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MAXIMAL SUBMONOIDS OF THE
TRANSLATIONAL HULL

MARIO PETRICH

Maximal submonoids of a semigroup have recently at-
tracted attention in semigroup literature. This is particularly
true for the semigroup &{X) of binary relations on a set.
The interesting results of Zareckiϊ in this direction point to
the fact that some of these statements pertain to the more
general situation of the translational hull of a Rees matrix
semigroup. More generally, we consider here maximal sub-
monoids of the translational hull of a regular semigroup.

The first, and the main, theorem in this paper says that if ω is
an idempotent bitranslation of a regular semigroup Sf then ωΩ(S)θ) =
Ω(ωSω); here ωΩ(S)ω is a maximal submonoid of Ω(S). The second
theorem pertains to subdirect irreducibility of certain subsemigroups
of the translational hull of a Rees matrix semigroup. Finally, the
third theorem concerns regular semigroups in which every maximal
submonoid is a retract. These results have a number of conse-
quences. The paper ends with several examples of concrete semi-
groups to which some of the preceding results are applied.

We start with a list of needed definitions and simple results.
Let S be a semigroup. A function λ (resp. p), written on the left
(resp. right) is a left (resp. right) translation of S if X(xy) = (Xx)y
(resp. (xy)p = x(yp)) for all x,yeS. The set Λ(S) (resp. P(S)) of
all left (resp. right) translations of S under composition (λλ)'a? =
λ(λ'z) (resp. x(pp') — (xp)pf) is a semigroup. The pair (λ, p) e Λ(S) x
P(S) is a bitranslation of S if %{Xy) = (xp)y for all x, y eS; the
subsemigroup of Λ(S) x P(S) consisting of all bitranslations is the
translational hull Ω(S) of S. Its elements will be usually written
as a) = (λ, p), where ω is considered as a bioperator on S. For any
seS, the function X3 (resp. ps) defined by λs = sx (resp. xρs == xs)
for all x e S, is the inner left (resp. right) translation and πs =
(λ8, ps) is the inner bitranslation of S induced by s. The set
Π(S) = {πs\seS} is an ideal of Ω(S) called its inner part. The
mapping π: s —• πs is the canonical homomorphism of S into Ω(S).
It is one-to-one if and only if S is weakly ?*eductive. In such a
case for any (X, p), (λ', p') eΩ(S), seS, we have (Xs)ρ = X(sp)f and
thus all parentheses may be omitted.

An element s e S is regular if s — sts for some t e S; if also
t = tst, then t is an inverse of s. A semigroup in which every ele-
ment is regular is a regular semigroup. Note that every regular
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element has an inverse, and that a regular semigroup is weakly
reductive, and hence the canonical homomorphism above is one-to-
one. A semigroup S is completely regular if every element of S
has an inverse with which it commutes (equivalently, S is a union
of groups).

An element e of S is idempotent if e2 = e; the set of all idem-
potents of S will be denoted by Es. If eeEs, then the set eSe =
{ese\seS} is the set of all elements of S having β as a (two-sided)
identity, and is thus called a maximal submonoid of S (since a
semigroup with an identity element is called a monoid). It is easy
to see that every maximal submonoid of a regular semigroup is
again a regular semigroup. If ω — (λ, p) eEΏ{s), the above defini-
tions and conventions yield

(1) ωSω = {λs<o|seS} = {s eS\s = Xs = sp) .

If I is an ideal of S, then S is an (ideal) extension of I; S is a
αtewse extension of J if the equality relation on S is the only con-
gruence on S whose restriction to I is the equality relation; if S is
a maximal dense extension of /, then 7 is a densely embedded ideal
of S. For a weakly reductive semigroup S, Π(S) is a densely
embedded ideal of Ω(S).

The proofs of the above statements as well as the concepts used
in the paper but not defined can be found in the book [5]. This
reference as well as the survey article [2] contain a comprehensive
collection of results concerning the translational hull.

2 The main theorem. This result gives a suitable isomorphic
copy of maximal submonoids of the translational hull of a regular
semigroup.

THEOREM 1. Let S be a regular semigroup. If (oeEΩ{S), then
the function χ defined by

χ: (φ, ψ) • (φ \ωSω, f \ωSω) (($>, ψ) e ωΩ(S)ω),

is an isomorphism of ωΩ(S)(0 onto Ω(β)S(θ).

