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ON LOOP SPACES WITHOUT p TORSION II

RICHARD KANE

Let {X, μ) be a 1-connected U-space such that H*{ΩX; Qp)
is torsion free. We study the torsion in H*(X; Qp) as well
as its algebra structure. In particular we characterize lack
of torsion in H*(ΩX; Qp) in terms of the module of indecom-
posables Q(H*(X; Qp)). We also study the Steenrod module
structure of Q(H*(X; Zp)).

1* Introduction. In this paper we will study 1-connected H-
spaces (X, μ) which have the homotopy type of a CW complex of finite
type. Let p be a prime and Qp be the integers localized at the prime
p. Let ΩX be the loop space of X. We will assume that H*(ΩX; Qp)
is torsion free and study the consequences for H*(X; Qp). Our main
results generalize those established in [5] where we worked with the
stronger hypothesis that X has the homotopy type of a finite CW
complex. We will assume familiarity with [5].

Let T be the torsion subgroup of H*(X; Qp). It is an ideal of
H*(X; Qp). Let F = iϊ*(X; Qp)/T. We first prove

THEOREM 1.1. Let (X, μ) be a 1-connecsed H-space such that
H*(ΩX; Qp) is torsion free. Then H*(X; Qp) has no higher p torsion
and F is a free commutative algebra.

The arguments used in establishing 1.1 enable us to characterize
lack of p torsion in X in terms of the cohomology of X. Let Zp be
the integers reduced mod p. Let p:Qp—*Zp be the reduction moάp
map. We will also use p to denote the induced cohomology map
p: iϊ*(X; Qp) — iϊ*(X; Zp). The action of the Steenrod algebra A*(p)
on H*(X; Zv) induces a Steenrod module structure on Q(H*(X; Zp)).
Let K = Σ ^ i βP^

mQ(H2m+1(X; Zp)). Note that for p = 2, K is trivial.
Let Q = QCffeven(X; Zp))/K. The map p induces a map a: Q(HeYQn(X; Qp)y+
Q. The quotient map H*(X; Qp) -> F induces a map β: Q(iϊ*(X; Qp)) -^
Q(F).

THEOREM 1.2. Let (X, μ) be a 1-connected H-space. Then
H*(QX; Qp) is torsion free if, and only if, Q(H*(X; Qp)) contains a
torsion free submodule M such that:

(a) a induces an isomorphism ikf (x) Zp = Q
(b) β induces an isomorphism M = Qθven(F).

As in [5] one of the principal tools used to prove results such
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as 1.1 and 1.2 is the Eilenberg-Moore spectral sequence converging to
H*(ΩX; Zp). In particular we will show

THEOREM 1.3. Let (X, μ) be a 1-connected H-space such that
H*(ΩX; Qp) is torsion free. Then, in the Eilenberg-Moore spectral
sequence {Er} converging to H*(ΩX; Zp) we have Ep = E^.

If we assume that (X, μ) is a finite if-space, or indeed, just that
the rational cohomology H*(X; Q) is an exterior algebra, then we can
recover the main results of [5] from Theorems 1.1, 1.2, and 1.3. In
particular, we obtain from 1.2 the fact that H*(ΩX; Q9) is torsion
free if, and only if, Q(HeYen(X; Zp)) = K. On the other hand, if
H*(X; Q) is a polynomial algebra then 1.2 implies that H*(ΩX; Qp)
is torsion free if, and only if, iϊ*(X; Qp) is a torsion free polynomial
algebra. This paper arose from an effort to combine these two
results. For, in general, H*(X; Q) is a tensor product of an exterior
algebra and a polynomial algebra.

We also deduce one further result about finite iϊ-spaces.

THEOREM 1.4. Let (X, μ) be a 1-connected H-space such that
H*(ΩX; Qp) is torsion free and H*(X; Zp) is finitely generated as an
algebra. Then H*(X; Zp) is a finite dimensional vector space if,
and only if, X is 2-connected.

If ΩX has no p torsion then K is the kernal of the loop map
(see 1.3 and 3.3) and hence is a sub-Steenrod module of Q(H*(X; Zp)).
We will study this Steenrod module structure for p odd. Our interest
in K lies in the fact that T can be determined from K via a
Bockstein spectral sequence argument (see [2]). Hence our next
theorem can be viewed as structure theorems for T as well. Given
an integer n with p-adic expansion n = Σnsp

s we say n is binary
(with respect to p) if ns = 0 or 1 for each s. Given a binary integer
n define q(n) and r(n) as follows. Let N be the minimal integer s
such that ns — 0 in the p-adic expansion Σnsp

s of n. Then let

jθ if JNΓ=O
q(n) = \N-I

r(n) = n q M

p

THEOREM 1.5. Let p be odd. Let (X, μ) be a 1-connected H-space
such that H*(ΩX; Qp) is torsion free. Then

(a) K2% = 0 unless n is binary
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( b ) For n binary K2n = ^'WK2*™*2*™. In particular K2n == 0
unless n Ξ 1 mod p.

