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It is well-known that if a normed Riesz space (L, p) is
o-complete, i.e., a Banach lattice, then the relative uniform
topology and the norm topology are the same. Under weaker
conditions the two topologies show some measure of agree-
ment. In particular if L has (i) the local o-property (a pro-
perty weaker than both the o-property and local complete-
ness) and (ii) the property that for every ideal A the norm
closure of A equals the set of limit points of relatively uni-
formly convergent sequences of elements of A, then every
sequence %, |0 with p(u,)—0 is a relatively uniformly con-
vergent sequence. (This generalizes a theorem of Luxemburg
and Zaanen.) However conditions (i) and (ii) are not suf-
ficient to imply that the relative uniform topology and the
norm topology agree on order intervals. Examples are given
illustrating increasing degrees of agreement of the two
topologies.

Let L be a Riesz space, {x,:n €N} be a sequence in L, €L,
and ve L™, then {x,} converges v-uniformly to x, written x, —2
(v-unif.), if there is a sequence {a,) of real numbers such that a, | 0
and |z, — z| £ a,v for each n in N. A sequence {x,} of elements
of L is said to converge relatively uniformly to x<cL, written
z, — % (r.u.), if z,— 2 (v-unif.) for some v in L*. If S is a subset
of L, define S'™* to be the set of  in L such that there exists a
sequence {xz,})S8S with z, —« (r.u.). A subset S of L is said to be
relatively uniformly closed if S = S, and the relatively uniformly
closed sets are exactly the closed sets for a topology, the relative
untform topology 7,,, on L. For an arbitrary subset S of L the
set S is called the relative uniform closure of S and is denoted
by S™.

The relative uniform topology and its relation to the order
structure on L have been investigated in some detail. (See [2].) We
note here that although SZ S < S™ for every set S in L, it is not
necessarily true that S* = S"*. Recall that L is said to have the
o-property if every sequence of elements of L is contained in a
principal ideal, i.e., given any sequence {u,} in L™, there is a sequence
{\n,} of positive numbers and an element w e L* such that u, < \,u
for each ne N. In particular if L has a strong unit, it has the
o-property.
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The following is a theorem of T. Chow [2]:

THEOREM 1. Let L be an Archimedean Riesz space. Then the
following conditions are equivalent:

(i) L has the o-property.

(ii) S = 8 for every subset S of L.

(ii) S = 8 for every convex subset of L.

Now let o be a Riesz norm on L. It is well-known that if
(L, p) is a Banach lattice then the norm topology 7, and the relative
uniform topology coincide. Since 7,, is determined intrinsically by
the order structure of L, this shows that the norm topology is
intrinsic for a Banach lattice and that, in this case, L has the
o-property. Even if L is not p-complete, it is of interest to de-
termine the relation between the norm topology and the relative
uniform topology. Luxemburg and Zaanen presented a result of
this type at the 1973 Oberwolfach Conference on Riesz Spaces. Their
theorem is:

THEOREM 2. If L has the o-property and A = A° for each
ideal A in L, then u,],0 implies u,—0 (r.u.).

Here u,|,0 means u,]0 (in order) and p(u,)—0. The main
element in the proof is due to Luxemburg and appears as Lemma 1
in the present paper. In Theorem 2 the assumption that L has the
o-property guarantees a certain “richness” of elements in L (in lieu
of L being norm complete). As we shall see the assumption that
L has the o-property may be replaced by the assumption that E is
locally complete (i.e., every order interval is p-complete). Indeed
we need assume only that (L, p) has the local g-property, a property
defined below which is weaker than both the o-property and local
completeness (Theorems 4 and 5).

DErFINITION 1. A normed Riesz space (L, p) is said to satisfy
the local a-property if for every we L*, for every 0 <wv,] in L and
for every € >0, there exist weL and real numbers 8,> 0 for
k=1,2 ---such that 0= w=<u,p(u —w)<e and if 02w and
z < av, for some ke N then z < a Bu.

Roughly (L, p) has the local o-property if locally (within order
intervals) L almost has the o-property.

