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MAXIMAL SUBMONOIDS OF THE
TRANSLATIONAL HULL

MARIO PETRICH

Maximal submonoids of a semigroup have recently at-
tracted attention in semigroup literature. This is particularly
true for the semigroup <% (X) of binary relations on a set.
The interesting results of Zareckii in this direction point to
the fact that some of these statements pertain to the more
general situation of the translational hull of a Rees matrix
semigroup. More generally, we consider here maximal sub-
monoids of the translational hull of a regular semigroup.

The first, and the main, theorem in this paper says that if w is
an idempotent bitranslation of a regular semigroup S, then w2(S)w =
2AwSw); here w2(S)w is a maximal submonoid of 2(S). The second
theorem pertains to subdirect irreducibility of certain subsemigroups
of the translational hull of a Rees matrix semigroup. Finally, the
third theorem concerns regular semigroups in which every maximal
submonoid is a retract. These results have a number of conse-
quences. The paper ends with several examples of concrete semi-
groups to which some of the preceding results are applied.

We start with a list of needed definitions and simple results.
Let S be a semigroup. A function M (resp. o), written on the left
(resp. right) is a left (resp. right) translation of S if Axy) = (@)Y
(resp. (zy)p = x(yp)) for all v, ycS. The set A(S) (resp. P(S)) of
all left (resp. right) translations of S under composition (W) 'z =
MA'2) (resp. #(0p") = (xp)p’) is a semigroup. The pair (\, p) € 4(S) x
P(S) is a bitranslation of S if x(\y) = (wp)y for all z, yeS; the
subsemigroup of A(S) x P(S) consisting of all bitranslations is the
translational hull 2(S) of S. Its elements will be usually written
as ® = (\, p), where w is considered as a bioperator on S. For any
s€ S, the function ), (resp. p,) defined by ), = sz (resp. zp, = xs)
for all we S, is the inner left (resp. right) translation and 7, =
(N, 0,) is the imner bitranslation of S induced by s. The set
II(S) = {r,]s€ S} is an ideal of 2(S) called its inmer part. The
mapping 7: s — 7w, is the canonical homomorphism of S into 2(S).
It is one-to-one if and only if S is weakly reductive. In such a
case for any (A, o), (\, 0)€2(S), se S, we have (As)p = \(sp), and
thus all parentheses may be omitted.

An element seS is regular if s = sts for some teS; if also
t = tst, then ¢ is an inverse of s. A semigroup in which every ele-
ment is regular is a regular semigroup. Note that every regular
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element has an inverse, and that a regular semigroup is weakly
reductive, and hence the canonical homomorphism above is one-to-
one. A semigroup S is completely regular if every element of S
has an inverse with which it commutes (equivalently, S is a union
of groups).

An element ¢ of S is idempotent if ¢* = ¢; the set of all idem-
potents of S will be denoted by E;. If ec Ej, then the set eSe =
{ese|s e S} is the set of all elements of S having ¢ as a (two-sided)
identity, and is thus called a mazimal submonoid of S (since a
semigroup with an identity element is called a monoid). It is easy
to see that every maximal submonoid of a regular semigroup is
again a regular semigroup. If ® = (\, 0) € E;y, the above defini-
tions and conventions yield

(1) wSw = {\sp|s€ S} = {seS|s = rs =3sp}.

If I is an ideal of S, then S is an (ideal) extenston of I; S is a
dense extension of I if the equality relation on S is the only con-
gruence on S whose restriction to I is the equality relation; if S is
a maximal dense extension of I, then I is a densely embedded ideal
of S. For a weakly reductive semigroup S, II(S) is a densely
embedded ideal of 2(S).

The proofs of the above statements as well as the concepts used
in the paper but not defined can be found in the book [5]. This
reference as well as the survey article [2] contain a comprehensive
collection of results concerning the translational hull.

2. The main theorem. This result gives a suitable isomorphic
copy of maximal submonoids of the translational hull of a regular
semigroup.

THEOREM 1. Let S be a regular semigrouwp. If weHEys, then
the function ¥ defined by

X (@? "F) — (@ |wa; “;” lew) ((@’ "zb') € (O.Q(S)(D) ’

is an isomorphism of w2(S)w onto AwSw).