Variations of 1.4 and 1.5 are also known to James Lin. In §2
we will discuss Hopf algebras. In §3 we will discuss loop maps and
their relation to the Eilenberg-Moore spectral sequences. In §4 we
will reduce the proof of Theorems 1.1 and 1.2 to that of 1.3. In
§5 we will prove Theorem 1.3. In §6 we will prove Theorem 1.4.
In §7 we will prove Theorem 1.5.

All spaces are assumed to have the homotopy type of CW com-
plexes of finite type. All spaces will have basepoints and all maps
will preserve basepoints.

In closing it should be added that, between the writing of [5]
and the writing of this paper, much has been learned about torsion
in the loop space of finite iϊ-spaces. In particular (see [8]) it is
known that the loop space of a 1-connected finite if-space has no
odd torsion.

I would also like to thank the referee for his comments. In
particular they resulted in a rewriting of §4.

2* Hopf algebras* In this section we will discuss Hopf algebras
over G where G = Zp, Q or Qp. A general reference for Hopf
algebras is [10]. All modules will be graded, connected, and of
finite type. Given a module M we define its dual ikf* by the rule
(M*)m = Horn (Mm; G). For G = Zp, if M is a Steenrod module then
M* inherits a Steenrod module structure as well.

When A is a Hopf algebra we use Q(A) and P{A) to indicate
indecomposables and primitives respectively. For G = Zp or Q, P(A)
and Q{A*) are dual modules. However, for G = Qp, this is not
necessarily so, even when A is torsion free, since Q(A) may not be
torsion free.

For Hopf algebras over Zp and, in particular, for the concept
of a Borel decomposition we refer to §1 of [5].

For Hopf algebras over Q we only remark that if A is commuta-
tive and associative then A is isomorphic, as an algebra, to a tensor
produce ®ιQIAι where each At is either an exterior algebra or a
polynomial algebra generated by a single element at. The tensor
product is called a Hopf decomposition of A and the elements {αj
are called generators of the decomposition.

For the rest of this section we will consider Hopf algebras over
Qp. Given such a Hopf algebra we can tensor with Zp or Q and
produce Hopf algebras over these fields. We can use these derived
Hopf algebras to study the original Hopf algebra over Qp. It is
trivial that:
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LEMMA 2.1. If A is a Hopf algebra over Qp then

Q(A) ®ZP = Q{A (x) Zp) and Q(A) (x) Q = (A (x) Q) .

LEMMA 2.2. Let A be a Hopf algebra over Qp which is com-
mutative, associative, and torsion free. Then Q(Am) is torsion free
unless m = 0 mod 2p.

Proof. By 2.1 it suffices to show that the rank of Q(Am (x) Zp)
as a Zp module equals the rank of Q(Am (x) Q) as a Q module if
m Φ 0 mod 2p. A subset B of A (x) Zp (or of A (x) Q) is a simple
system of generators if the set f&pδί2 br

n

n \ bt e B, 0 ^ r< ̂  1 if | δ< |
odd, 0 <; r< ̂  p — 1 if 16̂ | even} is a J£p basis of A®ZP (or a Q
basis of A®Q). Pick a Borel decomposition of A® Zp with genera-
tors {αj i e z and a Hopf decomposition of A(x)Q with generators
{6y}yβiΓ. The graded sets St = {a? Φθ\ieI,s^O} and S2 = {δf ^
01 j 6 J, s ^ 0} are simple systems of generators for A®ZP and A 0 Q
respectively. But A is torsion free. Hence SL and S2 must be
isomorphic as graded sets. And, if m -φ. 0 mod 2p, then the elements
of SL and S2 of dimension m represents a basis for Q{Am ® Zp) and
Q(Am (x) Q) respectively.

REMARK. Lemma 2.2 is still valid if we replace the assertion
that A is a Hopf algebra by the hypotheses that 4 0 Z p and A® Q
are Hopf algebras. This version will be used in the proof of Lemma
4.4.

The next result is a corollary of 2.2.

LEMMA 2.3. Let A be a Hopf algebra over Qp which is bicom-
mutative, biassociative and torsion free. Then P(Am) and Q(A*m)
are dual Qp modules unless m = 0 mod 2p.

It is straightforward that:

LEMMA 2.4. Let A be a Hopf algebra over Qp which is torsion
free. Then P(A) (x) Q = P(A ® Q).

It then follows that:

LEMMA 2.5. Let A be a Hopf algebra over Qp which is bicom-
mutative, biassociative, and torsion free. Then the natural map
Ύ: P(Am) —* Q{Am) is an isomorphism unless m = 0 mod 2p.

Proof. Suppose m Ξ£ 0 mod 2p. By 2.2 both P(Am) and Q(Am)
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are torsion free. Hence, it suffices to show that 7 (g) Q is an
isomorphism and 7 (x) Zp is a monomorphism. The former follows
from 2.1, 2.4, and 4.18 of [10]. The latter follows from 2.1, the
fact that P{A)® ZpaP{A® Zp) and 4.21 of [10].

LEMMA 2.6. Let A be a Hopf algebra over Qp which is bicom-
Tnutative, biassociative, and torsion free. Then

Zp = P(Am (g) Zp)

unless m == 0 mod 2p.

Proof. By the proof of 2.5 we have a commutative diagram

\
\

>Q(Am)(g)Zp

where the bottom map is an isomorphism and the other maps are
monomorphisms.