Proof. Let ω = (λ, p) and note that

(2) ωΩ(S)ω = {(φ, ψ) e Ω(S) | φ = λ^ = φX, X = pψ = φp) .

Next let (φ, ψ) e ωΩ(S)ω. For any x e ωSω, using (1) and (2) we
have

φx = (Xφ)(xp) = X(φx)p
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so that φ\ωSω maps ωSω into itself. Similarly ψ\ωSω has the same
property. It then follows without difficulty that χ is a homomor-
phism of ωΩ(S)ω into Ω(ωSω).

Next let (φ, φ), (φ\ f') e ωΩ(S)ω and assume that (φ, ψ)χ =
(φ'f Ψ')X Let xeS; there exists ueS such that Xx = (Xx)u(Xx).
Then X(xu)ρ e ωSω and

<px = (φX)x — φ(Xx) =

]^ = φ'[(Xx)u(Xx)] — φ'(Xx) =

so that 9) = φ'\ analogously ψ = τ/r'. Consequently χ is one-to-one.
Next let (<p, f) e Ω(ωSω). Define φ' and ^ ' on S by

9>'a; = [φ(X(xu)p)]x if λα; =

if α p =

We will show first that the definition of φf is independent of the
choice of the element u. Hence assume that

Xx = (Xx)u(Xx) = (λα )ί(λα ) .

Then

X(xu)p = (Xx)(up) = (Xx)t(Xx)(up) =

so that

, 8 , [^(M»^)]ί» = {φ[((X(xt)ρ)(X(xu)ρ)]}x =

which evidently implies independence of φ' on the choice of u. Simi-
larly the definition of ψ' is independent of the choice of v.

Now let x, y e S, Xx = (Xx)u(Xx), X(xy) = X(xy)wX(xy). Using (3),
we obtain

(φ'x)y =

= [9>(λ(α?w)/t>)]λ(fl?2/)wλ(«ί/) = [φ(X(xu)ρ)][X(xyw)p]xy

= {φ[(X(xu)ρ)(X(xyw)p)]}xy

= {φ[(X(xu)p)(Xx)(yw)ρ)]}xy

Hence 9/ is a left translation of S, a symmetric proof shows that
ψf is a right translation of S.

Let x, y eS, xp = (xp)s(xp), Xy = (Xy)z(Xy). Then
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x(φ'y) = x[φ(x(yz))p)]y = x[(Xφ)(x(yz)p)]y

= χ{M(<p(yz)p)])y = (χp)[φ(Mvz)p)]y

= (xp)s(xp)[φ(X(yz)ρ)]y = x[X(sx)ρ][φ(X(yz)ρ)]y

)p)jr ][X(yz)p]y = tf[

= (xf')y

which implies that (φ'f ψ') e Ω(S).
Further, for xeS and Xx = (λx)u(λa ), we have

) = X{[φ(X{xu)p)]x} =

'λ)α = φ'(\x) — [φ(X(xu)ρ))]x — φ'x

which proves that φf — Xφ' — φfX\ analogously ψf — pψf = f'p. Con-
sequently (φ\ ψ') e ωΩ(S)ω.

Finally let xeωSω, x = xux. Recall formula (3); then

φ'x = [φ(X(xu)p)]x =. {φ[(Xx)(up)]}x =

)]}^ = φ[x(Xup)x] = ^[

α;)] = φ(xux) = <pα;

so t h a t 9>' |ωjSω = 9>, analogously α/r' |ω>Sω = α/τ. Therefore (<p\ f')χ = (9?, ψ*)

and χ maps ωΩ(S)ω onto Ω(ωSω).

COROLLARY 1. Lβέ S be a regular semigroup. If a) eEΩ{S), then
ωΩ(S)θ) Π Π(S) is a densely embedded ideal of (θΩ(S)co.

Proof. Let π:S—>Ω(S) be the canonical homomorphism. It is
easy to verify that

Π(ωSω) = ωSω = π(ωSω) = ωΩ(S)ω n Π(S) .

On the other hand, Π(ωSω) is a densely embedded ideal of Ω(ωSω),
which is in turn isomorphic to ωΩ(S)ω by the theorem.

COROLLARY 2. If Ω(S) is a regular semigroup, and ωeEms),
then Ω(ωSω) is a regular semigroup.

Proof. This follows from the theorem since Ω(ωSω) = ωΩ(S)(o
and any maximal submonoid of a regular semigroup is regular.

