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CHAIN CONDITIONS AND PURE-EXACTNESS

M. B. REGE AND K. VARADARAJAN

Let R be a ring and M any (right) ϋί-module. For any
set I let Mm and M1 denote the direct sum and respectively
the direct product of copies of M indexed by the set 7. For
any cardinal number r, let ^r denote the class of i?-modules
admitting a generating set of cardinality rgr. In this paper
we study the relationship between the pure-exactness of the
sequence 0 -> Ma) -> M1 -» MJ/MCJ) -> 0 with respect to <^r

under the functor Horn* and chain conditions on suitably
defined families of i?-modules. This study led us to the in-
troduction of five properties Ar, A(r^ Dr, Z?(r), and Pr for any
jβ-module M. We also study the effect of base extension
(both covariant and contravariant) of the ring R on modules
having any (or some) of the above mentioned properties.
Finally we obtain necessary and sufficient conditions for

0 > 0 Ma • πMa > πMJ® Ma > 0

to be pure-exact with respect to ^ , where {Ma} is any
family of i2-modules and k any integer Ξgl.

Introduction* Let i? be any family of ίϋ-modules. An exact

sequence 0-+M' —>M -^AP'—^O of iϋ-modules is said to be pure-
exact with respect to the family S? (for the functor Horn = Hom )̂
if ε*: Horn (E, M)-> Horn (E, M") is onto for all Ee ξf. Given a
module M and a set I let M{1) and M1 denote respectively the direct
sum and the direct product of copies of the same module M indexed
by /. In his paper [6] H. Lenzing, among other things, studies
equivalent conditions under which the sequence

(1) 0 • M{1) > M1 >MI/M{1) > 0

is pure-exact with respect to the family of cyclic modules. His
resul t (Proposition 1 of [6]) is a generalization of Carl F a i t h ' s result
[4] concerning necessary and sufficient conditions for M{1) to be in-
jective. Let r be any cardinal n u m b e r and ̂ r the class of iϋ-modules
a d m i t t i n g a generat ing set wi th cardinal i ty ^ r . One of the objec-
t ives of the present paper is to s t u d y the e x t e n t to which Lenzing's
resul t s could be generalized to furnish conditions under which (1)
will be pure-exact wi th respect to ^ r .

Throughout this paper k will denote an integer ^ 1. R will
denote a ring with 1, i?-mod and mod-J? will denote the categories
of left resp. r ight u n i t a r y i?-modules. Unless otherwise mentioned,
by an i?-module we mean an object of mod-i?. All the concepts
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used in this paper are right sided unless otherwise mentioned. When
we talk of homomorphisms between rings we always assume that
they preserve the identity elements. When R is a subring of S we
assume 1R = ls so that the inclusion map j : R—+ S is a ring homo-
morphism. For any set J, the cardinality of J will be denoted by

The results of Lenzing in [6] suggest the introduction and study
of five properties Ar9 Alr), Dr, D{r), and Pr for any Memod-R and
any cardinal number r Φ 0. Let J be any set with \J\ = r. For
any x = {xi)ieJ eMJ and λ = (X^jej eR { J ) let (x, λ> = Σ y ^ λy. F o r

any subset T of MJ let LΓ = {λ6R{J)\(x, λ> = 0 for all ?eΓ} . We
write ^r(M) (resp. ^r){M)) for the family {LΓ |Γ subset of MJ)
(resp. {LΓ | Γ subset of M[J)}). Memod-R is said to have the property
Ar (resp. AW)) if ^~r(M) (resp. ^7r)(ilί)) has the ascending chain
condition. Similarly, M is said to have the property Dr (resp. D(r))
if ^(M) (resp. ^{r){M)) has the descending chain condition. When
r = k, Ak and ii(A., are equivalent by definition and we use the com-
mon notation Ak. Similarly Dk and D{k) are equivalent and we use
the common notation Dk. It turns out Ar and Air) are equivalent
for any cardinal r. However, we use either notation depending on
the context. M is said to have Pr if for any set I, 0 —> M{1) —>
M1 —> MZIM{I) —> 0 is pure-exact with respect to <&r. It also turns
out that Ak and Pk are equivalent, whereas for an infinite cardinal
r one has only the implication Ar ==> Pr. We show by means of an
example that the implication Pr => Ar is not true. It turns out that
the properties Ar, Dr, and D{r) are hereditary, in the sense that if
M e mod-J? has any one of these properties and N is a submodule
of M, then N also has the same property. Since Ak and Pk are
equivalent, it follows that Pk is hereditary. We give an example
to show that Pr is not hereditary for an infinite cardinal r.

