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UNIMODALITY OF THE LEVY
SPECTRAL FUNCTION

CAROL ALF AND THOMAS A. O’CONNOR

A. Ya. Khinchin provsd that if @ and ¥ are characteristic
functions and O(t) =¢ So ¥(u)du, then the distribution func-

tion of @ is convex on (—o,0) and concave on (0, +). A
similar theorem is proved here for logarithms of infinitely
divisible characteristic functions and their Lévy spectral
functions.

Suppose @(t) is a characteristic function (ch. f) of a distribution
function (df), F, so that @) = S et d F(x). f.}n application of
R ~
Bochner’s theorem (see [2]) shows that @(f) = t“s O(u)du is also a
~ 0

ch. f. Khinchin proved that @ is a ch. f by gonstructing its df.

In fact, he showed that a ch. f is of the form @ if and only if its

df is unimodal at 0; that is, the df is convex on (—co,0) and

concave on (0, + ). We shall prove a “unimodal theorem” for the
t

function &(t) = t‘ls é(u)duw under the assumptions that @(¢) is
0

infinitely divisible and ¢(¢) = In @(¢). Johansen’s characterization of

infinitely divisible ch. fs. ([1], Theorem 2) insures that ¢, defined

above, may also be written ¢(¢) = In ¥(t), for some infinitely divisi-

ble ch. £ ¥, and hence provided the motivation for our work. To

begin with, we state Lévy’s form of infinitely divisible ch. fs. (See

[2])

THEOREM 1. A ch.f @ is infinitely divisible if and only if
4(t) = In @(t) may be uniquely represented as

(1) 5(t) = ipt — o + fR(e”‘ ~1-- ’fth)dM(x)
where L€ R, 0* = 0, and the function M has the following properties:
(i) M is defined on R\{0}
(ii) M 1is nondecreasing on (— o, 0) and on (0, +) and s
right continuous
(iii) M(— o) = 0 = M(+ o)
(iv) %( @dM(@) is finite for all & > 0.

When (1) is in force, M and (g, o, M) are respectively called
the Lévy spectral function and the Lévy triple of @. Moreover,
every function which satisfies (i)-(iv) is a Lévy spectral function of
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some infinitely divisible c¢h. f. The main result of this article is
Theorem 2 below; two preliminary lemmas are proven first.

LEMMA 1. For every Lévy spectral function, M, the following
relations hold:

(i) lim & Sm AME) _ o _ iy g Sm AM(z)
L—>--00 z A L—>—00 —0c0 z

(ii) lim 2 SMM — 0 = lim &° Sx adM(z)
z—0+ z z =0 — z

Proof. It is known that to each Lévy spectral function, M,
there exists a df, G, and nonneagative number ¢ such that

J c S w1 + u)dG(u) it <0
(2) M@y =1 7
l-c S w1 + u?)dG(u) if >0.

Then, according as z >1 or 0 < x <1, we have xSm wldM(u) <
2cx S+m w 'dG(uw) or x° S+m udG(u) = Zcheru“ldG(u). xSimilar state-
mentxs hold for negati\:e x. Now, if wex apply Lemma 4.5.1 of [2]
to the integrals involving G, the assertions of Lemma 1 follow at
once.

LEMMA 2. Let M, and M, be two Lévy spectral functions and
assume they are related by

_SS M@ g, if s <0

—00 J—o0 2z

(3) Milw) = 3 S+°°S+°° dzlﬁl(z).dy if @>0.

z Y

Suppose &(t) = it — o** —l—% (et — 1 — axt/1 + a?))dM(x) where
R
PreR, 6°=0. Then

o\ s = in2) + | —E M) ~ )

Z 0+ )
{ ot 1 At
+4 (e 1- w2>sz(x) .

Proof. Let T >0 be fixed and define K(u,z)=¢* —1 —
wux/(l + «%). Then K(u, z) = O(z*) as z— 0 uniformly for [u| < T.
Let 7 > 0. Then
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SO du lim §+°° K(u, ©)dM(z) = ¢ S du0(§:+ xszl(x))

e~0t

+ it S S K(u, 2)dud M,(x) = (S:wszl(x)> + S: L, x)dM (@)

where
e -1 it

L(t, x) = m .

Letting 7— 0%, we have that
t oo
t“lg Si K(u, 2)dM,(@)du = §+ L, x)d’M @)
0 Jo ot
A similar statement for the negative axis shows that

B S p(u)du = (ig2t/2) — (0°t*/3)

(4) , .
( (e =1 ite®  \dM(2)
+ Le( it v 21 + )/ =z

Now apply integration by parts to the integral in (4), to conclude
that

t! S: p(u)du = (1t/2) — (0°t*/3) + l_l.rol} I:__L(t’ @) S”‘“‘” 2 AM(2) |2

I Sjma_L(t,_x)r" 2 dM(z)dz + Lt, x)S 2 AM(2) |75

+ g_s oL(t, ””)S_w M (2)dw

—00

= (18/2) — (0%*/3) + ]—R K(t, x)dMy(x)
{
+ % tJ (1 ) ~AM,(2) .