3* Loop maps* In this section we will discuss loopmaps for a
1-connected iϊ-space (X, μ). Let d:ΣΩX —»X be the adjoint map to
the identity map 1:ΩX~->ΩX. For each of G = Zp, Q, or Qp, δ
gives rise to the loop maps

£*: Q(Hm(X; G)) > P{Hm-\X; G))

; G)

We will use the same symbols i2* and Ω* for each case of G. It
will be clear from the context what coefficients are involved. For
each case of G, Ω* and Ω* are adjoint in the sense that (Ω*(a), b) =
<α, £*(&)> for any a e Q(H*(ΩX; G)) and 6 € Q(H*(X; G)).

Let p be as in §1. Let c denote the inclusion map c: Qp—>Q as
well as the map induced in homology and cohomology. We have
identities of the form pΩ* = Ω*p, Ω*ρ = pΩ*, cΩ* — Ω*c, and cΩ* —
Ω*c. These identities enable us to study the case G = Qp via the
cases G = Zp or Q.

We can obtain strong restrictions when G = Zp on Q by using
the machinery of spectral sequences. In each of these cases there
exists an Eilenberg-Moore spectral sequence converging to H*{ΩX; G)
and another converging to H*(X; G). The above loop maps can then
be redefined in terms of the appropriate Eilenberg-Moore spectral
sequence. For 42* and the spectral sequence converging to H*{ΩX) G)
see [3], §2 of [5] and [12]. For Ω* and the spectral sequence con-
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verging to H*(X) G), at least for the case G = Zp, see [3]. Using
this machinery we can deduce

LEMMA 3.1. For G = Qy Ω* and Ω* are isomorphisms.

LEMMA 3.2. ( i ) Ω*: Q(Hodd(X; Zp)) — P(Heγen(ΩX; Zv)) is injec-
tive

Ω*:Q(HoΛd(ΩX;Zp))->P(Heren(X',Zp)) is injective.
(ii) i2*: Q(# e v e n (X; Zp)) -+ P(Hoάd(ΩX; Zp)) is surjective

£*: Q{HeΎQn{ΩX) ZP))-+P(HOM(X; ZP)) is surjective.

In both 3.1 and 3.2 the results for Ω* and for Ω% are equivalent.
For 3.1 in the case i2* see [12]. For 3.2 in the case Ω* see [3].

In the case G = Zp, the kernel of Ω* is related to the Zp module
K defined in § 1. Let {Er} be the Eilenberg-Moore spectral sequence
converging to H*(ΩX; ZP). Then

LEMMA 3.3. Kaker Ω* with equality if, and only if, Ep = E^.

Although it is not explicitly stated as a lemma in [5], 3.3 is
used in the proof of 1.1 of [5]. See that proof for an implicit proof
of 3.3.

4* Proof of Theorems 1*1 and 1*2* In this section we will
show that Theorems 1.1 and 1.2 hold if Theorem 1.3 holds. Then,
in the next section, we will prove Theorem 1.3. Our reason for
proving the theorems in this order is that, in the proof of 1.3 for
the case p = 2, we want to assume that 1.1 holds up to a certain
dimension in H*(X; Z2). Since it will be trivial that 1.3 holds in
the desired range of dimensions the proofs in this section show that
it is indeed valid to suppose that 1.1 holds as well. For, although,
for convenience, we only prove the absolute case, it will be apparent
that the proofs of this section can be modified to show that 1.1 and
1.2 hold up to certain dimension in H*{X\ Zp) if 1.3 holds up to the
same dimension.

Assume for the rest of this section that (X, μ) is a 1-connected
iJ-space such that Ep — E^ whenever H*(ΩX; Qp) is torsion free.

Before proving 1.1 and 1.2 we make a few remarks about the
cohomology Bockstein spectral sequence. As shown in [1] the co-
homology spectral sequence {Br} is a spectral sequence of Hopf
algebras with B, = H*(X; Zp) and B^ = H(X; Qp)/T (x) Zp. The map
p induces a map pr: H*(X; Qp)~* Br of algebras for all r. The
differential dr acts trivially on all elements in Image pr and Image
dr = pr(Tr) where Tr is the torsion subgroup of H*(X; Qp) consisting
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of elements of order pr. It is this spectral sequence plus the refine-
ments of it as developed in [2] which will be the major tool used
in proving 1.1 and 1.2.

(A) Proof of Theorem 1.1. We assume that H*(ΩX; Qp) is
torsion free. Also, until further notice we assume that p is odd.
Since Ep = E* it follows from 3.2(ii) and 3.3 that the loop map
induces an isomorphism

(4.1) i2*: Q = P(Hoάά(ΩX; Zp)) .

It is this consequence of 1.3 which we will be using in the proof of
1.1.