We include here for reference the following definition from [1]:

DEFINITION 2. Let (L, p) be a normed Riesz space and let L be
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the p-completion of L. An element wel*is called a lower element
if there is a sequence {u,} < L* such that w,],u, and w is called an
upper element if there is a sequence {u,} < L* such that «,{,u.

The author wishes to express his appreciation to W. A. J.
Luxemburg for many helpful conversations about the results and
examples in this paper.

Main results. We describe the main results here and give the
proofs and examples in the next section. Consider the following
conditions on a normed Riesz space (L, p):

(1) Ar = A™ for every ideal 4 in L.

(2) Ae = A" for every ideal A in L.

(3) u,|,0 implies u, —0 (r.u.).

(4) Se = S for every solid set S in L.

(5) t,.,= 7, on order intervals.

(6) 7,.= 7, on principal ideals.
(7) 7,.= 7, on principal bands.
(8) 7,,=7, on L.

(9) L is p-complete.

THEOREM 3. Using the motation above we hawve:
(i) O=@)=MN=06)=B=WH=0Q)=2)=(Q1).
(ii) PEwxcept for (4) = (5), none of the reverse implications hold.

THEOREM 4. If (L, p) has the local o-property, then (2)= (3),
i.e., if (L, p) has the property that A° = A’ for all ideals A in L,
then u,], 0 implies uw, —0 (r.u.).

THEOREM 5. If L has the o-property or if in the p-completion
of L every lower element is an upper element (in particular if (L, o)
is locally complete) then (L, p) has the local o-property.

Proofs and examples.

Proof of Theorem 3. The only implications which are not trivial
are (4) = (5).

((6) = (4)). Assume (L, p) satisfies (5), i.e., 7, = 7,, on order
intervals. We have to show that S° = S"* for every solid set S in
L. Let S be a solid set and let z€S°. Then we have a sequence
{x,} in S such that z,— x(0). Since z; — 2™(0) and z; — 2 (0) and
since |inf(x], %) — inf(z;, #7)| < |#,| and |inf(xi, ) — inf(x;, 27)| =<
||, we may assume |z,| < |z|. Then by assumption there is a sub-
sequence of {x,} which converges relatively uniformly to x. Thus
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ze S and S"*2 8S¢. Since the reverse inclusion holds in any normed
Riesz space, we are done.

((4) = (5)). Assume (L, p) satisfies (4), i.e., S? = 8’ for every
solid set S in L. In order to show that z, = z,, on order intervals,
it is sufficient to show that if we L*, if {u,} is a sequence in [0, w],
and if u,—u(0), then there is a subsequence {u,} such that
Uy, — % (7.0.).

Suppose there is a subsequence {u,,} such that u,, < u for all k.
In this case we may assume u,, = u for all k. Let S be the solid
set generated by {u,,:k<c N}. Since w e S° there exists by assump-
tion a sequence {v;} in S so that v;—u (r.u.). Pick k; for each
jeEN so that 0 =5 v; < Uy o Since u,, # u for any &k, we may assume
that the sequence of integers {n,,} is strictly increasing. Then we
have that 0 < w — Upy, S U — V; for all 7, so Uny, —w(r.u.). Similarly
if there is a subsequence {u,} such that u, =wu for all k, then
arguing as above (with w — u replacing u) we again conclude that
{u,} has a subsequence converging relatively uniformly to u. Now
we may assume u, Zu% and w £ u, for all n. Again let S be the
solid set generated by {u,:necN}. Again wecS? so there exists a
sequence {v;} in S so that v; —u (r.u.). If for some % and infinitely
many j we have v; < u, then u, = % which is a contradiction. Thus
we may assume that we have a strictly increasing sequence {n;} of
integers so that v; < u,; for each j. Now repeating the argument
with the sequence {w — u,;}, we find that we may assume that for
each j e N there exists z; such that 0 <z; = w — u,;and 2, —w — u
(raw.). Then w —z; = u,; for all j and w — z;—w (r.u.). Thus

|u — unjl =(u — un,‘)+ + (u — unj)_‘
Sw—v)t+ (w—(w—25)°
Slu— v + lu— (w— 2))]

and so u,; —u (r.u.).