Proof. Let w = (A, p) and note that

(2)  028)w ={(p, ¥)e2S)|p =rp = P\ N = 0¥ = P0} .

Next let (@, ¥) € w2(S)w. For any zewSw, using (1) and (2) we
have

Pz = (\@)(20) = Mp)p € ®S®
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so that @|,s, maps wSw into itself. Similarly +|.,s, has the same
property. It then follows without difficulty that yx is a homomor-
phism of w2(S)w into 2(wSw).

Next let (@, ¥), (¢, v) e w2(S)w and assume that (@, ¥)y =
(@', v)yx. Let zeS; there exists u€S such that A = \Wr)u(\w).
Then Mzu)o € @Sw and

pr = (pMe = p(\2) = pl(\)u(v)] = [p(Mzu)0)]e
= [P (Maw)p)le = P [(z)u(m)] = 2/ (M) = (PM)e = @'z

so that @ = ¢'; analogously + = 4. Consequently y is one-to-one.
Next let (@, ¥) € 2(wSw). Define ¢’ and ' on S by

P’z = [p(Mau)o)lz  if = (W@)u(z),
xy’ = g[(Mv2)o)y] i wo = (wo)v(zp) .

We will show first that the definition of ¢’ is independent of the
choice of the element . Hence assume that

A = (W) u(e) = W)t(we) .
Then
Mau)o = (M) (up) = (W)t(va)(ue) = [Mat)ol[Mzu)e]
so that

[p(M@u)p)lz = {Pl(Mat)o)Mau)o)}o = [p(Mat)o)IMzu)o]e

(3) — [p(Mat)O)0)u) = [PMat)O)0)

which evidently implies independence of ¢’ on the choice of . Simi-
larly the definition of +' is independent of the choice of ».

Now let 2, y € S, M = (W2)u(hx), M2y) = May)wn(zy). Using (3),
we obtain

(P'2)y = [p(Maw)P)lzy = [p(Mau)0)I(\z)y
= [p(Mau)o)IMzy)wh(zy) = [p(Mzw)o)][Mzyw)oley
= {pl(Maw)o)(Mayw)o)]}zy
= {pl(Mzw)0)(\2)(yw) 0)}wy
= {pl(\z)u(rz)(yw)pltey
= {pl(m)(yw)ollry = [p(Mzyw)eley = @'(2y) .
Hence ¢’ is a left translation of S, a symmetric proof shows that

v’ is a right translation of S.
Let 2, ye S, zp = (zp)s(zp), My = (\y)z(\y). Then
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w(2'y) = 2lp(My2)o)ly = +[(\P)(My2)P)ly
= s{M(e(2)0)ly = (@)P(My2)0)ly
= (z0)s(z0)lp(My2)0)ly = a[Msz)ollp(My2)0)ly
= al(Ms2)o)r]IMy2)oly = 2l(Ms2)0)r ()2 (vy)
= a[(Ms2)0)v (M) = {[(Msz)0)v]o}y
= a[(Ms2)0)(v0)ly = 2[(Msx)o)vrly = (v¥')y

which implies that (@', ') € 2(S).
Further, for x€ S and M = (\x)u(hxr), we have

(Nz = Me'z) = Mlp(Mau)o)le} = [(Mp)(Mau)o)]
= [p(Maw)0)lz = o'z,
(@M = 9'(\) = [p(Mauw)o))]r = ¢'x

which proves that ¢’ = M@’ = ¢'\; analogously ' = py' = ¢'0. Con-
sequently (¢, ') e w2(S)w.
Finally let x e wSw, © = zux. Recall formula (3); then

P’z = [p(Mzu)0)]lz = {p[(\)(uo)l}z = {P[(z0)(u0)]}z
= {ple(vup)llz = plz(vup)z] = o[(z0)(wp)z]
= plau(z)] = p(auz) =

so that @'|.s. = @, analogously ¥'|.se = ¥. Therefore (¢', ') = (o, ¥)
and ¥ maps w2(S)w onto 2(wSw).

COROLLARY 1. Let S be a regular semigroup. If @€ Egs), then
w2(S)w N II(S) is a densely embedded ideal of w2(S)w.

Proof. Let m:S— 2(S) be the canonical homomorphism. It is
easy to verify that
H(wSw) = wSw = t(wSw) = w2(S)w N II(S) .
On the other hand, IT(wSw) is a densely embedded ideal of 2(wSw),
which is in turn isomorphic to @w2(S)w by the theorem.