We being our proof of 1.1 by studying a spectral sequence {Er}
which passes from Bι to B2. It is the spectral sequence induced from
the augmentation filtration on Bl9 As shown in [2] this is a spectral
sequence of commutative, associative, primitively generated Hopf
algebras. The augmentation filtration on Bt induces a filtration on
B2 = iϊ(i?i) (not necessarily the augmentation filtration). With respect
to these filtrations we have E, = EO{BX) and E* = JE7°(J52). Since the
filtration on Bγ is the augmentation filtration it follows that Bx and
E\B^ are isomorphic as algebras. In addition Q{B^) is a differential
submodule of E\B^), it generates E{B^) as an algebra, and all of its
elements are primitive. (See in particular 1 and 2 of [2] for further
details on these facts.) Considering the action of dγ on Q{B^ c Eι

we have

LEMMA 4.2. K = Image d,.

Proof. We can identify the action of d1 on Q{B^) with the action
of the Bockstein βp on Q(H*(X; Zp)). By 3.2(i) and the fact that
H*(ΩX; Qp) is torsion free it follows that βp: Q(Heγen(X; Zp)) ~»
Q{Hoάά(X; Zp)) is trivial. Similary, this time using 4.1, βp: Q(Hoάύ(X;
Zp))->Q(Heγen(X; ZP))-*Q is trivial. Now, by definition, Kdmageβp.
Then, by the above, K — Image βp.

It follows from 4.2 that any element of Q defines a nonzero
element in E2 and thus in Q(E2) as well. Considering Q as laying in
Q(E2) we wish to show

LEMMA 4.3. Q ^ Qeγen(E2).

Proof. Let AaE, be the primitively generated Hopf algebra
generated by Q^iBJ and d.Q^iB,). Hence A is a differential sub
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Hopf algebra of Ex. Because p is odd A is isomorphic as a differential
Hopf algebra to a tensor product 0At of differential Hopf algebras
where A, = E{e%) or A, = E(et) (x) P(deί)/<(dβi)

p8>(l ^ s ^ °°). Thus
( i ) if(A) is an exterior algebra on odd dimensional generators.

Further, by 4.2, d, acts trivially on Q^iB,) cz Et. Since Q(5X)
generates 2^ as an algebra it follows that the induced map H{A)—•
ifί-EΊ) is injective. In other words

(ii) H(A) is a sub Hopf algebra of HiE,).
We now study the quotient Hopf algebras EJ/A and HiE^/HiA).

By 4.2 the elements of Q represent elements in EJ/A and thus in
Q(EJ/A). Further, by the definition of A plus 4.2,

(iii) Q = Q(EJ/A).
The induced differential acts trivially on EJ/A. Thus H(EJ/A) =

EJ/A. By (iii) the induced map H(E^ -> ΊKEJ/A) = J57/A is sur-
jective. This map factors through H(E^//H{A) to give a surjective
map /: HiE^I/HiA)^ EJ/A. We now use / to show

(iv) H{E^//H{A) and EJ/A are isomorphic as Hopf algebras.
For / induces a surjective map 1 (g)/: iI(A) (g) H{Eι)//H{A)^H{A) (x)

^//A. But iϊ(A) <g) H(Eλ)//H(A) = H{EX) as a ^ module by 4.4 of [10].
Also the Serre spectral sequence of the extension Zp—>A—•j&1—>
EJ/A->ZP converges from H(A)®EJIA to fl"^). T h u s it follows
by a counting argument that l(g)/ must be an isomorphism. Thus
/ is an isomorphism.

Finally, by 3.11 of [10] plus (iv) we have an exact sequence of
Zp modules

(v) Q(H(A)) -+ Q{H{EX)) - Q(EJ/A) -+ 0.
The lemma now follows from (i), (ii), (iii), (iv) and (v).

We will prove Theorem 1.1 by showing by induction on dimension
that

(a) E2^E«,
(b) B^Bn
( c) .Boo is a free algebra.

Since F is torsion free and F® Q = iϊ*(X; Q) is a free commutative
algebra, condition (c) on B^ = F (x) Zp is equivalent to asserting that
(c') F is a free algebra.
Thus 1.1 follows from (a), (b), (c).

Consider the following condition:
(d) Q has a set of representatives in Bx which survive to B*,

and represent a basis of QeΎβn(Br) for r ^ 2.
We will prove (a), (b), (c) by using the following

LEMMA 4.4. If condition (d) holds up to dimension 2n then
conditions (a), (b), and (c) hold up to dimension 2n.
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Proof. We will only prove the absolute case. It will be obvious
that the dimension restrictions can be inserted into the proof. So
assume that (d) holds in all dimensions.

Condition (c). Since F is torsion free and F (g)Q is a free
algebra condition (c') follows from showing that Q(F) is torsion free.
For Qodά(F) this follows from 2.2 and the remark which follows it.
For Qeyen(F) this follows from (d). For we have a commutative
diagram

Ω*

*(X; Qp)) - ^ P(Hoά%ΩX; Qp))

Q - ^ > P{Hodd{ΩX; Zp))

where a and ^ are as in §1. By (d) α is surjective. By (*), 2.6,
and the fact that P(H(ΩX; Qp)) is torsion free it follows that
Q(HQYen(X; Qp)) contains a torsion free submodule M such that a
induces an isomorphism M® Zp = Q and 42* induces an isomorphism
M ~ P(Hodά(ΩX; Qp)). But the loop map factors through Q(F)

<^.o (A, (^ ; > i^(ϋ (ijA, kip))

c } p\ /

Qeγen(F)

Thus β restricted to M is injective. But by (d) B restricted to M
is also surjective. Thus Q*ren(F) ~ M is torsion free.