Part (ii) of Theorem 3 follows from Examples 1-7 below.

ExAMPLE 1. ((1)=(2)). In this example we have A° = A™ for
every ideal A of L but we do not have A° = A" for every ideal
A of L.

In the Riesz space of all sequences let K be the ideal generated
by the sequences z* where 2z*(j) = j* for each k=1,2 ---. Let
K,=K for n=1,2, --- and let L be the ideal in [[,.» K, consisting
of those x such that there exist m and 7 in N and neR (all de-
pending on %) such that if n > m then |z,(5)| = An” for all jeN.
Note that if x e L then for n sufficiently large z,(-) € 4.. We define
a norm o on L by defining
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0.(z) = 3 I—xﬂgﬂfor weL and neN.
=g

For each z e L there exist m and € N and A € R such that if n > m
we have

8

J

0@ = Y
1 9?
Thus we may define o by
o) = 3, 242,
n=1 N

(i) We show next that every relatively uniformly closed ideal
is a band and hence norm closed. This implies (1) since the relative
uniform closure of an ideal is again an ideal. (Note that this shows
that the particular choice of Riesz norm p is unimportant.)

Let A be a relatively uniformly closed ideal in L. Let M=
{(n, 7): 2,(5) = 0 for some xc A}. We assert that A consists exactly
of those € L such that x,(5) = 0if (n, j)¢ M. It then follows that
A is a band. So assume x < L such that z,(j) = 0 if (», j)¢ M. For
each m € N define 2™ by

z, () if n==m

@) = {o if n>m

For each m and p in N define z™? by

z,(j) f n=mand j=<p
0 otherwise .

wm?(9) = {

Since for each m and p in N the set {(n, 7): z{™?(§) # 0} is finite, it
follows that x™» e A. We assert that for each m we have that
aa""’”’l)»x“”’(r.u.) and that 2™ — x (r.u.). Thus xz€ A since A is re-
latively uniformly closed.

Now if m e N we have

0 if jSporn>m

(M) (3 — D) (5 —
@ (g) = w7 ) {x“(j) otherwise .

There exist constants B,c€R and k,eN for m <m such that
2. ()| £ B, 5% all je N. Define veL by

o for n < m

v.(J) = {

0 for n>m.

Since z™(5) — @ym?(4) =0 for j<p we have |x"(j) — ai™?(5)| =
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(B./p)i*"*" for all j and p. Hence |a™ — z™?| < (8/p) v where
B = max(B, B, +++, Bw). Thus x™? — g™ (v-unif.) and 2™ e 4 for
all m.

Finally pick m, and r€ N and )€ R* such that |2,(j)| = A n" for
n = m, Then 2™ — 2z (w-unif.) where w ¢ L is defined by w,(j) = »™*"*
for all j.

(ii) To complete the example we exhibit an ideal I such that
I'™* =« I, Let I be the ideal of all ¢ L such that for some m and
» (depending on z) #,(j) =0 if » > m or § > p. By the argument
above we see that I"* = L. Now if uwe I'"* then for n sufficiently
large, u,(.) is the uniform limit of sequences with finite support, i.e.,
for » sufficiently large lim; u,(j) = 0. Thus the element ¢ defined by
e.(5) =1 for all » and j is in I"* = L but is not in I~

EXAMPLE 2. ((2) = (3)). In this example we have A° = A’ for
all ideals A but there exists a sequence u, ], 0 which does not converge
relatively uniformly.

Pick g e L,([0, 1]) such that ¢ is continuous on (0, 1], g(z) > 0 for
all x€(0, 1], and lim,_ .+ f(x) = . Let L be the Riesz subspace of
L([0, 1]) consisting of all fsuch that for some d(f) € R* and Y(f)e R
we have f(x) = Y(f) g(x) for all 0 < x < d(f). Define a Riesz norm p
on L by setting

o(f) = If 1l + V(NI .

