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INTEGRAL REPRESENTATIONS OF ALGEBRAIC
COHOMOLOGY CLASSES ON HYPERSURFACES

EDITH STEVENSON

Let MX) = Σ S Xϊ + hx(X) where hλ(X) is the generic
form of degree d in n + 1 variables over C. The main
theorem of this paper is that certain exponential integrals
associated to the projective hypersurface Xx defined by the
vanishing of M^) have regular singularities. The main
ingredients in the proof are:

1. Katz's identification of certain monomial spaces (first
studied by Dwork) in terms of the middle-dimensional co-
homology of a variety related to X\ and

2. Griffiths' theorem, which states that periods on an
algebraic variety have regular singularities.

By essentially the same methods, an upper bound on the
order of logarithmic growth of the integrals is determined.

Also, an example is given to show the relation of periods
on a family of cubic curves to hypergeometric functions.

Introduction* The main theorem of this paper is that certain
exponential integrals associated to a family of hypersurfaces have
regular singularities. The major ingredients in the proof are:

(1) Katz's thesis [4], which provides cohomological meaning to
certain polynomial spaces first studied by Dwork and, as a consequence,
provides cohomological meaning to the integrals in question, and

(2) Griffiths' theorem [6], which says that the Picard-Puchs
equations satisfied by periods on an algebraic variety have regular
singularities.

Let fλ(X) = Xf + + Xί+1 + hλ(X), (a diagonal form plus a
perturbation term hλ(X)) where hλ(X) = Σ?=i Vϊ w ( ί \ t h e generic form
of degree d in n + 1 variables over C. We are interested in the
family of complex projective hypersurfaces Xλ defined by the vanish-
ing of fχ(X). The integrals associated to the family Xλ, X e C% come
about as follows:

Let K = Q(λ). Let £f be the ίΓ-span of all monomials V =
ίp fn

n

+γ where Σ S 1 vt s 0 (mod d) and vt ^ 0, i = 1, . . . , n + 1.
Let M2+1 denote n + 1 copies of the group Md of dth roots of unity
and let ω = e2πi/d. Then for ζ e Ml+ι, we assign to each monomial

the multiple integral

(
Jζoo

where dt/t = dtjt1 dtn+Jtn+ί and the region of integration is the
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(n + l)-fold product of limits as p —• 0 along paths of the type:

ζωco

0 ζp

To the subspace ^fs of & consisting of monomials V which are
divisible by all variables (i.e., vt > 0, i — 1, , n + 1), we associate
the integrals

(**)

where, as before, ζ 6 Ml+1.
It is easily shown that both of these classes of integrals have

nonzero radii of convergence. (See the note after Theorem 2.) The
main result of this paper is that the integrals (*) and (**) have
regular singularities as functions of λ, which is perhaps surprising
since the integrands involve exponentials and one might reasonably
expect the integrals to have exponential growth. The fact that fλ{t)
is taken to be homogeneous is crucial as is shown in §6.

Since periods are integrals of differential forms over cycles on
a variety, a direct proof of the regularity of the integrals (*) and
(**) would involve showing that the integrands are algebraic
cohomology classes on a suitable variety and therefore (after ex-
plaining the regions of integration) the integrals are periods.
Regularity would follow from Griffiths' result. We do not use this
method of proof but Chapter 4 of [7] provides a heuristic explana-
tion of why the integrands should correspond to cohomology classes
on a variety related to Xx (following the theory of Monsky as ex-
plained in [3]).

Instead, we proceed by identifying the space of integrals (*),
^ = =2f/ker φ, in terms of the middle dimensional cohomology of
the variety Xf, the subvariety of X\ where no coordinate vanishes.
(The fact that this is the variety of interest is suggested by the
dt/t in the integrands of (*).) The key is to interpret ker φ in terms
of the differential operators

A - βxp(/a(X))oX i-A.oexp(-/2(X)) , ί = 1, ..., n + 1 ,
uΛ.1

which act on βSf. The motivation for this is that spaces ressembling
the quotient space Ti = SflΣDuλSf have cohomological meaning, as
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is shown by Katz in his thesis [4]. Katz's results enable us to
interpret the space Ti in terms of the middle dimensional cohomology
of the variety X\.