Let R be a subring of S and j : R—>S the inclusion. Using j
we regard S (and also S/R) as an element of R-mod. Let ikfemod-
i2. If Mr = M ®B S e mod-S has property A(r) (resp. Dir)) and if
Torf (Jkf, S/Λ) = 0, then we show that M e mod-JS property A{r) (resp.
Ar)) We say that a ring R has a certain property if R considered
as an element of mod-iϋ in the usual way has that property. An
immediate consequence of the above result is that if S has AW) (resp.
D(r)), then R has A{r) (resp. D{r)). Also the above results yield an
alternative proof of the following well-known result which can be
found in Chap. I, § 3, n°5 of [2]: If J? is a subring of a right
noetherian (artinian) ring S and if S/R is left flat over R, then R
is right noetherian (artinian). Also we prove that a regular ring R
has property A1 if and only if it is semisimple.

Next we consider the situation where there exists a ring homo-
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morphism f:R~+S. Let Memod-R and M' = Hom^ (S, M) e mod-S.
We study conditions under which Mr having property Ar (resp. Dr)
implies M has the same property. We apply these results to derive
conditions under which J-injectivity of Mf implies I'-injectivity of M.

In [7] B. Sarath and K. Varadarajan obtain necessary and suf-
ficient conditions for the direct sum (& Ma of a given family {Ma}aeI

of modules to be injective. Finally we generalize results in [7] and
furnish conditions under which the sequence

( 2 ) 0 > 0 Ma > ΠMa > ΠMJ® Ma > 0

is pure-exact with respect to ^ , where {Ma}aeτ is an arbitrary
family in mod-/?.

1* Preliminaries* Let R be a ring, Uemoά-R, WeR-moά and
M an abelian group. Let θ: U ®R W—>M be a given homomorphism
of abelian groups. For any (u, w) e U x W we write (u, w) for the
element θ{u (x) w). Given any subset X of U let Lx — {w e W\ (u, w) —
0 for all ueX}. Clearly, Lx is an additive subgroup of W. Let
^w{θ) — {LX\X any subset of U}. We remark that Lx has been
called an annihilator with respect to <,> in [1, § 24].

PROPOSITION 1.1. With the above notation, the following condi-
tions are equivalent.

(a) ^wiβ) satisfies the ascending chain condition.
(b) There do not exist any sequences {u{n)}n^lf {w{n)}n^ with

um e U, w{n) 6 W and satisfying
(i) (u^,w^)^0\

\ JOT all m > n > 1.
(ii) (u{m), ww) = Oj

Proof, (a) => (b). Suppose there exist sequences uin) in U, w{n)

in W satisfying (i) and (ii) of (b). Let Xn be the subset Xn =
{u{k)\k^n} of U. Then LXnciLXn+l. From (u{n\ ww) Φ 0 and
(u{m\ win)) = 0 for m > n we see that w{n) e LXn+1 — LXn. Thus LXla
LX2 is a strict ascending chain in J^wψ) contradicting (a).

(b) => (a). Suppose L 1 c LU2 c is a strictly increasing chain
of objects in J*v(#), where 4 are subsets of U. Let w{n)eLJn+l -
L n. Then there exists a u{n) eJn with (u{n), w{n)) Φ 0. Since u{m) e
Δm and w{n)eLjm for all m> n we get (u{m\ w{n)} = 0 for m > n.
This contradicts (b).

PROPOSITION 1.2. With the same notation as in Proposition 1.1,
the following are equivalent.

(a) J^~w(β) satisfies the descending chain condition.
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(b) There do not exist sequences {u{n)}n>lf {w(n)}n^ι with u{n) e U,
w{n) 6 W and satisfying

(i) <u^,w^)Φθ)
\ JOT all m > n > 1.