COROLLARY 2. If 2(S) is a regular semigroup, and @ € Egyg),
then Q(@Sw) is a regular semigroup.

Proof. This follows from the theorem since 2(wSw) = w2(S)w
and any maximal submonoid of a regular semigroup is regular.

LEMMA 1. If S is a regular semigroup and w € Ky, then @S®
18 a regular semigroup.
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Proof. Let xc®wSw and 2’ be an inverse of . Then
z = x2'e = (xo)x' (W) = z(\x")p)x

which shows that @wSw is regular.

COROLLARY. If S is an inverse semigroup (resp. a semilattice
of groups) and e E,s, then both wSw and 2(wSw) are inverse
semigroups (resp. semilattices of groups).

Proof. In view of the lemma, the assertion follows easily from
([5], V.4.6) (resp. V.6.6).

3. Rees matrix semigroups. The theorem of this section re-
lates subdirect irreducibility of a maximal subgroup of a Rees matrix
semigroup S with that of a number of subsemigroups of 2(S). We
start with a general discussion and a string of lemmas.

Throughout this section we fix a (regular) Rees matrix semi-
group S = _Z2°(I, G, M; P). We outline briefly a construction of
2(S), see ([5],V.3). For a partial transformation « on I, whose
domain is denoted by da, and a function » mapping da into G, the
mapping ) defined by

Mz, g, 1) = (at, (Pi)g, 1) if teda
and (¢, g, #£) = 0 otherwise, is a left translation of S; analogously
@ g, )0 = (3, (), B) if peds

and (¢, g, #)0 = 0 otherwise, is a right translation of S; they are
linked if and only if
(1) 1€da, Puay 0 = pedp, Pup; # 0

= pﬂ(ai)(¢i) = ({""/’)p(ﬂﬁ)t .

In such a case, we write w = (\, p) ~ (a, ; B, ¥). Conversely, every
bitranslation of S is of this form for unique parameters «, @, 8, ¥.
It is easy to verify that ®* = @ if and only if

alra—:tra’ @Ira: ra——>17 Blrﬁ::(rﬁy W’/‘Irﬁ: rlg———’l

where ra is the range of «, ¢, is the identity mapping on ra, 1 is
the identity of G, etc. With this notation, we have

LEMMA 2. If we Eg,y, then oSw = #Z°(ra, G, rB; P*) where P
18 the restriction of P to rB X ra.
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Proof. Indeed, for 0 = (3, g, ) €S, we have

(t, 9, ) e 08w = (3, g, 1) = N, g, 1) = (1, 9, )0
= (1, 9, #) = (a1, (pi)g, 1) = (3, g(eep), 145)
—i=al, @t =1 =, 4= p
== jEra, perp .

By Lemma 1, wSw is regular, hence the sandwich matrix P“ has a
nonzero element in each row and each column.

If the sandwich matrix P has no two distinct rows (or columns)
which have the corresponding entries simultaneously nonzero, then
P (and also S) is said to have no contractions, see ([3],§6). The
importance of this notion stems from the fact that these are precisely
completely 0-simple semigroups all of whose proper congruences are
contained in Z

LEMMA 3. Let the notation be as in Lemma 2. If P has no
contractions, then neither does P*.

Proof. Let 4, jera and assume that
(5) pﬂi¢0‘=’p#1¢0 (#Gd,@).

Let #e€ M be such that p,, # 0. Now ¢ecra implies that teda and
at = ¢ since o = «. Hence 1eda and .., # 0 which by (4) implies
that gedB and pys; = 0. Here uSerB and pis; = 0 so that by
(5), we have p.p; = 0. But then pedB and ps; + 0 and hence
jeda and D5 #+ 0 by (4). Since aj = j, it follows that p,; = 0.
By symmetry, we conclude that

p#i#:o‘:’pm'io (F‘GM),

which by hypothesis that P has no contractions implies that 7 = j.
One proves symmetrically that for g, verg,

Py #0e=—1p,#0 (tera)

implies ¢# = v. Therefore P“ has no contractions.

The next result is of general interest for extensions of regular
semigroups.