Since φ is surjective by definition and since ΣDifXSf c ker φ, it
follows that φ: Tί—**^ is surjective, and hence that each integral
I(λ) 6 κf[ may be regarded as the image under φ of a cohomology
class on X\.

The next step is to prove that the following diagram commutes:

•

where σλ is a connection on T{ which corresponds to d/dx acting on
Hn~ι(XΦ

λ, K), the middle dimensional cohomology of Xφ

λ. Hence, the
differential equations satisfied by the integrals in <J^ are given by
σλ acting on 3 ,̂ which in turn are given by d/dX acting on H^^X*, K).
By Griffith's theorem, these differential equations have regular singu-
larities so the regularity theorem follows for the integrals (*).

To draw similar conclusions about the integrals (**), it would
suffice to give cohomological meaning to the space Y*\ = ^f8jΣDίtλ^

8.
Rather than do this directly, we use the isomorphism Θλ constructed
by Dwork between ( 3^)*, the dual space of Tλ, and T\. The basic
idea is as follows: we know that the integrals (*), viewed on the
space Ti, satisfy a system of differential equations with regular
singularities and we want to see how the system is changed under
Θλ. This is equivalent to studying the behavior of σ%, the connec-
tion on 2^* dual to σλ, under Θλ. We show that under Θλ the matrix
of the system of differential equations is transposed. The conclusion
is that the integrals (**) satisfy a system of differential equations
with regular singularities.

After proving Theorem 2, we use essentially the same techniques
to prove a theorem (Theorem 3) on the order of logarithmic singu-
larity occurring in the integrals (*) and (**).

The original proof of the regularity and logarithmic growth
theorems [7] used Dwork's deformation theory, a p-adic theory, to
derive an expression for the integrals (*) as sums of periods on X\.
Although the proof given here has the advantage of being much
shorter and of using less machinery, the original proof has the
advantage of being more explicit. For example, in the special case
where the defining form for the family of hypersurfaces has only one
perturbing term (and hence is of the form fλ(X) = ΣEίί-X? + ^Xw),
the formula relating periods and integrals may be applied to express
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the periods on X\ in terms of hypergeometric functions. In this
case, the results about the growth of the integrals follow from
classical hypergeometric theory. (Griffiths' theorem needn't be used,)

This paper is organized as follows:
§ 1 contains preliminaries on Dwork's spaces and a cohomological

interpretation of ψ\*
§2 contains the statement and proof of the main theorem (as

outlined above).
§3 contains results on the order of logarithmic singularity of

the integrals.
§ 4 outlines briefly the original method of proof of the regularity

theorem and gives the formula for the integrals (*) in terms of
periods on X\.

§5 contains an example showing the connection with hypergeo-
metric theory, and

§6 concludes with an example showing the necessity of the
hypothesis that the defining form fλ(X) be homogeneous.

This paper is abstracted from my Ph. D. thesis written under
the direction of Bernard Dwork. At this time, I would like to ex-
press my gratitude to him for his generosity with both his time
and his ideas.

l In this section we are interested in the cohomological inter-
pretation of a certain polynomial space which Dwork constructed
for a family of complex protective hypersurfaces in connection with
his work on zeta functions.

Let fλ(X) = f(X) = X? + - . . . + Xί+1 + hλ(X) where hλ(X) =
Σ?«i \XwM is the generic form of degree d in n + 1 variables over
C. Let K = Q(\, •••, \). Let £f be the subspace of K[X] =
K[Xί9 , Xn+1] spanned by {Xw = XΓ1 XΓίίMΣfi1 *>t = 0 (mod d)
and Wi ̂  0, i = 1, , n + 1}, and let JZfs be the subspace of J?f
spanned by all Xw satisfying the further condition: wi > 0, i = 1,
• , n + l Thus £f * is the i£-span of the monomials divisible by
all the variables.