(i) We show that if A is an ideal in L then A" = A°. Suppose
0<hedA’. We may assume there exists a sequence {f,} S A* such
that f, { h and p(h—f,) — 0. If ¥(h) = 0, then there exists 6 = o(k) >0
such that h(x) = 0 for x€[0,d). Then since L([J, 1]) is norm com-
plete, there exists w e L,([0, 1]) such that w(x) = 0 for z¢[0, ) and
f. — h (w-unif.).

Assume 7Y(h) > 0. Then there exists m € N such that v(f,) > 0.
For some 6 >0

v(h)

h(zx) = =L f.(x) for z€]0, o] .

() A Sul) [0, 4]

Now we can replace h by h — inf(h, (Y(h)/7(f.))f~) and argue as above.
(ii) Next we exhibit a sequence {f,} in L such that f,],0 but

Jo70 (ru.). Let f; = g. Define f, by induction so that

(a) f. is continuous on (0, 1],

(b) Oéfnéfn—-l’

() f.(l/k) = 1/kf(1/k) k=1,2, -+, n,
(d) fulx) = 1/(n + Dg(x), z (0, /(n + 1)],
€ [Ifall:=1/(n + Dllgll.
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Then o(f,) = 1/(n + 1) + 1/(n + 1) for all n, hence f,], 0.

Now if he L* and 7Y(h) > 0 there exists 6 > 0 such that for all
¢ (0, 0] we have h(x) = Y(h)g(x). If ke N is sufficiently large that
1/k < 0, then kv(h)f,(1/k) = h(1/k) for all n = k. Thus f, 4 0 (h-unif.)
and it follows that f, -4 0 (r.u.).

(iii) We show that L does not have the local g-property. This
follows immediately from Theorem 4. However we give here a
direct argument. Let u = g and define functions v, in Lfor k=1, 2--.
so that

(a) wv, is continuous on [0, 1]~ {1,1/2, --., 1/k}.

(b) |lw.]l; <1 for all &,

(C) limx—’l/j vk(w)z o for j = 1; 27 R} kr

@) v@)=0if 021/ + 1),

) Viwr = V.

Assume 0 < w < g can be found with p(g—w)<1/2and {B:: k=12, ---}
can be found so that if 0 < f<w and f< awv, for some ke N then
f<aB,g9g. Now v(w)>1/2. Pick 6 >0 so that if z¢€(0, 6] then
w(z) = o(w)g(x) and pick & so that 1/k <. Now for every me N
there is an open interval 0,, about 1/k so that if x €0,, then v,(®)=m g(x).
Now construct % to be continuous with support in 0, such that
h(1/k) = w(l/k) and 0 £ h < w. Then h <1/m v, implies h < (8,)/m g
and so Y(w) < B,/m for all me N. It follows that Y(w) = 0 which
is a contradiction. Thus (L, p) does not have the local o-property.

ExAMPLE 3. ((3) = (5)). In thisexample u,], 0 implies «, — 0 (r.u.)
but 7, #7,, on every order interval. Let L be the Riesz space of
all real-valued continuous functions f on [1, ) such that there exists
a = a(f) with f(z) = f(1)/x for x =a. Let o be the maximum
norm. Note that the funetion u(x) = 1/x is a strong unit in this
space.

(i) We show that (L, o) has property (3), i.e., if u,|,0 then
u, —0(r.w.). So assume wu,],0 and let ¢ >0. Pick %, so that
o(u,) <e. Then u, (1) <e and by definition there exists @ =1 such
that if » = @ then w, () < ¢/x. Hence if n = n, then u,(x) < ¢/x for
% =a. Now pick n, = n, such that if » = n, then po(u,) < ¢/a. Then
U, (%) < e/ < ef/x for xze[l, «]. Thus for n =mn, we have u, =¢/x
and so u, — 0 (1/x — unif.).