Condition (b). We proceed by induction. It follows from (c)
and (d) that Br is a free algebra for r ^ 2. Now suppose JBr = I?2

for r ^ 2. If j?r ^ i?r+1 we can pick the minimal dimension for
which there exists x e Br such that dr(x) = y Φ 0. Then by 4.21 of
[10] y is either nondecomposable or a pth power. But y nondecom-
posable is not possible since (d) implies that dr acts trivially on
Q{Br). And y = zp is not possible since Br+ι is a free algebra and
z would not generate a polynomial subalgebra of Br+1. We conclude
that Br = Br+1.

Condition (a). The argument from (b) will suffice provided we
can show

( i ) Q survives to E^ and Q = QβΎen(Er) ΐor r ^ 2
(ii) JSΌo is a free algebra.

Regarding (i) Q survives to E«, by condition (d). We show that
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Q = Qeyen(Er) by induction on r. For r — 2 see 4.3. For general r
we duplicate the arguments given in the proof of 4.3. Several
minor modifications are necessary. We let A be the differential Hopf
algebra generated by Podά(Er^)c:Er. (Recall that, by 4.23 of [10],
F*\Eτ-ύ = Q^iE^).) Also, instead of 4.2, we use the fact that
Qeven(J&r_!) = Q has representative which survive to Er.

Regarding (ii) it suffices to show that Q(B2) and Qί-EL) are
isomorphic as graded Zp modules; for by (b) and (c), B2 = B^ is a
free algebra, while B2 and E* = JE7°(JB2) are isomorphic as Zv modules.
In even dimensions this follows from (i) and (d). In odd dimensions
this can be seen by taking a simple system of generators Sλ and S2

for Bι and B2 respectively. (See the proof of 2.2 for the meaning
of simple system.) Since B2 and E* are isomorphic as Zp modules
it follows that St and S2 are isomorphic as graded sets. But the
elements of Sλ and S2 of odd dimension represent a basis of Qoάά(B2)
and Qodd(J5Όo) respectively. (Again see 2.2).

We now prove that (d) is true in all even dimensions. We use
induction. Suppose (d) is true in dimension <L 2n — 2. We will use
the term "rank" in the sense of the dimension of a Zp vector space.
We have the following sequence of inequalities

(4.5) rank Q2n{E2) ^ rank Q2n(EJ) ^ rank Q2n(B2) ^ rank Q2n(BJ) .

The first inequality relation follows from the fact that X is 1-con-
nected and that (a) holds in dimension <;2w — 2. The second from
the fact that E^ = E°(B2). The third from the fact that (b) holds
in dimension <^2n — 2 and that X is 1-connected. Furthermore, we
have strict equalities throughout (4.5) only if condition (d) holds in
dimension ^2n. For the equalities

rank Q2n(E2) = rank Q2n(EJ = rank Q2n(B2)

plus 4.3 ensures that Q2n has a set of representatives in Bγ which
survive to B2 and represent a basis of Q2n(B2). The equality

rank Q2%(B2) = rank Q2n{B^)

then implies the rest of (d).
Thus to establish condition (d) in dimension 2n it suffices to

prove

LEMMA 4.6. rank Q^BJ) ^ rank Q2n(E2).

Proof. We have the following sequence of equalities or inequali-
ties
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rank Q2n(E2) = rank Q2n (by 4.3)

= rank P{H2n~\ΩX) Zp)) (by 4.1)

= rank P(H2n-\ΩX; Q)) (by 2.4 and 2.6)

= rank Q(H2n(X; Q)) (by 3.1)

= rank Q2n(F (g) Q)

^ rank Q2n(F <g) Zp) (by 2.1)

= rank Q2n{BM) .

This completes the proof of 1.1 for p odd. For p = 2 we use
the same basic argument. However it must be modified when dealing
with Bι and the spectral sequence {Er} converging from Bι to B2.
The difficulty arises from the fact that B1 = H*(X; Z2) may contain
odd dimensional elements x such that x2 Φ 0. Thus the decomposition
(g) Ai of the Hopf algebra A which appears in the proof of 4.3 may
be more complicated than for p odd. On the other hand this type
of difficulty disappears in Br for r > 1. For, if x e H2m+1(X; Z2) then

χ2 = gfm+i = SfgiSg2w(α;). Since Sg1 is the first Bockstein differential it
follows that the square of any odd dimensional element in B2 == H{B^)
is trivial.

In dealing with B1 we proceed in the same basic way as we did
for p odd. We first use the argment employed in 4.3 to show

LEMMA 4.7. Q = QeΎβn(E3).

By which we mean that Q dE1 survives to Ez and projects iso-
morphically onto Qβγen(E3). The argument given will also show that

LEMMA 4.8. x2 — 0 if xeEd is odd dimensional.

Thus the difficulty with odd dimensional squares disappears at
the E3 level. Then, using 4.7 in place of 4.3, we can proceed, as
we did for p odd, to establish (a), (b), (c) and (d), only we replace
condition (a) by the condition

(a') E3 = E^ .