Given f(X) e K[X], let Dt be the twisted differential operator
on £f defined by

A = exp(-πf(X))oX*oexj>(πf(X)) - xj~ + M

i = 1, ..-, w + 1 ,

where π is some nonzero constant. Without loss of generality we
may take π to be — 1. (References to papers of Dwork or Katz
should be modified accordingly.)
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Both £f and £f* are stable under Dt so we can form the
quotient spaces 3 ^ = ^ 7 / Σ ? i 1 DifX<Sf and T8

λ = ̂ f9/ΣιiSDitλSf\ These
are finite dimensional iί-vector spaces and in the case where the
hypersurface Xλ defined by the vanishing of fλ(X), XeC% is non-
singular and in general position, they both have dimension dn [1].
The condition that Xλ be nonsingular and in general position means
that the forms Xt(df/dXt)9 i = 1, •••, n + 1, have no common zero.
By elimination theory, there is a polynomial R(X) with integral
coefficients such that Xλ is nonsingular and in general position
precisely when λ is not a zero of R(X). Thus, outside the subvariety
U defined by the vanishing of R(X), T{ and Ti* have dimension dn.

Let Stf = {w = (wlt , wn+1) 6 Zn+11Σ?iι Wi Ξ= 0(d) and 0 <; wt < d,
< = 1, •• ,7i + l} and let j#" = {w = {wίf •••, wn+1) e Zn+1 | Σ & 1 wt = 0(d)
and 0 < w, ^ d, i = 1, , n + 1}. Then for (λx, , \) eCv - U,
{Xw}w6.v is a basis for Tx and {Xw}we^, is a basis of 3H [1],

With these preliminaries, we turn to the cohomological interpre-
tation of Tλ = £flΣDitX£f. Let XI denote the open subset of Xλ

where no coordinate vanishes and let P%+1 denote the open subset of
Pn where no coordinate vanishes. Let .Sf1 = Jίf — {!}. In his thesis
[4], Katz constructs an isomorphism

by defining &{XW) = (w0 - 1)! {X°lf"*)(d(XJX%+MXJX%+d A Λ
(d(XJXn+1)/XJXn+1) where Hn(Pn

n+ι - Xφ) denotes the ^ dimensional
cohomology group Hn(P%+1 - Xφ, K) and w0 = (1/d) Σ^ϊi1 wiβ He com-
putes the dimension of Hn(P%+1 - Xφ) to be ώTO + n.

Let ^ J = Tλ- {1} = ^fιIΣDiiλ^. Then the following sequence
is exact:

0 > ΣDiSflΣDiSf1 > ^f'/ΣDiSf1 > Wλ > 0 ,

so Wi is a factor space of Katz's space

LEMMA 1. {Xw}ωe V f U {X<(3//3X<)}fi
1 ϊβ α δαsis /or

φ{0 0}

Proo/. Since ^ f differs from .Sfx by {1}, a basis for ΣDi

the kernel of the projection mapping, is {AίlMfίi1 = {-Xi(3//3-X",)}fii.

We now describe the additional cohomology classes in
i.e., those corresponding to the forms Xt{dfldX%) under the Katz &f
map. To do this we define a connection on Sf^ΣDtSf*- which cor-
responds to the derivation d/dx on Hn(Pl+ι — Xφ) under the map ^
(Lemma 2), and then show that under the connection the
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are taken to ΣDiSf1 and thus may be thought of as constant
cohomology classes (since taking their λ derivatives makes them
exact).

Let σh = exvi-πfiXfiod/dXioexviπfiX)) = d/dXi + πidf/dXi), i =
If *••> vf where π is a constant which we shall take to be —1 and
where dXj/d\ = dij9 Then σ^, i = 1, , v, is a connection on =Sf [5]
and since it commutes with the A's, i = 1, , n + 1, it is also a
connection on S

LEMMA 2. The following diagram commutes:

d &

Proof. The proof is a standard computation and will be omitted.

With the understanding that a constant cohomology class is one
whose λ derivative is exact, we have the following result:

THEOREM 1. The nonconstant cohomology classes of Hn{Pl+ι—Xφ)
are contained in

Proof. For i = 1, , n + 1,

so 3/3λ applied to the forms defined by X^df/dXi), i — 1, •••, n + 1,
gives an exact form, which is the statement of the theorem.