LEMMA 1. If S is a regular semigroup and ωeEΏ(s)f then ωSω
is a regular semigroup.
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Proof. Let xeωSω and %' be an inverse of x. Then

x = xxfx — (xp)x'(Xx) = #(λa?')i°)^

which shows that ωSco is regular.

COROLLARY. If S is an inverse semigroup (resp. a semilattice
of groups) and ωeEΩ{s), then both ωSω and Ω(ωSω) are inverse
semigroups (resp. semilattices of groups).

Proof. In view of the lemma, the assertion follows easily from
([5], V.4.6) (resp. V.6.6).

3* Rees matrix semigroups. The theorem of this section re-
lates subdirect irreducibility of a maximal subgroup of a Rees matrix
semigroup S with that of a number of subsemigroups of Ω(S). We
start with a general discussion and a string of lemmas.

Throughout this section we fix a (regular) Rees matrix semi-
group S = <s#\If G, M; P). We outline briefly a construction of
Ω(S), see ([5], V.3). For a partial transformation a on I, whose
domain is denoted by da, and a function φ mapping da into (?, the
mapping λ defined by

Mh 9f μ) = (ai, (φi)g9 μ) if i e <ta

and λ(i, g, μ) — 0 otherwise, is a left translation of S; analogously

( i g9 μ)p = (i, flr(i"f), μ/3) if A« 6 d/3

and (i, ̂ r, JM)̂  = 0 otherwise, is a right translation of S; they are
linked if and only if

, , * (i € dα, jWtf ^ 0 <=> /£ e rf/5, p(AI/ϊ)< Φ 0
(4) \

( P ( ί ) = (flψ)Ptμβ)i

In such a case, we write ω = (λ, ̂ ) ̂  (α, ̂ >; β, ψ). Conversely, every
bitranslation of S is of this form for unique parameters a, <pf β, ψ.
It is easy to verify that ω2 = ω if and only if

<*U = ̂ α, ̂ |r«: ra • 1 , β\rβ = tτh ψ\rβ: rβ > 1

where ra is the range of a, cΓOί is the identity mapping on ra, 1 is
the identity of G, etc. With this notation, we have

LEMMA 2. If ωeEms), then ωSω = ̂ f°(ra, G, rβ; Pω) where Pω

is the restriction of P to rβ x ra.
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Proof. Indeed, for 0 Φ (i, g, μ) e S, we have

{%, g, μ) 6 ωSω <=> (i, g, μ) = λ(i, g, /*) = (i, ff,

< = * i — α i , φ i = 1, μψ — μy μβ — μ

<=> i e ra, μerβ .

By Lemma 1, ωSω is regular, hence the sandwich matrix Pω has a
nonzero element in each row and each column.

If the sandwich matrix P has no two distinct rows (or columns)
which have the corresponding entries simultaneously nonzero, then
P (and also S) is said to have no contractions, see ([3], § 6). The
importance of this notion stems from the fact that these are precisely
completely 0-simple semigroups all of whose proper congruences are
contained in Sίf.

LEMMA 3. Let the notation be as in Lemma 2, / / P has no
contractions, then neither does Pw.

Proof. Let i, j e ra and assume that

(5) pμiΦ0 — pμiΦ0 (μedβ).

Let μ 6 M be such that pμi Φ 0. Now iera implies that i 6 da and
ai = i since a2 = a. Hence ieda and pμ{ai) Φ 0 which by (4) implies
that μedβ and p(μβ)i Φ 0. Here μβ e rβ and p{μβH Φ 0 so that by
(5), we have p{μβ)j Φ 0. But then μedβ and p^)3- Φ 0 and hence
j e da and pμ{ai) Φ 0 by (4). Since aj = j, it follows that pμj Φ 0.
By symmetry, we conclude that

PμiΦ0*=> pμά Φθ (μ e M) ,

which by hypothesis that P has no contractions implies that i = j .
One proves symmetrically that for μ,ve rβ,

p μ i Φ 0 <==> p v i Φ ϋ (ie ra)

implies μ = v. Therefore Pω has no contractions.

The next result is of general interest for extensions of regular
semigroups.