(ii) (u{n), w{m)) = OJ ~

The proof is similar to that of Proposition 1.1 and hence omitted.

For any subset Y of W let Lγ = {u e R \ (u, y) = 0 for all y e Y}.
Then Lγ is a Z-submodule of U. Let ^j{β) = {Lγ \ Y any subset of
W}. The following proposition is an immediate consequence of Prop-
ositions 1.1 and 1.2 (cf. Proposition 24.3 of [1]).

PROPOSITION 1.3. The following are equivalent.
(a) J^wΨ) satisfies the ascending (resp. descending) chain con-

dition.
(b) J^uiβ) satisfies the descending (resp. ascending) chain con-

dition.

2. The five properties* Let Memόd-R and J a nonempty set.
We take U = MJ and W - R{J). For any x = {xj)JeJ in U and λ =
(λy)i6J in R{J) let 0: UxW —>M be given by 0(a?, λ) = ΣXJXJ. Notice
that the sum ΣxdXj is only a finite sum since \eR{J). The map ψ
clearly induces a homomorphism θ: MJ ®B R{J) —> M. Also R{J) is a
left, right iϋ-bimodule. Hence MJ ®RR{J) is in a natural way a
right J?-module. It is clear that θ is an i2-homomorphism. For any
subset T of U, Lτ = {λG T7|<^, λ> = 0 for all » e Γ } is an j?-sub-
module of W = J?(J). In this case the family ^ r ( 0 ) introduced in
§ 1 will be denoted by ^J{M). If J and J ' are any two sets with
\J\ = \J'\ = r ΦO, using a bisection of / with / ' we can get a bijec-
tion of ^J(M) with ^"J\M) preserving inclusions. Hence we write
J^(M) for any ^J{M) with \J\ = r.

We can respect the above considerations with U = ikf(J), W = i?(J),
and ^(», λ) = lΌ . λ. for any x = (α?̂ ) in M(t/) and λ = (λ, ) in R{J). In
this case we denote the family ^~wψ) by either ^{J\M) or ^r)(M).
Since i2(f5) = 0, we do not consider the case r = 0 at all. Thus
throughout this paper r denotes a cardinal Φ 0.

DEFINITION 2.1. M is said to have the property Ar (resp. Air))
if ^v(ilί) (resp. ^7r)(Af)) has the ascending chain condition.

DEFINITION 2.2. M is said to have the property Dr (resp. Dir))

if jrr(M) (resp. ^{r)(M)) has the descending chain condition.

DEFINITION 2.3. M is said to have the property Pr if for every



CHAIN CONDITIONS AND PURE-EXACTNESS 227

set /, 0—>M{I)-^MI—>MI/M{I)'-^0 is pure-exact with respect to rtfr.

The following two lemmas are implicit in [5].

LEMMA 2.4 (Fieldhouse). Let BczA, NczM be R-modules, η: A—>
A/B and ε: M—+ M/N the canonical quotient maps. Suppose ε*:
Horn (A/B, M) -*Horn (A/B, M/N) is onto. Then for any f:A-*M
satisfying f(B) c N, there exists a g: A-+ N such that f/B = g/B.

LEMMA 2.5 (Fieldhouse). With the same notation as in Lemma
2.4, suppose ε*: Horn (A, M) —>Hom (A, M/N) is onto. Suppose for
any f: A-+M satisfying f(B) c N, there exists a g: A—>N such that
g/B = f/B. Then ε*: Horn (A/B, M) ->Horn (A/B, M/N) is onto.

The set of natural numbers will be denoted by N. For each
cardinal number r we denote the class of modules isomorphic to
R{J)/L with I J\ = r and L countably generated submodule of R{J)

by <g .̂ In the statement of Propositions 2.6 and 2.7, M is a given
object in mod-ϋ?, r a given cardinal number and J a set with \J\ = r.