(ii) We show that (L, p) does not have property (5). (Recall
(4) = (5).) Define wu,c€L such that wu,(n)=1/n,u,(z)=0 if
zén—1,n+1], and 0 < u,<1/x forallzandn =1,2, ---. Then
u, — 0(0) but no subsequence converges to 0 relatively uniformly.
Thus 7, # 7,, on order intervals in L.

ExAMPLE 4. ((6) == (6)). In thisexample z,, = 7, on order intervals
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but not on principal ideals. For each ne N let v, be the sequence
defined by v,(k) = k" for n=1,2,.--. In the Riesz space of all
sequences let L be the ideal generated by {v,:n e N}. We define a
Riesz norm p on L by setting

- < |2k)]
o) = 5, =0

(i) In order to show that the norm and relative uniform topo-
logies agree on order intervals it is sufficient to show that if
{u,} <=[0, v,] for some m and po(u,)—0 then wu,—0(r.u.). But
o(u,) — 0 implies lim,u,(k) =0 for each keN. Since v,(k)=
1/k vpyii(k), it follows easily that u, — 0 (v,., — unif.).

(ii) We give a principal ideal 4, in L for which the norm and
relative uniform topologies do not agree. Let u be the constant
sequence u(k) = 1 for all & and let A, be the principal ideal generated
by #. Note that we have shown in (i) that (L, o) has property
(4, 1), i.e., u, ] 0 implies p(u,) — 0. Now for each m inf(n u, v,)],Vn,
so {inf(nu, v,):m =1,2, ---} is a p-Cauchy sequence for each m.

Let ¥ and m be given. Pick p, so that if n=p, then
o(inf(n u, v,) — inf(p,u, »,)) < 1/(2"**). Now since v,, ¢ A, there exists
r € N such that »,(r) >2p,. Pick ¢, > », such that [inf(g,u, v,)—
inf(puu, v.)l(r) > (Wa(r))/2. Let 2k = inf(qau, v.) — inf(p,u, v,) for
all & and m. Note 2% e A, 2t £ (1/2)v,, and po(z) < 1/(2™+*) for all k
and m. Let w, = z¥ + 28+ ... +2f, so p(w,) < 1/(2¥). Hence w, — 0(p)
and w, € 4, for each k. But if for some subsequence w,,— 0 (r.u.)
then w,;—0 (v,-unif.) for some m. However if %; > m then
wy; Z (1/2)v,, and we have a contradiction. Thus 7, # z,, on A,.

ExAMPLE 5. ((6) = (7)). In this example L has a weak unit,
T, = T,, On every principal ideal, but 7, # z,, on L.

Let L be the ideal in [, 4. of all  such that

(a) p() = sup,||®,]| < c (where ||---|| is the supremum norm
in 4,) and

(b) except for finitely many = (depending on z) z,cc¢,. Note
that if welL is defined by u,(k) = 1/k for all k, ne N then w is a
weak unit in L.

(i) We show that the norm topology equals the relative uniform
topology on principal ideals in L. Suppose {#"} is a sequence in a
principal ideal. Then there exists m such that if n = m we have
2" ee, for all ». Passing to a subsequence if necessary we may as-
sume 3.2, o(r2'") < co. Define v € [1, 4 by v.(r) =2, 7|2!”|. Since
¢, is uniformly closed in ~,, we have that w, ¢, for all » = m and
so u€ L. Clearly |2 < (1/r)w, so 7 — 0 (r.u.). Thus 7z,=r7,, on
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every principal ideal.

(ii) We give a sequence which is norm convergent to 0 but
such that no subsequence converges relatively uniformly to 0. Thus
T,, # Tp On L,

Define 2" €L for r=1,2, «+- by

I\rif nsr

w0 ={ e 3,

Then p(x'") = 1/r — 0, but clearly no subsequence converges relative-
ly uniformly. o

EXAMPLE 6. ((7) == (8)). Let L be the Riesz space of sequences
with finite support and let o(2)= i |z(k)|. It is obvious that z,=7,,
on principal bands and that z, # z,,.