The last equality follows by observing that L(¢, z)/#® is bounded for
[t| < T as z— 0 and using Lemma 1. This completes the proof of
Lemma 2.

THEOREM 2. A mnecessary and sufficient condition for ¢(t) to be
the logarithm of an imfinitely divisible ch.f whose Lévy spectral
Sunction is convex on (— oo, 0) and concave on (0, 4+ o) is that ()

t

may be written ¢(t) = t"g J(u)dw, where + is the logarithm of o
0
certain infinitely divisible ch.f .

Proof. Suppose 4(t) = t‘lst J(w)du where - and ¢ are as in the
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statement of the theorem and let M, and M, be the Lévy spectral
functions of « and ¢ respectively. Since the Lévy representation is
unique, Lemma 2 shows that M, and M, are related by (3). Clearly
M, is convex on (—o,0) and concave on (0, +c) and so the
sufficiency of the condition holds.

Conversely suppose a Lévy spectral function M, is given and
assume further that M, is unimodal at 0. Then we can write

Sz p(u)du if z<0
Mz(x) = —°°+w
—S o{u)du if >0

z

where p = 0 and is nondecreasing on (—co, 0) and nonincreasing on
z +oo
(0, + o). Define M (z) = —S udp(u) if x < 0 and M (z) = X udp(u)
if £ >0. Then M, is also a Lévy spectral function and
M) = S g dp(2)dy = ~S” S e dM,(2)dy
if @< 0, and similarly, M) — —§+°° g” e dM(z)dy it ©> 0. This

shows that M, and M, are related b; (8). So if ¢ has the Lévy
triple (y, o, M,), define

Wl(t) = it<2,u — ol _ﬁ_szz(x)) — 30t

Je (1 + o)
( jite 1 itw M
+ )Re 1 i xzd () .

By Lemma 2, ¢(t) = ¢! St +(u)du, and hence, the proof of Theorem 2.

Some applications and consequences of Theorem 2 will be given.

(a) Suppose that a Lévy spectral function, M, and a df, G, are
related by (2) for some ¢ = 0. From (2), it is clear that the (0)-
unimodality of G entails that of M. The converse is not true; a
counterexample is provided by the function M(x) = ¢,|2|™™ or ¢
according as < 0 or x > 0, where ¢, ¢, >0 and 0 < a < 1.

(b) Medgyessy ([8], Theorem 2.1) proved that if M is symmetric
and convex on (— o, 0), then the original df is unimodal at 0. Hence,
combining our result with Khinchin’s theorem on unimodality, one
obtains that if @(¢) is an infinitely divisible real ch.f and In @(t) =

t‘lsclan(u)du for some infinitely divisible ch. f 7, then @(t)zt"yx(u)du
0 0
for some ch. f y(u).

(c) Suppose ¢(t) = ipt — blt|*(L + (2B¢t/|t])w(|t], @)) corresponds
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to a stable law of index a. (See [2], p. 136.) In this case
(5) #(t) = 17t + cB(t)

where veR, ¢=0, and $(t) =t St #(u)du. Conversely suppose
#(t) = In @(¢) for some infinitely divisikgle ch. £ @ and for some 7€ R,
¢ =0, (5) holds. Let (g, 0%, M) be the Lévy triple of @®. If M =0,
then @ is a normal ch. f and ¢ =38. Assume M is not identically
zero. By Theorem 2, M is convex on (—<,0) and concave on
(0, + ), and so there exists a nonnegative function p(x) such that
p is nondecreasing on (— <, 0), nonincreasing on (0, + ), and such
that

Sz p(u)du if z<0
M) =" ..
~Tpewa it e <o

Since the Lévy representation is unique, if (5) holds, the Lévy
spectral functions of ¢ and c$ agree. Hence M satisfies the identity

[—cg” S dM@dy it <0
M(w) = e
l_ch S AM)dy it &> 0

In terms of p, (6) reduces to

—c Sx u”p(u)du if 2<0
o) =< .
S u 'p(u)du if 2>0.

Employing the uniqueness theorem for first order differential equa-
tions, it follows that »(x) = p(—1)|z|™° if x < 0 or p(L)x~° if z > 0.
But since S p(x)dx and ] xp(x)da; are both finite, we must

»1)
have that 1 < ¢ < 8. This, in turn forces 6° = 0. Combining this
and the form of the Lévy spectral function for stable distributions,
we see that (5) characterizes the stable laws.
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