Note. It is not true that all the forms in Wl correspond via
έ% to nonconstant cohomology classes. For example, let f(X) =
XI + XI + XI- ZXX,X2XZ. Then

I 9 )

so the cohomology class corresponding to XγX\ is constant.
Theorem 1 provides the necessary cohomological interpretation of

ψ[ = £flΣDitχ£f: T{ may be viewed as containing the nonconstant
cohomology classes of Hn(P%+1 — X4*) together with a class singled
out by σx(ΐ).

Note. In his thesis, Katz also shows
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Wx is a factor space of £?Ί(f) + ΣΓi1 A-Sf71 and an argument similar
to the one above shows that Tl may also be viewed as containing
the nonconstant cohomology classes of Hn'ι{Xφ

}) together with a class
singled out by σλ(l).

2* This section is devoted to the proof of the main theorem:

THEOREM 2. The multiple integrals

J(λ) = P (ζty exp (-Λ(ζί))^ , veΛT,ζe MF\ ω = e**"d

* exp {-mt))~ , v e j#", ζJ(λ) - Γ
Jo

have regular singularities as functions of λ, where the region of
integration for I(λ) is the (n + l)-fold limit as p —> 0 αZo%# pαίfes 0/

JVoίe. For λ = 0,

and 7(0) = -A- ΠCίH — )

(Γ denotes the gamma function.)

Hence, by the Lebesgue dominated convergence theorem, it follows
that both integrals converge in the v-fold product of complex half
planes: Re (λ€) ^ 0 , i — 1, , v. The domain of convergence is
actually larger. In [7] it is shown that the product of half planes
in which the integrals converge is given explicitly by the condition:

Re(ζw (%) > —ajΎt, i = 1, , v where 7< = d/(w{ί))w{i)/d and where
the a/s are positive real numbers satisfying the condition Σϊ=i aί = l
(Recall that fλ(X) - Xf + + X^+1 + Σϊ=i \Xwiί) )



204 EDITH STEVENSON

Proof of Theorem 2. We begin with the collection ^ ( ζ 6 M2+ί)
of integrals of the type (*) (regarded as functions of λ): for each
ζeMϊ+1,

= p (ζt)υ exp (~fλ(ζt))— %ω =

As in the introduction, for each ζ e M%+1 we define the map

by

) =
(Note that, although φz was initially defined on £f, it is actually
defined on Ψl since ΣD^ c ker <p.) By definition, φζ is surjective
for each ζ e Λf3+1, so aside from the integral

S ωcx.

each integral in ^ may be regarded as the image under φζ of a
cohomology class on the variety Pl_x — XΦ (or Xφ). The strategy in
proving the regular singularity of the integrals in *J^ is as follows:

We show that d/dX acting on ̂  corresponds to σλ acting on ψ\
(Lemma 3). Since φζ is sur jective, the differential equation satisfied
by each integral in ^ is given by σλ acting on its pre-image in T{.
Apart from the element 1, σλ acting on Y{ corresponds to d/dx acting
on a quotient space of Hn~\XΦ) (Lemma 2). By Griffiths' theorem,
the periods on a variety have regular singularities, so it follows
that, aside from φζ(ϊ), every integral in ^ has regular singularities.
The case φSX) is treated separately (Lemma 4).

LEMMA 3. The following diagram commutes for each ζ 6 Ml+1:

φζ

dx

Proof. The proof is a standard computation which will be
omitted. Note that a similar theorem is true for 3H, a fact we
will use later.

Let J(λ) e w^, I(X) Φ <?(1). Then:
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•If =-
oX o

= 9>c( Σ AVtWξw) where Σ Λ,,»£«
Miej/-(0, ,0) w

is the system of differential equations satisfied ξv e W^χ. Hence,
dl/dX = Σ^e^-{o,...,o)-A*,JΓ«> so the system of differential equations
satisfied by J(λ) e ̂ , I Φ φ{l), is the same as that satisfied by a
differential form on P ; + 1 — XΦ (or Xφ), so the integrals in J?\ (aside
from <£>ζ(l)) have regular singularities.