LEMMA 4. Let V be an extension of a regular semigroup S.
Then every congruence on S contained in 3$f can be extended to a
congruence on V.
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Proof. Let σ be a congruence on S contained in Sίf and τ be
the equivalence relation on V whose classes are the σ-classes and
singletons {v} with v € V\S. Then τ is a congruence if and only if
for any v e V, α, beS, ασδ implies vaσvb and avσbv. Let a,beS
be such that ασδ. The hypothesis implies that aSίfb, and thus
a = bx for some ίueS. Let δ' be an inverse of 6. Then

a = bx = (δδ'δ)a? = bb'(bx). = δδ'α ,

and thus for any veV, we have

va — v{Wa) — {vbb')aσ{vbbf)b = vb

since 'vδδ' eS. A symmetric argument can be used to show that
avσbv. Consequently τ is a congruence and is obviously an exten-
sion of σ.

LEMMA 5. Let V be a dense extension of a semigroup S. If
S is subdirectly irreducible, then so is V. The converse holds if
every congruence on S can be extended to a congruence on V.

Proof. This is a part of ([5], IΠ.5.19 Exerc. 5).

We can now prove the desired result.

THEOREM 2. Let S = ̂ ° ( 7 , G, M; P) and assume that P has
no contractions. Let ω e EΩ{S) and V be a subsemigroup of Ω(S)
such that

ωΩ(S)ω n Π(S) S 7 £ ωΩ(S)ω .

Then G and V are simultaneously subdirectly reducible or irre-
ducible.

Proof. We have mentioned above that the hypothesis that P
has no contractions is equivalent to S having all proper congruences
contained in 3έf ([3], Proposition 6.2). Any one of the numerous
descriptions of congruences on a Rees matrix semigroup can be used
to easily show that the lattice of all congruences on S contained in
§ζf is isomorphic to the lattice of all congruences (and thus normal
subgroups) on G. Under our hypothesis this means that G is sub-
directly irreducible if and only if S is.

By Lemma 3, the matrix Pω has no contractions. The above
argument for S is now valid for ωSω in view of Lemma 2. Hence
G and ωSω are simultaneously subdirectly irreducible or not. By
Lemma 1, ωSω is regular. It follows that
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(6) ωSω = ωΩ(S)ω n Π(S)

as in the proof of Corollary 1 to Theorem 1. According to the last
reference, we also have that ωΩ(S)ω n Π(S) is a densely embedded
ideal of ωΩ(S)ω. Hence by ([5], IΠ.5.6), V given in the statement
of the theorem is a dense extension of ωΩ(S)ω Π Π(S). Since the
last semigroup has no contractions, its proper congruences are con-
tained in Jgt so by Lemma 4, are extendible to V. But then
Lemma 5 asserts that ωΩ(S)ω Π Π(S) is subdirectly irreducible if
and only if V is.

Now a combination of the statements concerning G and ωSω,
(6), and ωΩ(S)ω Γi Π(S) and V, establishes the theorem.

Note that for ω — (cs, cs), the identity bitranslation, we may
take V = Π(S) (and Π(S) = S), or 7 = Ω(S). Also for any nonzero
idempotent e of S, the bitranslation ω = (λe, ρe) gives for ωSω the
maximal subgroup Ge of S with identity e (and Ge = G). Also
observe that we have used Theorem 1 via its Corollary 1.

4* Retracts* A subsemigroup T of a semigroup S is a retract
(of S) if there exists a homomorphism φ oί S onto T which leaves
all elements of T fixed; 9? is then a retraction. We discuss here
regular semigroups in which all its maximal submonoids are retracts.
A related condition will be expressed by means of bitranslations;
for this reason we introduce

DEFINITION. Let S be a semigroup and (λ, p) e EQ{S) such that
(Xx)p = χ(χp) for all xeS (so we can write Xxp without ambiguity).
The mapping

[λ, p]: x > \xρ (x e S)

is said to be induced by (λ, p).

LEMMA 6. Consider the following conditions on a semigroup S.
(a) For any α, b e S, e e Es, eabe = eaebe.
(b) Every maximal submonoid of S is a retract.
(c) Every idempotent inner bitranslation on S induces a re-

traction.
Then (a) and (b) are equivalent) (c) implies (a); and (a) implies (c)
i/ S is weakly reductive.

Proof. Straightforward.

Recall that an idempotent semigroup satisfying the condition
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(a) in Lemma 6 is called a regular band. We are now ready for
the theorem of this section.

THEOREM 3. Let S be a regular semigroup. If S satisfies
condition (a) in Lemma 6, then it also satisfies the following con-
ditions.