LEMMA 4. Let V be an extension of a regular semigroup S.
Then every congruence on S contained in 57 can be extended to o
congruence on V.
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Proof. Let o be a congruence on S contained in 57 and t be
the equivalence relation on V whose classes are the o-classes and
singletons {v} with ve V\S. Then ¢ is a congruence if and only if
for any veV, a,beS, aob implies vaovb and avobv. Let a,becS
be such that aob. The hypothesis implies that aS#b, and thus
¢ = bx for some e S. Let b’ be an inverse of b. Then

a = by = (bb'b)x = bb'(bx) = bb'a ,
and thus for any ve V, we have
va = v(bb'a) = (vbb')ac(vbb)b = vb

since vbd'e€S. A symmetric argument can be used to show that
avoby. Consequently ¢ is a congruence and is obviously an exten-
sion of o.

LEMMA 5. Let V be a dense extension of a semigroup S. If
S s subdirectly irreducible, then so is V. The converse holds if
every congruence on S can be extended to a congruence on V.

Proof. This is a part of ([5], II[.5.19 Exerc. 5).
We can now prove the desired result.

THEOREM 2. Let S = _#2°, G, M; P) and assume that P has
no contractions. Let we Ey,s and V be a subsemigroup of 2(S)
such that

02S)wNIS) S VS w2S)w .

Then G and V are simultaneously subdirectly reducible or irre-
ducible.

Proof. We have mentioned above that the hypothesis that P
has no contractions is equivalent to S having all proper congruences
contained in 57 ([3], Proposition 6.2). Any one of the numerous
descriptions of congruences on a Rees matrix semigroup can be used
to easily show that the lattice of all congruences on S contained in
S# is isomorphic to the lattice of all congruences (and thus normal
subgroups) on G. Under our hypothesis this means that G is sub-
directly irreducible if and only if S is.

By Lemma 3, the matrix P“ has no contractions. The above
argument for S is now valid for ®Sw in view of Lemma 2. Hence
G and wSw are simultaneously subdirectly irreducible or not. By
Lemma 1, wSw is regular. It follows that
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(6) oSw = w(S)w N II(S)

as in the proof of Corollary 1 to Theorem 1. According to the last
reference, we also have that w2(S)w N II(S) is a densely embedded
ideal of w2(S)w. Hence by ([5], III.5.6), V given in the statement
of the theorem is a dense extension of wQ2(S)w N II(S). Since the
last semigroup has no contractions, its proper congruences are con-
tained in 5% so by Lemma 4, are extendible to V. But then
Lemma 5 asserts that ®Q(S)w N II(S) is subdirectly irreducible if
and only if V is.

Now a combination of the statements concerning G and ®wSw,
(6), and w2(S)w N I1(S) and V, establishes the theorem.

Note that for = (¢4, ¢5), the identity bitranslation, we may
take V = II(S) (and II(S) = S), or V = 2(S). Also for any nonzero
idempotent e of S, the bitranslation @ = (A,, p.) gives for wSw the
maximal subgroup G, of S with identity ¢ (and G, = G). Also
observe that we have used Theorem 1 via its Corollary 1.

4. Retracts., A subsemigroup T of a semigroup S is a retract
(of S) if there exists a homomorphism @ of S onto 7 which leaves
all elements of T fixed; @ is then a retraction. We discuss here
regular semigroups in which all its maximal submonoids are retracts.
A related condition will be expressed by means of bitranslations;
for this reason we introduce

DEFINITION. Let S be a semigroup and (A, p) € E, such that
()0 = Mzp) for all ze S (so we can write Axp without ambiguity).
The mapping

[N, pl: 2 — A2 (€ S)

is said to be tnduced by (n, p).

LEMMA 6. Consider the following conditions on a semigroup S.

(a) For any a,be S, ec Es, eabe = eaebe.

(b) Every mawximal submonoid of S is a retract.

(¢) Ewvery idempotent inmer bitranslation on S induces a re-
traction.
Then (a) and (b) are equivalent; (c) implies (a); and (a) implies (c)
1f S is weakly reductive.

Proof. Straightforward.

Recall that an idempotent semigroup satisfying the condition
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(a) in Lemma 6 is called a regular band. We are now ready for
the theorem of this section.

THEOREM 3. Let S be a regular semigroup. If S satisfies
condition (a) in Lemma 6, then it also satisfies the following con-
ditions.