PROPOSITION 2.6. Consider the following statements:
(a) M has property Ar.
(a') M has property A{r).
(b) There do not exist any sequences {x{n)}n^u {V

MJ, λ w e R{J) and satisfying
(i) (xw, λ w > ^

. for m > n > 1.
(ii) (&m\ Xw) = Oj

(b') Same as (b) with M{J) replacing MJ.
(c) For any set I, any submodule L of R{J) and any map f:

R{J)—>MI satisfying f(L)czM{I) there exists a g: R{J) —• M{1) such
that g/L = f/L.

(d) For any set I, the sequence

0 > M{1) > M1 > M'\M{I) > 0

is pure-exact with respect to ^ r .
(e) The sequence 0—>M{N)-+MN—>MN/M{N)-+0 is pure-exact

with respect to cέ?'r.
In general, we have (a) <=> (b) «=> (b') <=> (a') and (a) => (c) => (d) =>

(e). If r is a finite cardinal all the statements (a) to (e) are
equivalent.

Proof. The equivalences (a) <=̂  (b) and (a') <=> (b') follow from
Proposition 1.1. (b) => (b') is trivial since M{J) c MJ.
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(b') =* (b): For each n ^ 1 let Jn = {jeJ\Xf Φ 0 for some i in
1 ^ i ^ n}. Since λ(<) 6 R{J) we see that each Jn is a finite set. Let
y(») e j|f(^) be defined by ^ = a?JΛ) for i e Jn and 2/i%) = 0 for j e J -
Jn. Then clearly <yw), λ(n>> = <Vm), λ w > for all m^n^l. In par-
ticular, <j/w, λ(n)> = 0, <j/(m), λ(Λ)> = 0 for m > n ^ 1.

(a)=>(c): Let L be a submodule of i?(J) and fiR^-^M1 be a
map satisfying f(L)dM(I). Let {βJ'} denote the canonical basis of
R{J), namely, ej = (Uj,)j,ej with %, = 0 for j ' ^ j and % = 1. Let
f(ej) = (a?0te/ with atfeΛf. For any i e J define y'eMJ by yj = a?{
VjeJ. Let iϊ(/) denote the set of finite subsets of I. For any
FeH(I) let KF - {λei?(J)\(y\ λ> = 0 for ί e J - F } . If F, F ' in
jff(J) satisfy FCLF' we have KFczKF>. Each i ^ is an element of
^r(M). Since ^.(M) satisfies the ascending chain condition, there
exists an FoeH(I) such that KFo is maximal in {KF}FeHiI). For any
FeH(I) we have KFαKFΌFoZ)KFo. The maximality of E^o yields
KFΌFQ = KFQ. Hence KFoz>KF for all FeH(I).

Let λ = (λy)yej be any element of L. The i coordinate of /(λ)
is Σ i ^ i Since f(X)eM{I) we see that there exists an FeH(I)
(depending on λ) such that Σ;^Jλy = 0 for iel — F. Hence (y\ λ> =
Σ i V>3 = Σ i ^ \ = 0 for i e / - F. This proves that L c UFβH(/) ^
From KFαKFo for all FeH(I) we get LczKFo. Let ^ e F ' be

defined by ^ - {o for ief-F* T h e m a p ^ : Ri'n'^M{I} carrying ej

to ^ is easily seen to fulfill the requirements of (c).
(c)=>(d): Every Ee^r can be identified with R{J)/L for some

L(zRίJ). If e: M1—> M11M{1) denotes the canonical quotient map,
then ε*: Horn (R{J), M1) ->Hom (i2(J), MΣ/M{1)) is onto since R{J) is free.
Lemma 2.5 now shows that ε*: Horn (E, M1) -~>Hom (ί7, ikf7/ilί(/)) is
onto.