LEMMA 4. .For each ζeΛfJ+1, I(λ) = \ °° exp(—Λ(ζί))dί/t
Joo

regular singularities.

Proof.

Hence, by the above argument, 3//3λ has regular singularities and
hence locally at most polynomial growth. Thus, locally its integral
I(λ) also has at most polynomial growth. It follows that I(X) has
regular singularities.

The conclusion is that the integrals (*) in the & theory have
regular singularities.

To draw the same conclusions about the integrals (**) in the Sf*
theory, we need to compare their differential equations to those in
the «Sf theory. An outline of the method is as follows:

To pass to the .Sfs theory, we use Dwork's mapping Θλ which
establishes an isomorphism between ^~λ and ψ\\ where 3ίΓλ is the
dual space of Ψl (under a pairing to be defined). σλ is a connection
on T\ and σ$, the dual operator, is a connection on 3ίΓx. Lemma 5
shows that the connection is consistent with Θλ and hence the con-
nection matrix of σλ acting on Ψi* is the negative transpose of that
of σλ acting on ψ\. Since the system of differential equations
satisfied by the integrals in the £f* theory is given by σλ acting on
ΨΓ (same argument as in Lemma 3) and since the integrals in the

Sf theory have regular singularities, it follows that the integrals
(**) in the iίfs theory also have regular singularities.

To fill in the details of the above outline, we need to begin with
some preliminaries on the dual theory. The dual theory is a p-adic
theory, so for the definitions which follow to make sense, we must
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temporarily work over a p-adic field. Also, in order to define the
dual pairing, we will interpret the monomial XweSf as XpXw

where w0 = 1/d Σ & 1 wt.
Let Ω denote the completion of the algebraic closure of Qp, the

field of p-adic numbers. Let Jϊf* denote the 42-span of

{X~w I Σ Wt = 0 (mod d) and w« ;> 0, i = 1, , n + 1} .I Σ
ΐ = l

For ξei ί f (which we view as having coefficients in β) and£*e,Sf*,
the product £•£* is a well-defined element of .Sf U £f* provided
certain growth conditions are satisfied ([2], p. 236). When this is
the case, we may define the symbol

<£*, ςy = the constant term of ζ*(X')ξ(X)

where for X = (Xo, Xx, . . . , X%+1), X' - (-Xo, Xx, . . , Xn+1). Let
denote the dual space of 3*7 under this pairing.

For w satisfying Σ& 1 wt Ξ 0(ώ), we define

7 (X)
10 otherwise.

Dwork's θλ map, which allows us to pass from 3tΓλ to %s, is defined
as follows:

^ o7_oexp(-Λ(X)) .

To compute the system of differential equations satisfied by the
integrals in the £f* theory, we need to know how σλ behaves under
the Θλ mapping.

LEMMA 5. The following diagram commutes:

4 0

where σ* is the operator dual to σx under the pairing defined above.

Proof. Under the pairing < , > defined earlier,

σ* = 7_ o σ = 7_ o exp (fλ(X)) o-A. o exp (-MX)) .
oX

Commutativity follows from a standard computation.
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To complete the proof of Theorem 2, we need to show that the
connection matrix of σλ acting on Ti8 has regular singularities.

Suppose σλ(ζv) = Σ« AViWξw where ξv, ζw e Tλ. Then, since

<**(«), O = -<£ί, σξv) - -A,,. ,

it follows that

**(£ί) = Σ #,..£? where 5 M - -A,,. .
V

Let )? e T\. Then >? = <9(f*) for some ζ* e 3ίΓx. By Lemma 5,

σ(v) = Σ £...% , % e 3T .

The conclusion is that 57 satisfies a system of differential equations
with regular singularities, and since the integrals (**) in the Jίf8

theory satisfy the same system, they, too, have regular singularities.
This concludes the proof of Theorem 2.