(d) S is completely regular.
(e) Every idempotent bitranslation induces a retraction.
(f) Idempotents of S form a regular band.

Proof, (d). Let a' be an inverse of an element a of S. Then

a — (aar)aa\aar)a = {aa')a{aa')a'(aa')a e a2Sa

which by ([5], IV.1.6) implies that £ is completely regular.
(e) Let (λ, p) eEms), x,yeS. Using part (d), for any element

zeS, we let zf be the inverse of z in the maximal subgroup of S
containing z. We compute

X(xy)p = [X(xy)ρ][X(xy)ρY[X(xy)ρ]

= {[(Xx)(XxY](Xx)(yρ)[X(xy)pY[(Xx)(XxY]}(Xx)(yp)

= {[(λtf)(λΛ)'](λaO[(λtfX^^

( 7 ) = {[(λΛ)(λαOΊ(λ»|t>)[^

= (xxp)fayp)lMxy)p]'mxy)p]

analogously

(8) X(xy)p = Mxy)ρ][x(xy)ρ]\Xxρ)(Xyρ) .

On the other hand,

(Xχρ)(xyρ) = (Xχρ)(xyρ)[(Xχρ)(Xyp)Y(Xxρ)(xyρ)

- [(Xxρ)(Xxpy](Xxp)(yp)[(Xxp)(Xyp)Y[(Xxp)(XxpY](Xxp)(Xyp)

- [(Xxp)(Xxp)r]{Xxp)[{Xxp){Xxpy](yp)

(9) x [(Xxp)(Xyp)Y[(Xxp)(XxpY](Xxp)(Xyp)

= [(Xxp)(Xxp)'](Xx)[(Xxp)(Xxp)'](yp)

x [(λΛ/oXλiz/oJl'fίλίC/oXλίc/oJ'lίλίc/oXλίc^)

= (Xxp)(Xxp)f[X(xy)p][(Xxp)(Xyp)Y(Xxp)(Xyp) .

The conjunction of (7) and (9) shows that X(xy)p and (Xxp){Xyp) are
^-related. Since S is completely regular, they are contained in a
completely simple subsemigroup of S. Hence (7) and (8) imply that
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they are also contained in the same maximal subgroup G of S. But
then [Mχy)PY[Mχv)P] must the identity of G, which together with
(7) shows that X(xy)p — (Xxp)(Xyp). This is evidently equivalent to
the statement that the bitranslation (λ, p) induces a retraction.

(f) It suffices to show that idempotents of S form a subsemi-
group. Using a Rees matrix representation of a completely simple
semigroup T, it is an easy exercise to show that condition (a) in
Lemma 6 implies that Eτ is a subsemigroup of T. Since S is a
semilattice of completely simple semigroups, ([5], IV.3.7) implies that
Es is a subsemigroup of S.

Comparing Lemma 6 with Theorem 3, we see that if in a regular
semigroup every idempotent inner bitranslation induces a retraction,
then so does every idempotent bitranslation. The semigroup S of
all transformations on a set of two elements is regular and trivially
satisfies condition (a); in this semigroup Sίf is not a congruence.
However, if S is a regular semigroup satisfying (a) in which 3if is
a congruence, then it follows easily from ([4], Theorem 3.2) that S
is a subdirect (even spined) product of a semilattice of groups and
a regular band. Conversely, it is easy to see that a regular semi-
group S which is a subdirect product of a semilattice of groups
and a regular band must satisfy (a) and £έf is a congruence on S.
It seems unlikely that conditions (d) and (f) in Theorem 3 imply
condition (a).

One might conjecture that if a regular semigroup S satisfies
condition (a) and Ω(S) is regular, then Ω(S) also satisfies (a). This,
however, is far from being the case. If T is the semigroup of all
transformations on a set with at least three elements, then the
constants in T form an ideal S of T such that: (a) S is a left (if
the transformations are written on the left) zero semigroup, thus
regular and satisfying (a), (β) Ω(S) = T so that Ω(S) is a regular
semigroup. If Ω(S) satisfied (a), then by Theorem 3, it would have
to be completely regular. But T is not completely regular, so Ω(S)
does not satisfy (a).

5* Examples* The following examples illustrate some of the
applications of Theorems 1 and 2. The proofs of many assertions
that follow are either omitted or can be found in [5].