(d) => (e) is trivial.
To complete the proof of Proposition 2.6 we have only to show

that (e) => (b) when r is a finite cardinal. If possible let x{n) e MJ,
XweR{J) satisfy (i) and (ii) of (b). Let x[n) = (a#°), hw = (MΛ>) L e ^
V* = (vθ»*i e M^ be given by ί/j = ^ w). Let /: R{J) ->MN be the map
carrying ej onto y3'. Let L be the submodule of R(J) generated by
λ w , n ^ 1. Then i2(J)/^ 6 ^ r ' . The mth coordinate of /(λ w ) is
Σ i tfίλ^ But Σ i 1/U^ = Σ i αΓ^i** = <^(w)

? ^
% )>. Smce <^(w), λw> = 0

for w > n, we get / (λ w ) elί { j V ). Hence /(L) cilί ( i V ). Let e:ΛF —
M7Λί(ΛΓ)denote the quotient map. By (e) the map e^: Horn (i2(J)/L,
MN) -> Horn (i2(/)/L, MN/M{N)) is onto. Hence by Lemma 2.4 there
exists a map g: RiJ) —> M(;v) satisfying ί//L = //L. Now let g(ej) =
(uί)Λ^. From /(λ w ) = ^(λ(w)) we immediately get Σ i vO^T = Σ i u3^
for all m. In particular, Σ i < λ i % ) = Σ i l/i^nϊ = Σ i fl?in>λjn> Φ 0 by (i)
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of (b). Hence for any n ^ 1, there exists at least one j e J such
that ui Φ 0. Since J is a finite set and n varies over the infinite
set N, it follows that there exists at least one j e J with ui Φ 0 for
infinitely many n. This contradicts the fact that (ui) is in M{N).

This completes the proof of Proposition 2.6. Actually the proof
is patterned after the proof of Lenzing [Proposition 1 of [6]].

It follows from this proposition that Ar ^ A{r) for any cardinal
r. However, we will continue to use both the notations. Another
consequence of the proposition is the equivalence of Ak and Pk. In
general, we only have Ar ==> Pr.

PROPOSITION 2.7. Consider the following conditions:
(a) M has property Dr.
(b) There do not exist sequences {x{n)} in MJ and {X{n)} is R{J)

satisfying
( i ) <*<•>, λ<*>> * 0 , ^ ^ i

for m > n > 1.
(ii) < £ w , λ(m)> = 0

(a') M has property D{r).
(b') Same as (b) with M{J) replacing MJ.
Then we have (a) <=> (b), (a') <=> (b') and (b) => (b') (thus (a) => (b'))

Proof. The equivalences (a)<=>(b), (a') *=> (b') follow from Proposi-
tion 1.2. The implication (b) <=> (b') is trivial since M{J) c MJ.

COROLLARY 2.8. Let Gr denote any one of the properties Ar,

Dr, D{r).
( i) Let N be a submodule of M. If M has Gr so does N.
(ii) If Mlf M2 are any two modules having Gr so does Mx 0 M2.

EXAMPLE 2.9. In mod-Z the sequence 0—>Q(/) -+QI-+QI/Q<I)-*0
is split exact and hence pure-exact with respect to any family of
modules. In particular, Q has property Pr for every cardinal r.
However, we will show that Q does not have A^o. Let x{k) e QN,

e Z{N) be defined by X{k) = (Kk))n^ where

(0 for n > 2k\

for all k ^ 1; x{1) = (1/n + 3)ftS51 and x{k) = (a?Lfc)) where

1

% + 1

1

n + 3

for w <: 2fc — 2

for n^2k —
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for k ^ 2. Then (x{l), X{k)) - 0 for all Z > k ^ 1 and (x{k), λ(fc)> Φ 0
for all k ^ 1. Hence by Proposition 2.6, ζ> does not have A^o.

EXAMPLE 2.10. Since Ak <=> Pk it follows from Corollary 2.8 that

Pfc is a hereditary property. However, for an infinite cardinal r, Pr

is not hereditary. In mod-Z, Q has P r for all r. But Z does not

have P^r0. Let p be any prime and u{k)eZN be defined by u{k) =

ί ° -* ί n ί ί ~~ 1 Let ε: Z" -> Z7Z ( i V ) denote the quotient map. If
v{k) = e(u{k)) then pv{k+1) = v(fc) for all &. Let Γ denote the subgroup

of Q consisting of elements of the form m/pr with m e Z , r ^ l .

There exists a unique homomorphism /: Γ —>ZN/ZiN) satisfying /(I) —

v{l), f(l/pk) = v(k+1). However, Horn (Γ, ZN) - 0.