Note. We used Dwork's p-adic dual theory in the second part
of the theorem in order to prove a classical result (i.e., a result over
C). This could be avoided by using a result in [7], which expresses
T* in terms of the D/s acting on the middle dimensional cohomology
of Xλ and its intersections with the axes Xt = 0, , Xn+ί •= 0.
However, since the proof of this result is long, we have chosen to
use Dwork's p-adic theory.

3* In this section we study the logarithmic growth of the
integrals (*) and (**). Since these integrals satisfy differential
equations with regular singularities it follows that locally they are
one of the following forms:

(1) <p(λ), where φ is a uniform function of λ,
(2) X°φ(\) where a e Q [6],
(3) logr(λ)^>(λ) where reZ, or
(4) sums of Xa logr (λ)^(λ).

We are interested in finding an upper bound on r for these integrals.

THEOREM 3. Locally the integrals

(ζty exp (-/,(ζί))f , ζ e ΛfS+S ^

and

Γ (ζtγ
Jo

exp (-Mt))~ , C e Ml+\ D
t

have logarithmic singularities of order at most n(n = 1 + dim Xf).
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Proof. By Griffiths' local monodromy theorem [6] it follows
that locally the periods on the variety Xφ (of dimension n — 1) have
logarithmic singularities of order at most n — 1. Hence, aside from

the integral φζ(l) = \ βxp(—fχ(ζt))dt/t, all of the integrals (*) in
Joo

the Jίf theory have local logarithmic singularities of order at most
n — 1. We settle the question of <pζ(ϊ) as follows:

S ωoo

exv(—fλ(t))dt/t has logarithmic
oo

growth of order at most n.

Proof. As in Lemma 4, dI/dXeφ('W~λ), so dl/dX has logarithmic
singularities of order at most n — 1. Since integrating log""1 (λ)
gives at most log91 (λ), the lemma follows.

To pass to the ^ s theory, recall from Theorem 2 that the
matrix giving the system of differential equations for the integrals
in the £f* theory is the negative transpose of that in the £f theory.
Theorem 3 for the Jxf* theory is a consequence of the following
general lemma:

LEMMA 7. Suppose Yr = YC where Y9 Y' and C are square
matrices. Then if Z satisfies Zf — —ZC\ it follows that locally Z
has the same order of logarithmic singularity as Y.

Proof. The proof is a standard computation in differential equa-
tions. The lemma and hence the theorem follow.

4* The original proof of the regularity of the integrals in the
,Sf theory uses Dwork's deformation theory to obtain explicit
formulas for the integrals (*) as sums of periods on the variety XΦ

λ.
Since the formulas are interesting and in a special case show the
relation of periods to hyper geometric functions, we outline briefly
their derivation.

For XeΩ% we define the deformation mapping

by T0,λ - τ_ o e x p (/0(X) - fλ(X)).

This makes sense provided λ is sufficiently close to 0 (in the p-adic
sense) ([2], pp. 256-60). Let {ξUiλ}ue^ be the basis of JΓX dual to
{X%ess Then relative to the bases {ξUt0}uBJ, and {ζUfχ}ue^, Katz
shows that the matrix of TOtχ satisfies the Picard-Fuchs differential
equations for the variety X\ and hence (with the exception of the
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entries arising from l e 5̂ ) may be regarded as a matrix of periods
on the variety Xφ

x.
More explicitly, let Γfί,0 = Σ«e.^cut,f*a relative to the bases

prescribed above. Then the cuv'& (u, v e j ^ — (0, , 0)) may be
regarded as periods on X*λ. In [7], after a lengthy computation,
an expression for the cuυ's in terms of the integrals (*) is given.
Before stating the result we need to define the following gamma-
like function: for u e Z, u ^ 0, let

d/ Jco t

where ω — e2τci/d and the region of integration is the limit as p —• 0
along the path

0 P

Γ can be shown to be well-defined. For u e J^f let

Then we have the following representation for periods cuv in terms
of the integrals (*) [7]:

where u, v e Ĵ Γ
Inverting this expression leads to the desired formula for the

integrals (*) as sums of periods cuv. After noting that we only need
to consider integrals of the foίm <pωa(tv) where a) — e2rΛ/d and a 6 A =
{a - (alf , an+ι) |Σ?Λι a>t = 0(d) and 0 ^ α, < d, i = 1, , w + 1}
[7, p. 42], it follows that

where w , v 6 Λ Theorem 2 for the ^ theory follows from this
formula.