(a) The semigroup J?~{X) of transformations on a set X
(written on the left). For the constants ^ ( X ) , we have

91, {X}; P)

with P = {Vxa), Pχa = 1 (right zero semigroup on X), 1 is a one
element group,



MAXIMAL SUBMONOIDS OF THE TRANSLATIONAL HULL 129

fiX) ~ Ω(^f(X, 1, {X}, P)) .

For any aeE^{x), we have

, 1, {ra}; P")) s

where P" is essentially the restriction of P.
(b) 77&β semigroup J?~(X) of partial transformations on a set

X (written on the left). For the (partial) constants ^(X)9 we have

Ή(X) s ^T°(X, 1, ̂ (X); P x )

where ^3(X) is the set of all nonempty subsets of X, Px = (ί)Aα),
p 4 α = 1 if a e A, pAa = 0 if a £ A;

(10)

For any aeEjr{x), we have

(11) a&~{X)a = Ω(^t*(ra, 1, rβ; Pa))

where β is a partial transformation on φ(X) with

dβ = {BQX\BΠrai± 0} ,

5/5 = {xeda\axeB} if Bed/3,

rβ = {J5 |£Γ)m^ 0} ,

and P α is essentially the restriction of P x . It can be proved that

(12) ^ ° ( m , 1, r/3; Pα) s ^ ° ( ^ , 1, Φ(rα); Prα)

and thus (10)-(12) yield

It can be shown that none of the Rees matrix semigroups here has
contractions. Hence all these semigroups are subdirectly irreducible.

(c) The semigroup S^{V) of linear transformations on a (left)
vector space V (written on the right). We will use the notation
and results of ([6], 1.2). The semigroup S^(V) of linear transforma-
tions of rank <̂  1 has the property

, Iy\ P)

and

f(V) = i2(^°CU ^2/-, Iv; P)) .

For any 0 ΦaeE&{r)9 we have

' t IVe; Pa)) =
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It can be shown that the matrix P has no contractions. Consequently
^£Δ~ (the multiplicative group of nonzero elements of the division
ring Δ of the vector space F), &%(V) and S*(V) are simultaneously
subdirectly reducible or irreducible.

(d) Brandt semigroups S = ̂ f°(X, G, X; A). For 0 Φ ω e EΩis),
we have

ωΩ(S)ω ^ Ω(^€°(ra, G, ra; Δ)) .

Let ^(X) be the semigroup of partial 1-1 transformations on X,
and w^ό(X) be the partial 1-1 constants on X. Then

, X; Δ)

, 1, X; A)) ,

and if 0 Φ aeE^{jn, then

, ra; Δ)) ^

None of these Rees matrix semigroups has contractions; hence G,
^\X, G, X; Δ), Ω(^T%X, G, X; Δ)) are simultaneously subdirectly
reducible or irreducible. In particular both ^ ( X ) and ^(X) are
subdirectly irreducible.

(e) The semigroup &(X) of binary relations on a set X. For
the semigroup &(X) of all rectangular binary relations on X, we
have

with pAB = liΐ Af]Bφ0 and pAB — 0 otherwise. Further,

&(X) = Ω(^r°mx), i, sp(-y); P))

Let 0 Φ σeEmx). Then

σ^{X)σ = Ω{^£\ra, 1, rβ; Pσ))

where a and β are partial transformations on X for which

da - {A £ X\(X x A)Γ)σΦ 0} ,

aA = {x6X\xσy for some #6A} if i e r fα; ,

and dβ and J5/S are defined symmetrically, Pa is essentially the re-
striction of P; see [1]. We may let Γ = (r/5 U {0})\(Xσ) and

(13) Γ = ^r o (Γ, l , r i8 ;Q)

with Q = (^B), QAB — 1 iί A£B and ^ 4 B — 0 otherwise. Using some
results of Zareckiϊ [7], one can show that

, rβ; P°) s ^\Y, 1, r/3; Q)
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SO t h a t

σ^{X)σ = Ω(^t\Yf 1, rβ; Q)) .

None of these Rees matrix semigroups has contractions. Hence all
these semigroups are subdirectly irreducible. In particular, this
implies ([7], Proposition 4.4). Also Corollary 1 to Theorem 1 for
S = &(X) implies ([7], Theorem 3.2). The semigroup T in (13) is
particularly interesting since it can be constructed directly by means
of a completely distributive lattice, which then yields an abstract
characterization of maximal submonoids of &{X), see [7].
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