Hence once we have proved 4.7 and 4.8 we will be done.
We first observe that E1 = E2. For it suffices to show that dx

acts trivially on Q(B^czEίm But this follows from 4.2 which is
valid for p = 2 as well. Now, to prove 4.7 and 4.8, we proceed as
we did for 4.3. We will prove properties (i), (ii), (iii), (iv) and (v)
as established there, only for E3 rather than for E2. Two main
differences arise. The first, as already mentioned, concerns the fact
that the decomposition (gίA* of A may be more complicated than
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for p odd. The second difference concerns QiBJ. Since Et — E2 it
follows that Q(BJ is a primitive submodule of E2 which generates
E^ as an algera. However QiB^ is not necessarily invariant under
the action of d2 as it was for dλ. For the action of d2 on QiBJ
reflects the action of Sq1 on the indecomposables of Bx modulo the
triple decomposables. However, this fact, rather than complicating
the situation further, will actually compensate for the difficulties
with A.

We begin by proving an analogue of 4.2.

LEMMA 4.9. Q = Qmn(BJ surves to Ez.

Proof. We know at least that if a; 6 Q(SJ then d2(x) is decom-
posable. Hence we need only show that d2 acts trivially on Q^^iBJ.
But if x 6 Qmn(Bd then d2(x) is an odd dimensional primitive and
hence, by 4.21 of [10], is indecomposable if nonzero.

Of the properties (i), (ii), (iii), (iv) and (v) only (i) presents
difficulties. Provided (i) is true, the other properties follow as they
did in 4.3, except that the use of 4.2 is replaced by 4.9. So let A
be the primitively generated differential Hopf algebra generated by
Q^iB,) c E2. To show H{A) is an exterior algebra let & i β 7 i l { be a
Borel decomposition of A. Given iel, if At = P(a^)l{atJrl) where
s > 0 , let A[ = E{a%) (g)P(δi)/<6f> where \b,\ = \a\\. Otherwise let
A'i = At. Let A! — ®A . There is the obvious Zv module map 7:
A—>A'. We can give A! a differential Hopf algebra stucture by
requiring that 7 is an isomorphism of differential coalgebras. Then
to establish (i) it suffices to show that H{Ar) is an exterior algebra.
For the induced map 7*: H(A)-+H(Ar) is an isomorphism of co-
algebras and thus P(H(A)) ~ P{H{Af)). But, by 4.23 of [10], the
first even dimensional generator of H(A) must be primitive. Hence
Peven(£Γ(A)) = 0 implies Qθven(H(A)) = 0. To show H(A') is an exterior
algebra it suffices to show A! is isomorphic, as a differential Hopf
algebra, to a tensor product as in 4.3. This amount to showing
that, for each factor At of A where At — P(ai)/(af+1) and s > 0,
we have a\ = d2(b) where be A. Now we can certainly find beE3

such that d2(b) = a\. For, since the square of any odd dimensional
element in H*(H; Z2) lies in the image of Sq\ a\ cannot survive to
En. And, by our comments concerning the action of d2 on Ei9 a\
cannot then survive to JE73. We now show that b can be chosen
from A. Let Efd and EΓβn be the primitively generated sub Hopf
algebras generated by Q^iB,) and Qmn(BJ respectively. Then E2

is isomorphic as a Hopf algebra to E2

άa (x) EQ

2

Ύ6n. Hence in dimensions
>0 E2 is isomorphic as a Zp module to Efd φ I where I is the ideal
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of £ T e n in E2. But by 4.9 I is invariant under the action of d2.
On the other hand, a\ e Efά. Thus given b such that d2(b) = a\, d2

acts trivially on the component bΫ of b in /. Replacing b by 6 — bf

we have b e Efύ c A.

(B) Proof of Theorem 1.2. Suppose ΩX has no p torsion. Then
the module M constructed in the proof of 4.4 was shown to satisfy
properties (a) and (b) of Theorem 1.2. The rest of this section will
be devoted to proving the converse.

Suppose that there exists a torsion free module M satisfying (a)
and (b) of 1.2. We will show that the Bockstein spectral {Br} for
ΩX collapses. Our proof will be by induction on dimension. Suppose
Bλ = Boo in dimensions <n. Define k by the rule n = 2k + 1 if n is
odd and n = 2k if n is even.

LEMMA 4.10. rank Q 2 ^ 1 ^ ) ^ rank Q^iBJ) with equality only
if BX = 5S.

Proof. It suffices to prove that, for r ^ 1, rank Qtt+1(J5r) ^
rank Q2A;+1(J5r+1) with equality only if B* — JB?+1. We use the biprimi-
tive spectral sequence {E8} defined in §4 of [2] where Et = the bi-
primitive form of Br and E* = the biprimitive form of Br+1. By
2.7 of [2] Q^CEΌ = QoddCBr) and Qoάύ(EJ s Qoύύ(Br+1) as graded £ p

modules. The result then follows from 3.9 of [2] plus the fact that
E1 = Eoo in dimensions <n.

Theorem 1.2 will then follow if we can prove

LEMMA 4.11. rank QΛ+1(BJ £ rank Q2kJrl{BJ.