ExAMPLE 7. ((8)=(9)). Let (L, o) be any Riesz space with a
strong unit such that L is not complete with respect to the corre-
sponding uniform norm.

This completes the proof of Theorem 3. Before giving the proof
of Theorem 4, we give a lemma of Luxemburg.

LeMMA 1. If (L, p) is @ normed Riesz space such that A® = A'™
Sfor all ideals A in L and u,],0 then there exists v,] in L such that

(i) v, =,

(ii) for every m and k in N there exists n = n(m, k) such that
U, < A/m)u, + A/k)v,,.

Proof. Let me N be fixed and let A be the ideal generated by
{(@/myu, — u)*:mn=1,2, +--}. Then u,c A?, hence there exists a
sequence {w,} in A such that 0 < w, < u, for all » and w, | u (r.u.).
Indeed we may assume that for some v, € L™ we have u,—w, < (1/k)v,,
fork=1,2,---. Now also let » be fixed. Then since ((1/m)u,—u,)*
is increasing in n, we have that w, belongs to the principal ideal
generated by ((1/m)u, — u,)* for some n = n(m, k). Now w, is dis-
joint from (u, — (1/m)u,)* for this n. Thus for n = n(m, k) since
(w, — A/m)u)* < u, < u, = wy + (u, — w,) we have wu, — (I/mu,<
w, — A/m)u)* < u, — w, £ 1/k)v,, and u, < (1/m)u, + (1/k)v,. Finally
we note that we may assume v,].

Theorem 2 now follows easily from this lemma. A_Lssume (L, o)
has the o-property and for every ideal A we have A4° = A" If
U,],0 in L, we want to show u,— 0 (r.u.). So let u,],0 and let
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v, be selected as in Lemma 1. By the o-property there exist we L*
and positive scalars «,, a,, --- such that » < aw and v, < a,w for
m=12 -.--. Now given ¢ >0 pick m so that (a,/m)<e/2 and
then pick k& so that «,/k<e/2. If n=mn(m, k) we have 0 = u, <
1/m)u, + U/k)v,, < (€/2)w + (¢/2)w =-ew. Thus u, — 0 (w-unif.).

Proof of Theorem 4. Assume (L, p) is a normed Riesz space
with the local o-property and such that for every ideal A in L we
have A° = A", Let u,],0. We want to show u,— 0 (r.u.).

Let v,1 be selected as in Lemma 1. Now by the local o-property
there exist w, e L and scalars {8i:k =1, 2, ---} such that 0 Z w, < u,,
o, —w)<1/2 and if 0<z=<awv, then z=<apBiu,. Again there
exist w,€L and scalars {85:k=1,2, --:} so that 0 S w, < %, — w,
o(u, —w, —w,) <1/4 and if 0=<z=<w, and 0=z=Zav, then
2 < aBiw, < afiu,. Continue this selection process by induction to
obtain {w;:1=1,2, ---}SL*" and {Bi:4,k=1,2, .-} = R* such that
w, = S, w,; (o-convergence) and if 0 <z < w, and z < a v, then z < aBiu,
for e =1,2, «--.

Now let A be the ideal generated by {w,;:7=1,2, ---}. Since
u, € A¢ there exists a sequence {y,} in A so that y, — u,(¢g-unif.) for
some g€ L*. We may assume u, — ¥, = (1/r)g forr =1,2, .-« . For
each » we have y, € A so there exist a positive scalar M, and p,e N
such that y, < M (w,+w,+ -+ +w, ). Let v,=max(8;:i=1,2,-++, p,)
and pick k. e N so that (p,7,)/k. < 1/r. By Lemma 1 there exists n
satisfying w, < (1/r)u, + (1/k,)v,. By the Riesz Decomposition Pro-
perty we may write u,=a, + b, where 0=aq,< (1/r)u, and
0<b,=(/k,)v,. Againb,<u,=<u,so0bd,=u,—vy,)+Mw+- -+ Mw,.
Hence b, = b’ + b+ --+b2 where b, < u, — ¥y, < (1/r)gand b}, = M, w,
for t=1,2,---,p,.. Now (1/M,)bi < w, and (1/M,)b} < 1/(M.k,)v,
imply that (1/M,)b;, = (89)/(M.k)u, = (V. )/(Mk)u, fori =1,2, «-+, p,.
Thus b < (v,/k.)u, for e =1,2, «--, p,. Hence u, < (1/r)u, + (1/r)q +
@, 7 ) kw, < (1/r)2u, + q). It follows that u, — 0 (r.u.).