REMARK 2.11. Suppose R is a commutative ring. Using Prop-
osition 1.3, it is easily seen that any artinian (resp. noetherian)
module M has property Ak (resp. Dk) for all k ^ 1. In particular,
in mod-Z, the modules Mn — Z/pwZ have both Ak and jDfe. If M —
φn^Jlίn, then pZup2Zz) ••• is a strict descending chain in ^(Af) .
Thus M does not have Dγ.

REMARK 2.12. Let R = U3eJKj be the direct product of in-
finitely many fields. Then each K, as an iϋ-module has property Ak

for all k. However, M = (BjejKj does not have property At.
Remarks 2.11 and 2.12 show that 2.8(ii) cannot be generalized

to infinite direct sums (hence by 2.8(i) to infinite direct products of
modules as well). The following result is essentially due to C.
Faith [4].

PROPOSITION 2.13. The following conditions on a ring R are
equivalent.

(a) Every injective module has property Aγ.
(b) Every module has property Ax.
(c) R is noetherian.
(d) Every module has property Ak for all k ^ 1.

Proof, (a) => (b) is immediate from 2.8(i), since every module is
a submodule of an injective module.

(b)=>(c): Let 3ί? denote the family of all (right) ideals of R
and M = φ L e >r R/L. Then j^(ikf) - βέf.

(c) => (d): When R is noetherian, Rk is noetherian. Hence ^l(M)
has the a.c.c. for any Memod-R.

(d) ==> (a) is trivial.

PROPOSITION 2.14. The following conditions on a ring R are
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equivalent.
(a) Every injective module has property Dt.
(b) Every module has property Dx.
(c) R is artinian.
(d) Every module has property Dk for all k ^ 1.

The proof is similar to that of Proposition 2.13 and hence omitted.

REMARK 2.15. Let M be a module having the property Ax.
Then by Faith's theorem [4], if M is injective, then it is iMnjective
(namely, M{1) is injective for every set / ) . In particular, M{1) is a
direct summand of M1 for any set I. However, this property does
not characterize injective modules among modules having Ax. Let
R be a left artinian ring which is not self-injective. Then by Prop-
osition 3 of Lenzing [6] it follows that R{1) is a direct summand of
R1 for all /. But R is not injective.

3* Behavior under base extension* Let R be a subring of
S, Me mod-R and Mf = M®R S e mod-S, J denotes a set with |J | = r.

THEOREM 3.1. Suppose Tor? (M, S/R) = 0. If M' has property
A{r) (resp. D{r)), then so does M.

Proof. We will prove this for AW) (the proof for D{r) is similar
and hence omitted). If M does not have AM, there exist sequences

f e F 1 and Xin)eR{J) such that (xin), λίΛ)>;#= 0 and <ff(w), λ w > = 0

for m> n^l. Let y{n) = xin) (x) 1 e M{J) (x) S = MfU). Regarding

λ(w) as elements of S{J) we have

(y{m\ X{n)) = (x{m) (x) 1, X{n)) = (%{m\ X{n)) ® l e F .

When Torf (M, S/R) = 0, the map M H % ® 1 of ilf in Mf is injective.

Hence (y{n\ X{n)) Φ 0 and (y{m), X{n)) = 0 for m > n ^ 1. This means

M' does not have A{r).

REMARK 3.2. In general MJ (x) S Φ {M®S)J. If S is finitely
presented as a (left) ϋί-module we can identify MJ (x)S with (ikίίxjS)'7.
In this case the analogue of Theorem 3.1 is valid for the property
Dr as well.

PROPOSITION 3.3. Suppose R is a subring of a noetherian (resp.
artinian) ring S. Then any M e mod-R with Torf (M, S/R) = 0 has
property Ak (resp. Dk).

Proof. Immediate consequence of Propositions 2.13,, 2.14 and
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Theorem 3.1.

COROLLARY 3.4. Let R be a subring of a ring S and let S/R
be flat as a left R-module (equivalently, let S be a faithfully flat
left lϋ-module). If S is right noetherian (artinian), then R is right
noetherian (artinian).

This corollary is actually proved in § 3, No. 5, Chap. I, of [2]
by different methods.

