P,y = 0 implies % L ¥).

By the well known characterisation of L,-spaces, “#Z(P), with
its L,order, is linearly isometric and lattice isomorphic to some L,
space [4, §15, Theorem 3]. Now if f,ge Z(P) and fLg then
N+ gl + I —gl”=2(fI” + |lg]|) and the equality condition
for Clarkson’s inequality [6, Corollary 2.1] shows that f, g are L,-
disjoint. Continuing with f€ #(P) we see that J; commutes with
P; and P so that Z(P;) D Z(P)N f++ and HZ(P — P;) D Z(P)N f.
It follows that P; = PJ;, that ZZ(P,)** = f** and, by Lemma 4.6,
that J; is an L,-band projection.

The same argument works for f, g € (I — P).

LEMMA 4~.9. Let f= PKf, then there is a set BreX such that
St with its Ly-ordering is linearly isometric and lattice isomorphic
to Lp(ny 2; Ep(z)v /")'

Proof. By Lemma 4.8, f** is an Il,-band. Since fe <#(I — P)*+
we can find g€ (I — P) such that g** = f**. Define B; = {t € S;:
0Zargg/f<n}; 3,=23,=2, as in Lemmas 2.4, 2.5, 2.6, 2.7; write
£ 9. for the L, -absolute values of f, g respectively, and for hefit
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define
Tfk = XB'(Sgnfl'Ph’u1 + sgn 51'(1 - P)h'%z)

with w, = (1, 1), u,= (1, —1)e E,(2). Since K =0 in the complex
case we can assume we are in the real situation. Hence sgn fl + +1,
sgng, = =1 and we have, using Lemma 2.6 as in the proof of
Theorem 2.2,

17 m i

= & [Isgn /.- Ph+sgn g,-(I—P)h|?+|sgn f,- Ph—sgn g,(I—P)h[?]d
D

fl

S [|Ph + (I — P)ul> + |Ph — (I — P)h|?]d

B
- S |Ph + (I — P)h|rdp + g \Ph + (I — P)h|»dp
B B’

-
AR

I

Hence 7'y is an isometry of f“* into L,(B;, 2, E,{2), 1)).

If hef* and b is L,positive, then Ph and (I — P)h are L,-
positive. Since Z(P) and (I — P) are abstract L,-spaces and
f» g, are L,-positive, it follows as in the proof of [1, Theorem 4.1]
that Ph and (I — P)h are L,-positive if and only if sgnf,-Ph and
sgng,-(I — P)h are positive in L,. Thus T, and T;' are positive. To
complete the proof it is sufficient to show that T, is onto.

Suppose u € L,(By, 3, E(2), tt), then u = sgn f,-hu, + sgn f,-hou,
with &, k, € L,(B;, 2, ).

Since S(h,) U S(h,) C By, Lemma 2.7 gives h, = 2y,Ph,, h, = 2)3Ph,.
Put, g = 2Ph, + 2()s — ¥p)Ph,, then by Lemma 2.6, ()} — ¥z)Ph,€
(I — Pj so that T;9 = w. Our lemma is proved.

THEOREM 4.11. There are subsets A, B of X such that any o-
finite subset of AN B has measure zero and L~,, 1s linearly isometric
and lattice tsomorphic to L,(A, %, 1) S L,(B, 2, E,(2), ). In the
complex case A =X and B= Q.

Proof. L, decomposes into complementary L,-bands <#(I — P)*
and <Z(I — P)**. Since Z2(I — P)* < R(P), the L,-order on Z(I — P)*
is that of an abstract L,-space and IL,- and L,-disjointness coincide
in (I — P)-.

~ Choose in #(I — P)* a maximal L,-disjoint set {,:vel} of
L,-positive elements, set 4 = U {S(k,): 7€ '}. Then as in the proof
of [1, Theorem 4.1] the map f+ >, sgnh,-f is a linear isometry
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and lattice isomorphism of .Z(I — P)" with its L,-order to
F(I—-P)t = L,(4, 2, 1y with its natural order. (o-finiteness of
supports of integrable functions ensures that the summations are
over countable sets and that all the relevant sums converge.)

For the L,-band, .Z2(I — P)** we choose a maximal L -disjoint
subset {f;:de4} in H(P)n H(I— P)*+ and apply Lemma 4.10 to
get sets B, = By, < S{f,; and isometric isomorphisms T;: f3+—
LB, 2, B2, tt). Then we put B = U.{B;;dec4} and check that
fr=uc: Tsf is a linear isometry and lattice isomorphism of
B(I — P)++ with its L,-ordering onto L,(B, 3, E,(2), /).

This shows that ij is linearly isometric and lattice isomorphic
to LA, 3, 1y @ L,(B, 3, E,/2}, 1ty as claimed. In the complex case
P = I by Corollary 4.5.

Suppose Del¥, D AN B and p#(D) < oo, then y,€ L,. Because
DcC A, y,e #{I — P} and because DC B, %, .#({ — P)**. Thus
7o =0, (D) = 0.
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