Note that the local o-property is not enough to conclude (3) = (5).
Example 3 shows this since the Riesz space in that example has a
strong unit.

Proof of Theorem 5. (i) We first show that the g-property
implies the local o-property. Assume (L, p) is a normed Riesz space
such that L has the o-property and let w e L*, v,] and ¢ > 0 be given.
We have to show there exist weL and a scalar B8, > 0 for each k
such that 0= w=w, p(u —w)<e, and if 0<z<w and if zZ a v,
for some ke N then z < aB,u. By the og-property we have that
there exist v e L* and scalars 6, > 0 for each % so that 6,v, <v. Now
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pick a small positive scalar \ so that if w = (u — Mv)* then p(u — w) <e.
Then if 0<z=<w and 2z < av it follows that z =< (a¢/\)u. So if
02w and z < av,, we have z < a/6,v and hence z < a/(GN)u.
Thus we can let 8, = 1/(6,\) for k=1,2, «-- .

(ii) Assume now that in the p-completion of L every lower
element is an upper element. Again let u, v,] and ¢ > 0 be given.
As above we have to show there exist we L and scalars {8,: k€ N}
with the appropriate properties.

We first note that lim,_ +o(w — (u — »,)*) = 0. Pick a positive
integer m, such that p(u — (v — 1/mw,)*) < ¢/4. Now set u, = u and
u, = (w — 1/mw,)*. Then if 0 < 2z < u, and 2z < av,, we have z < m,au.
Now proceeding by induction, we obtain a positive decreasing sequence
{u,} in L and a sequence of positive integers {m,} so that p(u, —u,_)<
e/(2***) and if 0 £z < av, and 2z < u, then z < m,au,_, < m,au. Now
{u,} is a decreasing p-Cauchy sequence, so by assumption there
exists an increasing p-Cauchy sequence {y,} such that p(u, — y,)—0.
Since p(u —u,) < ¢/2 for all n, there exists n, such that p(u —y,,) <e
and y,, = u, for all n. Then we may set w = y,, and B* = m, for
k=1,2 «--.

We include here examples to show that for a normed Riesz
space (L, p), the o-property and the property that every lower
element in the p-completion is also an upper element are inde-
pendent.

ExamMPLE 8. Let L be the Riesz space of continuous functions
on [0,1] and let o be the L,-norm. Then L has the o-property since
it has a strong unit but (L, p) does not have the property that every
lower element in the p-completion is also an upper element.

ExAMPLE 9. This is the same as Example 4. Here (L, o) is
locally complete but it does not have the o-property, since the parti-
cular sequence {v,} is not contained in a principal ideal.

REMARKS. 1. Note that if L has a strong unit w then if z, = 7,,
on order intervals we have z, = 7,, on L, i.e., (5) = (8). To see this
let o, be the uniform norm on L generated by u, ie., p,(®)=
inf{y: 2| = 2u}. Now suppose {f,} is a sequence such that o(f,)—0
but 0,(f.) # 0. Indeed we may assume p,(f,) = » for each n. Then
[Y/0.(f)lf.— 0(p) and the sequence [1/,.(f.)]f. is order-bounded, so
there exists a subsequence which converges uniformly to 0, a con-
tradiction. Thus every p-convergent sequence is order-bounded and
the result follows.

2. If L has the o-property then 7, = 7,, on principal ideals
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implies 7z, = 7,, on L, i.e., (7) = (9), since every sequence is contained
in a principal ideal.
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