PROPOSITION 3.5. Let R be a von Neumann regular ring. Then
R i$ semi-simple <=> R has At.

Proof. Immediate consequence of Proposition 2.6 and the well-
known fact that a regular ring R is semi-simple <=> there does not
exist an infinite family of orthogonal idempotents.

4* Behavior of Hom^ (S, Λf )• Unless otherwise mentioned we
consider the following situation. R is a subring of S and ί: R —> S
denotes the inclusion. We assume that there exists an augmentation
e:S~+R (namely, a ring homomorphism satisfying εoi = IdR). Let
K = ker ε be the augmentation ideal in S. Then as an Jί-module
we have S — R φ K. Moreover, SK = K = KS. In particular,
RKcK. In what follows J denotes a set with \J\ = r.

LEMMA 4.1. Let {u{μ)} be any family of elements of R{J). Let
N be the R-submodule of RU) generated by {uiμ)} and V the S-sub-
module of SU) generated by {u{μ)}.

Then V Π R{J) = N.

Proof. Clearly V Π R{J) 3 N. Let I = Σu{μ)sμ eVf] R{J) with
sμeS (and sμ = 0 for almost all μ). Let sμ = rμ + tμ with rμ e R,
tμeK. If u{μ) = (w^Oiβ/ we have u(μ) ^ = (nf%)ύeJ. Since RKczK,
it follows that uf%eK for each i e J . Hence w(/%eif(t7). As an
i2-module we have SiJ) = R{J) φ KU) and the element Z of RJ) has
the representation ( Σ , lί^V^) + (Σ^ 2έ(/i)^) with Σ^ ^ ( / ί >^ 6 i2(J) and
Σ/. ?ί(ί£)^ 6 UL(t7). It follows that ί = ΣΛ ?*(^^. In other words, I e JSΓ.
Thus 7 Π R{J) c iSΓ.

Let Γr (resp. ΓJ.) dedote the class of JJ-submodules of S{J) of
the form R{J) + V where V is an S-submodule of SiJ) generated by
finitely many (resp. countably many) element of R{J).

THEOREM 4.2. Suppose Memod-R satisfies Ext^ (S{J)/L, M) = 0
for any LeΓr (resp. Γ'r). Let Mf = HomΛ (S, ΛΓ). // M
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(resp. Dr), then M has Ar (resp. Dr).

Proof. We prove the theorem only for Ar. The proof for Dr

is similar and hence omitted. Suppose M does not have Aτ. Then
there exist x[n) eMJ, X{n)eR(J) with <»<*>, λ w > ^ 0 and (x{m), λ w > = 0
for m > n ^ 1. We identify MJ with Horn (R{J), M). An element
xeMJ corresponds to the homomorphism ax:R

U) —>M given by ax(X) —
{x, λ>. For n ^ 2 let Vn be the S-submodule of SU) generated by
λ(1), •• ,λ(*~1> and Ln the #-submodule of R{J) generated by λ(1), •••,
V»-υ. From Lemma 4.1 we get Ln = Vn Π iϋ ( J ). Denote the map
αU^):# ( J )--+ikf by /<•>. Then / W ( L J = 0. If g{n): R{J) + F , - > M
is defined by #w(t6 + v) = f{n\w) for any ^ 6 i2(J), v e Vn9 then using
the facts that Vn Π # ( / ) = ί/% and that f{n){Ln) = 0, it can easily be
shown that g{n) is a well-defined i?-homomorphism. Clearly R{J) +
W e Γ r . By assumption, Ext^ (S{J)/RU) + Vn, M) = 0. It follows
that #(%) can be extended to an J?-homomorphism hw: SiJ) -+M.
Under the usual identification of Hom^ (S{J), M) with Hom^ (S, M)J =
Λί'J let Λ,(%) correspond to the element fe(w) = (h^) e MfJ with hf] e M'.
Then the element (h{n), λ(i)> e AT = HomΛ (S, M) satisfies <Λ(W), λ(i)>(s) =
Σ / λ i W ^ e A Γ for every s e S . But <fe(%), λ(ί)s>(l) = Σy ΛyW ) s )
Since fe(w)/FΛ = 0, it follows that <Λ(%), X{ί)s) = 0 for 1 ^ i ^ n - 1.
In other words, <^(%), λ(ί)>(s) = 0 Vs 6 S whenever 1 <: i ^ ^ - 1.
Hence (hin), λ(ί)> = 0 in W for 1 ^ i ^ n - 1. Also (h{n), Vn))(l) =
/(*>(λ( )) = <^(w), λ(w)> ^ 0. Thus M' does not have Ar.