(d) S is completely regular.

(e) Ewvery idempotent bitranslation induces a retraction.

(f) Idempotents of S form a regular band.

Proof. (d). Let o' be an inverse of an element o of S. Then
o = (aa)ad'(ad)a = (aa)a(aa’)e (aa)a € a*Sa

which by ([5], IV.1.6) implies that S is completely regular.

(e) Let (A, p)eEys), v, yeS. Using part (d), for any element
zeS, we let 2/ be the inverse of z in the maximal subgroup of S
containing z. We compute

May)e = [May)olMzy)o] [M=ay)e]
= {[(2)(A2) Tz (y ) [Mzy) o] [(Ax) (M) TY(Ax) (y o)
= {[(:2) () (W) [ (W) ) 1(y 0) M=) 0T TOv) (M2) THwz)( 0)
(7) = {[(2) () (v e)[(W) (M) 1(y o) [Mzy) o] T(Ma) (M) THOwx) (y 0)
= {[()(M2) 1Mz ) (y o) IMzy) o] (W) (A2) TY(M2) (w 0)
= (W)(vyo)[Mzy) el M=y)p]
= () vye)IMzy) el IMzy)ol 5

analogously

(8) Mey)e = [May)elMzy)ol (Mze)(\yp) .
On the other hand,

(Aze)(Mye) = ()M E) (M) My )] (M) (MY )
= [(ze)(M20) 1 0)(y ) [ (M2 e) My ) TV )Mz ) 1Mz 0) My 0)
= [(2p)(Az ) 1(v0)[ (M 0)(M20) 1(y0)
(9) X [(zo)vy o)l TOvze) (M) [(Mz ) (M 0)
= [(Mee)(v o) 1(v)[ (V) (M) 1(y 0)
X [(vee)Ay )l [(vzo) (M) 1) Mz 0)
= (M) o) [May)oll(vze) vy o) (V) vy 0) .
The conjunction of (7) and (9) shows that Mzy)p and (Mzo)(\yp) are

~ -related. Since S is completely regular, they are contained in a
completely simple subsemigroup of S. Hence (7) and (8) imply that
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they are also contained in the same maximal subgroup G of S. But
then [M(zy)e][May)e] must the identity of G, which together with
(7) shows that Mzy)o = (Mvzo)(Myp). This is evidently equivalent to
the statement that the bitranslation (A, p) induces a retraction.

(f) It suffices to show that idempotents of S form a subsemi-
group. Using a Rees matrix representation of a completely simple
semigroup 7T, it is an easy exercise to show that condition (a) in
Lemma 6 implies that E, is a subsemigroup of 7. Since S is a
semilattice of completely simple semigroups, ([5], IV.3.7) implies that
E; is a subsemigroup of S.

Comparing Lemma 6 with Theorem 3, we see that if in a regular
semigroup every idempotent inner bitranslation induces a retraction,
then so does every idempotent bitranslation. The semigroup S of
all transformations on a set of two elements is regular and trivially
satisfies condition (a); in this semigroup £#° is not a congruence.
However, if S is a regular semigroup satisfying (a) in which 57 is
a congruence, then it follows easily from ([4], Theorem 3.2) that S
is a subdirect (even spined) product of a semilattice of groups and
a regular band. Conversely, it is easy to see that a regular semi-
group S which is a subdirect product of a semilattice of groups
and a regular band must satisfy (a) and 57 is a congruence on S.
It seems unlikely that conditions (d) and (f) in Theorem 3 imply
condition (a).

One might conjecture that if a regular semigroup S satisfies
condition (a) and 2(S) is regular, then 2(S) also satisfies (a). This,
however, is far from being the case. If T is the semigroup of all
transformations on a set with at least three elements, then the
constants in T form an ideal S of T such that: (@) S is a left (if
the transformations are written on the left) zero semigroup, thus
regular and satisfying (a), (8) 2(S) = T so that 2(S) is a regular
semigroup. If 2(S) satisfied (a), then by Theorem 3, it would have
to be completely regular. But T is not completely regular, so 2(S)
does not satisfy (a).

5. Examples. The following examples illustrate some of the
applications of Theorems 1 and 2. The proofs of many assertions
that follow are either omitted or can be found in [5].