5. We now compute an example to show the relation of periods
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on a variety to hypergeometric functions* As a result, we obtain
the estimates on the growth of the periods independently of Griffith's
work.

Let fx(t) = t? + ti + ίi - SM&t* (λ e C) so fλ{t) = 0 defines a family
of curves in P\C) with singular fibres at λ ~ 1, e21ΐί/z, e4πi/3 and oo.
From above,

Σ ζ~u+vHv(ζ)

where JEΓ,,(ζ) = \ ί*-1exp(--/,i(ζί))<ft for ζeMl For » , ϊ e j / -
Joo

{0, * ,0}, the cuv'a are periods on the variety X\. Letting ζ =
(α>β, α>&, α>c) (ω = e2?rί/d), it follows that

,1) if α + δ + c ^ 0 ( 3 )

>, 1,1) if α + b + c = 1(3)

{Hv(ω\l,l) if H H C

Let HVtζ = jBΓ̂ ίζ, 1, 1). Then a short computation shows that the Hυ's
may be written as hypergeometric functions as follows: For α = 0,1, 2,

2i !i
3 ' 3 ' 3

_ _
3 ' 3

where the hypergeometric function

β> 7

Since

if u,- v^Uz- v2

otherwise
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it follows that:

Kί)
3 ' 3 ' 3

3 ' 3 /

3-1 2

if tt!-i?[Ξ 0(3) and u2 — v2 = 0(3)

o8 + l \
3 ' 3 ' ~ 3

2 4

K^Ψ-)
if Uι-vι = 1(3) and u2 - v2 = 1(3)

t>! + 2 v2 + 2 v3 + 2 \
3 ' 3~'~T

4 5

o
if u, - v, Ξ 2(3) and 6̂2 - v2 = 2(3)

otherwise .

The fact that the cUtV'a are expressed in terms of hypergeometric
functions of the type m+1Fm (Pochhammer hypergeometric functions)
shows that they have regular singularities. Since the hypergeometric
functions involved are of the form SF2, the indicial polynomial has
at most three roots, so cuυ can have logarithmic singularities of
order at most two.

Note further that when u, v£<Ssff) j&", (i.e., 0 < u, v < d) there
is cancellation in ZF2 so it becomes 2Flf and in this case there are
logarithmic singularities of order at most one. This is to be ex-
pected, since it follows from Katz's thesis [4] that such cuυ are
periods on Xλ.

This computation can be generalized to the class of hypersurf aces
defined by the vanishing of the form:

In this special case the statements about the regular singularity
and logarithmic growth of the periods (Theorems 2 and 3) follow
from classical hypergeometric theory.

6* We conclude this paper with an example showing the neces-
sity of the hypothesis that fλ(t) be homogeneous. We do this by
dehomogenizing the family of cubic curves in the previous example
and showing that the resulting integrals have irregular singularities
at infinity.
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Let fλ{t) = ίϊ + ίi + «! - βλtAίβ. Letting yt = ίjt,,' i = 1, 2, we
obtain the inhomogeneous polynomial fλ(y) = 1 + y\ + yl —
Proceeding as above, the integral

J(λ) -

reduces to a sum of hypergeometric functions of the type 2F2., Since
each 2F2 satisfies a third-order differential equation and since there
are only two exponents at <χ>, each 2F2 has irregular singularities at
infinity.

This example generalizes readily to inhomogeneous polynomials
of the type

Jn+1g>{y) = y i + ••• + vUx + M / Γ •••vl

where rt Ξ> 0, i = 1, , n + 1. As above, the integral

V

may be expressed in terms of hypergeometric functions of the type

aFd^ where a — Σ & 1 ri These have regular singularities exactly
when Σ S i 1 ^ = d, i e., if and only if gλ(y) is homogeneous.
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