Proof. We have the following sequence of isomorphisms:
( i ) M ® Q = Q(ϋ e v e n(X; A)) s P(Hodd(ΩX; Q))

= Q(HM(ΩX; Q)).
The isomorphisms come from property (b) of 1.2, 3.1 and 4.18 of
[10] respectively. We also have the following sequence of isomor-
phisms or surjective maps

(ii) M <g) Zp s Q — P(Hoάά(ΩX; Zp)) s Q(Hoάd(ΩX; Zp)).
That the maps are isomorphic or surjective follows from property
(a) of 1.2, 3.2(ii), and 4.23 of [10] respectively. We then have the
following sequence of inequalities

rank Q2fc+1(A) = rank Q(H2k+1(ΩX; Zp))

^ rank Q(H2k+1(ΩX; Q)) (by (i) and (ii))

^ rank Q2k+1(BJ (as in 4.6) .
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5* Proof of Theorem 1*3* In this section we will prove
Theorem 1.3. For p odd the result follows from Theorem 5.1 of [5].
Hence the rest of this section will be devoted to proving Theorem
1.3 for the case p = 2. We will work with Z2 coefficients and (X, μ)
will be a 1-connected H-space such that H*(ΩX; Q2) is torsion free.
Our proof is a straightforward modification of that given in §5 of
[5] to show that E2 = E^ when X is a finite iϊ-space. We will
assume familiarity with that proof.

We will also assume familiarity with the concept of transpotence
elements in homological algebra. It will suffice for our purposes to
define them as the nondecomposable elements in the —2 stem of
TorJ?(X:ίr2> (Z2; Z2). ( = Tor**). In order for Tor** to have a trans-
potence element of bidegree (—2, s) we must have s = 2r+2t for r ^ 0,
t > 0 and H*(X; Z2) must possess a nondecomposable of dimension t
and of height 2r+2 (see [12] for more details).

Our proof consists of three lemmas. The proof in [5] consists
of the same three lemmas though they are not stated so explicitly.

LEMMA 5.1. E2 = Ez and EA = E^.

LEMMA 5.2. If E3 Φ E4 then there exists 0 Φ x e P(H2n(ΩX; Z2))
where x2 = 0, all elements in A*(2) of poitive degree act trivially on
x, and n = 2q+1Q + 2q - 2 for q, Q> 0.

LEMMA 5.3. The properties possessed by x in 5.2 are incom-
patible.

The first and third lemmas can be deduced as in [5]. Lemma
5.1 follows from 2.6 and 5.1 of [5] while the second half of §5 of
[5] is devoted to proving precisely Lemma 5.3.

As for the proof of Lemma 5.2 it is based on [5] as well. We
first observe that, by 5.2 of [5] we can find 0 Φ xeP(Hs_2(ΩX; Z2))
such that x2 = 0 and θ(x) — 0 for all θ e A*(p) of positive degree.
We are left with showing that n = s — 2 is necessarily of the re-
quired form.

Now we obtain x by finding an element yeEf* •=• Tor** of the
smallest possible total degree such that dz(y) Φ 0. Then x is the
dual of a transpotence element zeE^2>8 = Tor"2 s while x2 is the dual
of yeEs*'2* (the differential acting nontrivially on y is what "kills"
x2). Suppose z is the transpotence of the nondecomposable w e H\X\ Z%)
where w has height 2r+2. Then s = 2r+2t. We will be done if we
can show

(5.4) t is odd .
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We know that t ^ 2 since X is 1-connected. Hence s ^ 8 and
s <; 2s — 4. But since c£3 acts trivially on all elements in E** of
total degree less than 2s — 4 it follows that E2 — ϋL when the total
degree is less than 2s — 4. Therefore, Theorems 1.1 and 1.2 hold
for H*(X; Z2) in dimensions less than 2s — 4. Thus, within this
range of dimensions, any even dimension nondecomposable of H*(X; Z2)
generates a polynomial subalgebra of H*(X; Z2). Hence t must be
odd.

REMARK. The only point on which our proof of Lemma 5.2
differs from [5] is in the justification given for 5.4. In [5] we
simply eliminated the possibility of even dimensional nondecomposables
existing in dimension s or less.

6* Proof of Theorem 1.4* In this section we prove Theorem
1.4. Throughout this section we assume that (X, μ) is a 1-connected
ίf-space such that H*(XΩ, μ) is torsion free and H(X; Zp) is finitely
generated as an algebra.

By 1.1 any element in ίP(X; Zp) of dimension 2 generates a
polynomial subalgebra of H*(X; Zp). Hence, if H*(X; Zp) is a finite
algebra, then X must be 2-connected.

The rest of this section is devoted to proving the converse. So,
assume X is 2-connected. Let N be the nilradical, that is, the
elements of finite height in H*(X; Zp). Then N is a Hopf ideal in
iϊ*(X; Zp) (in particular, see formula (*) in 4.2 of [5]). Let P =
iϊ*(X; Zp)/N. It suffices to show P is trivial. We will do this by
showing

LEMMA 6.1. Q(Pm) = 0 unless m = 0 mod 2p and then, by a
different argument, that

LEMMA 6.2. If Q(Pm) Φ 0 and Q(P0 = 0 for i < m then m =
2 mod 2p.