(@) The semigroup 7 (X) of tramsformations on a set X
(written on the left). For the constants .7(X), we have

ToX) = Z(X,1,{X} P)

with P = (9x.), Px. =1 (right zero semigroup on X), 1 is a one
element group,
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T (X)) = A~2Z(X,1,{X}, P)).
For any e e E ., we have
a7 (X)a = 2 .#(re, 1, {ra}; P)) = 7 (aX),

where P“ is essentially the restriction of P.
(b) The semigroup F# (X) of partial transformations on a set
X (written on the left). For the (partial) constants .#(X), we have

FX) = 2X, 1, B(X); Px)

where PB(X) is the set of all nonempty subsets of X, Py = (D),
p..=1if a€ A, p,, =0 if a¢4;

(10) FX) = AA2X, 1, B(X); Py)) .

For any ae€ E -, we have

(11) a7 (X)a = A A2 (ra, 1, rB; P%)

where S is a partial transformation on L(X) with
d={BS X|BNra # @},

BB = {xeda|aze B} if Beds,
r8={B|BNnra+* Q},

and P¢ is essentially the restriction of Py. It can be proved that
(12) A (re, 1, rB; P*) = #Z°(re, 1, B(ra); P.o)
and thus (10)-(12) yield

a7 (X)a =7 (ra).

It can be shown that none of the Rees matrix semigroups here has
contractions. Hence all these semigroups are subdirectly irreducible.

() The semigroup (V) of linear transformations on o (left)
vector space V (written on the right). We will use the notation
and results of ([6], 1.2). The semigroup .&(V') of linear transforma-
tions of rank < 1 has the property

AV = 2Ty, 447, I; P)
and
AV = A ALy, A4, Iy; P)) .
For any 0 =ac K. ,, we have

a AV = XA Dy AU, Ipa; PY) = F(Va) .
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It can be shown that the matrix P has no contractions. Consequently
A4~ (the multiplicative group of nonzero elements of the division
ring 4 of the vector space V), S4(V) and $(V) are simultaneously

subdirectly reducible or irreducible.
(d) Brandt semigroups S = #°X, G, X; 4). For 0+ we Eyy,
we have

w2(S)w = A~ re, G, ra; 4)) .

Let _#(X) be the semigroup of partial 1-1 transformations on X,
and _%(X) be the partial 1-1 constants on X. Then

X)) = A£%X, 1, X; 4)
(X)) =z A 72X, 1, X; 4),
and if 0 = acFE ., then
a(X)a = N ”2(ra, 1, ra; 1) = A(ra) .

None of these Rees matrix semigroups has contractions; hence G,
X, G, X; 1), AA#X, G, X;4)) are simultaneously subdirectly
reducible or irreducible. In particular both _#(X) and A (X) are
subdirectly irreducible.

() The semigroup <& (X) of binary relations on a set X. For
the semigroup “#(X) of all rectangular binary relations on X, we
have

Z(X) = 2 (P(X), 1, B(X); P)
with p,; =1if ANB=* @ and p,; = 0 otherwise. Further,
Z(X) = A~2"(B(X), 1, B(X); P)) .
Let 0 #0€ K. . Then
0B (X)o = AA2"(ra, 1, rB; P°))
where « and B are partial transformations on X for which

da={AC X|(Xx A)no+ o},
aA = {x € X|xoy for some yc A} if Acda,

and dB and BB are defined symmetrically, P~ is essentially the re-
striction of P; see [1]. We may let ¥ = (rB U {@})\(X0) and

(13) T=.2(Y,1,1r8 Q)

with @ = (94z), 9.z =1 if AZ B and ¢,z = 0 otherwise. Using some
results of Zareckii [7], one can show that

A (re, 1, rB8; P°) = A#(Y, 1, 1B; Q)
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so that
0B (X))o = 2A7Z(Y,1,rB; Q).

None of these Rees matrix semigroups has contractions. Hence all
these semigroups are subdirectly irreducible. In particular, this
implies ([7], Proposition 4.4). Also Corollary 1 to Theorem 1 for
S = #(X) implies ([7], Theorem 3.2). The semigroup T in (13) is
particularly interesting since it can be constructed directly by means
of a completely distributive lattice, which then yields an abstract
characterization of maximal submonoids of #(X), see [7].
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