Let M be an injective module in mod-i2. Then M' = Homβ (S, M)
is injective in mod-S [Proposition 1.4, § 1, Chap. VI, [3]].

COROLLARY 4.3. With the same conventions as at the beginning
of this section, let Memod-R be injective. If Mf is Σ'-injective in
mod-S, then so is M in mod-R.

Proof. This is because an injective module is iMnjective if and
only if it has Ax.

REMARK 4.4. Theorem 4.2 and Corollary 4.3 are not valid for
an arbitrary ring S containing R as a subring. For instance, let
R be a non-noetherian integral domain and S its quotient field. Since
R is non-noetherian, there exists an injective module M e mod-J? which
is not J-injective. However, since S is a field, Mf = HomΛ (S, M)
is Jί-injective in mod-S.

REMARK 4.5. Let R be any ring and Sί a two-sided ideal of iϋ.
Let /: R —> i2/Sί be the canonical quotient map. Let E 6 mod-J? and
E' = {x e E\ %% = 0} = Hom^ (R/% E) e mod-i2/Sί. Suppose E' does not
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have Aι in mod-iϋ/δϊ. Then there exist x{n) e Er and X{n) e R such that

X(n)f(χw) φ o and x{m)f{X{n)) = 0 for m > n ^ 1. But xwx{ί) = x{n)f(Xw).
Thus x{n)X{n) Φ 0 and x{m)xw = 0 for m> n ^ l . Since a?w e 2? it
follows that i£ does not have Ax. Now if £7 is iϋ-injective, then Ef

is i?/3ϊ-injective. By the argument above if E is J?-injective, then
so is Ef in mod-#/δί. Since # ' ( 7 ) = {x e JSJ(7) |a«ϊ = 0} this last fact
can also be seen directly.

5* Arbitrary family Ma. Let {Ma}aeI be any family of modules.

For any fc-tuple (x{1), , x{k)) with x{ί)eΠMa let T(a5(D,...,*(*)) =

e Rk

DEFINITION 5.1. A fc-tuple (x{l), , x{k}) with ^ ( ί ) e/7ikΓα is called
"special" if there exists a finite subset F of I such that Σ?=i &« ̂ ( ί ) = 0
for all α 6 J - F and (λ(1), , λ(fc)) e Γt.ω,...,.(«,. Here ^ ( ί ) - (xι*%eI.
For any integer fc ^ 1 the following result is the analogue of Prop-
osition 2.6. Its proof is practically similar to that of Proposition
2.6 and hence is omitted.

PROPOSITION 5.2. Let {Ma}aeI be any family of R-modules and
k an integer ^ 1. Then the following statements are equivalent.

(a) Each k-tuple (x{1}, , x{k)) of elements from ΠMa is special.
(b) For every countable infinite subset X of I and any enumera-

tion of X, there do not exist families of elements (Xμι))μeχ, , ( ^ ' U i
in TlaexMμ and (λj^ex, •••, 0 ^ % 6 X is Rm satisfying

(i) Σϊ=iaW' ^ 0 for all μeX and
(ϋ) Σί=i xPW = 0 for v> μ in X.

(c) The sequence 0 —> φ Ma —> ΠMa -* 77Mα/φ Mα —> 0 is purβ-
βa αcέ ^iίΛ respect to ^k.

(d) For β^βr̂ / countable subset X of I the sequence 0—>φαezMα—>
Παβz-^α ^'ΠαexΛία/Θαez-Mα^- 'O is pure-exact with respect to <^ί.

(e) i^or any Lci2(fe) α^d /: R{k) -+ ΠMa with f(L) c © I α there
exists a g: R[k) —> φ Ma satisfying g/L = f/L.
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