We will do the case p — 2 in detail. Now N is invariant under
the action of the Steenrod algebra A*(2) (see 3.4 of [5]). Hence,
the Steenrod module stucture of H*(X; Z2) induces one on the
polynomial Hopf algebra P.

Proof of 6.1. Our proof is based on the idea of a contraction
as defined by Thomas in §3 of [13]. First, we show that P28+1 = 0
for all s. By 4.21 of [10] and the fact that P is finitely generated
as an algebra it follows that p 2 s + 1 contains nonzero primitive elements
for at most a finite number of values for s. It follows that P has
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only trivial primitive elements of add dimension. For, let t be the
maximum integer for which there exists 0 Φ aeP2t+ί which is primi-
tive. In particular t > 0 since X is 2-connected. But a2 = SqιSq2t(a) Φ 0.
Therefore b — Sq2t(a) is nonzero and primitive which contradicts the
maximality of t. Finally, it follows that P has only trivial elements
in odd dimensions. For, if we pick the minimal s such that P2 s + 1 Φ 0
then every element in P2 s + 1 is primitive.

Secondly, we show that P4 s + 2 = 0 for all s. Let (Sqι) be the
ideal in A*(2) generated by Sq1. Then, by the first paragraph, all
elements of (Sg1) act trivially on P and the action of A*(2) on P
induces an action of A*(2)/(Sq1) on P. Define a polynomial Hopf
algebra P by the rule P m = P2m for any n. Then, the action of
A*(2)/{Sq1} on P "induces" an action of A*(2) on P via the canonical
isomorphism A*(2) = A*(2)/(Sq1). The argument in the first paragraph
then shows that P 2 s + 1 = 0 for all s. Therefore P4 s + 2 = 0 for all s.

Proof of 6.2. By 1.1, βpQ(HeΎen(X; Z9)) = 0. We can then make
a mod 2 version of the arguments in [14] to deduce Lemma 6.2.
Such mod 2 arguments have been done in great detail by James Lin.
(See [7].)

For p odd the proofs of 6.1 and 6.2 as given above go through
with only minor modifications. In particular, N is only invariant
under the action of the subalgebra J3cA*(p) generated by the
operations {^pS}s^0- Thus, we use B in place of A*(p).

7* Proof of Theorem 1*5* In this section we prove Theorem
1.5. The proofs are motivated by [6] and we will refer freely to
that paper. For the rest of this section assume that (X, μ) is a 1-
connected ίf-space such that H*(ΩX; Qp) is torsion free. Define τ(s)
for any integer s ^ 0 by the rule 7(0) = 0 and 7(s) = ]£*"! pl for
s > 0. Let {QJsi>o be the Milnor elements in the Steenrod algebra
A*(p). (See [9].) In particular Qo — βv and, for integers m ^ 0,
they satisfy the relation

(we use the convention that &q — 0 if q < 0).
We assume that p is odd. We will prove 1.5 by induction on

dimension in K. Pick the minimal integer n such that K2n =
Q0^

mQ(H2m+1(X; Zp)) Φ 0. Since K2i = 0 if i < n it follows from 7.1
that m = Ύ(S) for some s ^ 1. Thus n = pm + 1 = Ύ(s + 1) and
both (a) and (b) of 1.5 are trivially satisfied.

Suppose 1.5 is satisfied for i<n and K2n = Q0^
mQ(H2m+i(X;Zp)) Φ 0.

By 7.1 we can find k ^ 0 such that ^m-r{k)QkQ(H2m+1(X; Zp)) Φ 0.
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Let I = m + pk. Then Kn Φ 0. We can assume m Φ Ύ(k) since
otherwise, as in the argument for the initial step, we are done.
Thus I < n and so, by the induction hypothesis, I is binary. To
prove (a) it suffices to show

LEMMA 7.2. m = Ύ(k) mod pk+1.

For then I binary implies that m is binary and hence that n =
mp + 1 is binary as well. To prove (b) it suffices to show

LEMMA 7.3. K2n = <^

For, by 7.2, r{n) = m — τ(fc) and I = q(n) + r(n).

The proof of 7.2 and 7.3 depend on the following lemma (see §4
of [6]).

LEMMA 7.4. For s ^ 0, if n = τ(s) mod p s α^ώ ^ q acts non-
trίvially on (K*)2n then q = 0 mod p8. Further, if n is binary then
q is binary.

Proof of 7.2. By induction. We will show for any s <; k that
m =Ξ j(k) mod ps implies m Ξ T(&) mod p s + 1 . Pick s ^ fc. Then m =
7{k) mod p 8 . Hence n = Ύ{k + 1) mod ps+1. And, by 7.4, ^™-^>
acting nontrivially on (i^*)2w implies m — Ύ(k) = 0 mod p8+1.

Proof of 7.3. By 7.1 and the relation K2n = Q 0 ^ w i ^ 2 w it suffices
to show ^™-r(s) a c t s trivially on (K*fn unless s = k. This follows
from 7.2. For, iί s < k then m - 7(s) ^ 0 mod ί9fc. While if s > k
then m — τ(s) = (p — 1 ) ^ mod p^4"1 and hence m — τ(A ) is not binary.
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