PACIFIC JOURNAL OF MATHEMATICS
Vol. 72, No. 1, 1977

CHAIN CONDITIONS AND PURE-EXACTNESS

M. B. REGE AND K. VARADARAJAN

Let R be a ring and M any (right) R-module. For any
set I let M and M’ denote the direct sum and respectively
the direct product of copies of M indexed by the set I. For
any cardinal number r, let <, denote the class of R-modules
admitting a generating set of cardinality <. In this paper
we study the relationship between the pure-exactness of the
sequence 0—> MP > M? > MI/M® — () with respect to <&,
under the functor Hom, and chain conditions on suitably
defined families of R-modules. This study led us to the in-
troduction of five properties A4,, A.,, D,, D.,, and P, for any
R-module M. We also study the effect of base extension
(both covariant and contravariant) of the ring B on modules
having any (or some) of the above mentioned properties.
Finally we obtain necessary and sufficient conditions for

0O—PM,—>zM,—>M,/P M,— 0

to be pure-exact with respect to <., where {M,} is any
family of R-modules and % any integer >1.

Introduction. Let & be any family of R-modules. An exact
sequence 0 — M’ — M <> M"” —0 of R-modules is said to be pure-
exact with respect to the family & (for the functor Hom = Homy)
if e,: Hom (E, M) — Hom (E, M"”) is onto for all Fc &. Given a
module M and a set I let M and M’ denote respectively the direct
sum and the direct product of copies of the same module M indexed
by I. In his paper [6] H. Lenzing, among other things, studies
equivalent conditions under which the sequence

(1) 0 — M® — M — MY/M — 0

is pure-exact with respect to the family of cyclic modules. His
result (Proposition 1 of [6]) is a generalization of Carl Faith’s result
[4] concerning necessary and sufficient conditions for M to be in-
jective. Let 7 be any cardinal number and &, the class of R-modules
admitting a generating set with cardinality < . One of the objec-
tives of the present paper is to study the extent to which Lenzing’s
results could be generalized to furnish conditions under which (1)
will be pure-exact with respect to &,.

Throughout this paper k& will denote an integer = 1. R will
denote a ring with 1, B-mod and mod-R will denote the categories
of left resp. right unitary R-modules. Unless otherwise mentioned,
by an R-module we mean an object of mod-R. All the concepts
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used in this paper are right sided unless otherwise mentioned. When
we talk of homomorphisms between rings we always assume that
they preserve the identity elements. When R is a subring of S we
assume 1, = 15 so that the inclusion map j: R— S is a ring homo-
morphism. For any set J, the cardinality of J will be denoted by
[J].

The results of Lenzing in [6] suggest the introduction and study
of five properties A,, 4, D,, D.,, and P, for any M e mod-E and
any cardinal number » = 0. Let J be any set with |J| =7. For
any & = (¥);c; €M’ and A = (\));e, € RV let <z, A) = 3 @;\. For
any subset T of M’ let L, = {Ae R |{x, A> = 0 for all zcT}. We
write F,. (M) (resp. F.,(M)) for the family {L,|T subset of M’}
(resp. {L;|T subset of M'"}). M € mod-R is said to have the property
A, (resp. A, if F,(M) (resp. #,(M)) has the ascending chain
condition. Similarly, M is said to have the property D, (resp. D)
if #.(M) (resp. &.,(M)) has the descending chain condition. When
r=1Fk A, and A, are equivalent by definition and we use the com-
mon notation A,. Similarly D, and D, are equivalent and we use
the common notation D,. It turns out A, and A, are equivalent
for any cardinal ». However, we use either notation depending on
the context. M is said to have P, if for any set I, 0 > MP —
M — M'/MY — 0 is pure-exact with respect to &,.. It also turns
out that A, and P, are equivalent, whereas for an infinite cardinal
7 one has only the implication A, = P.. We show by means of an
example that the implication P, = A, is not true. It turns out that
the properties A,, D,, and D, are hereditary, in the sense that if
Memod-R has any one of these properties and N is a submodule
of M, then N also has the same property. Since A, and P, are
equivalent, it follows that P, is hereditary. We give an example
to show that P, is not hereditary for an infinite cardinal 7.

Let R be a subring of S and j: R— S the inclusion. Using j
we regard S (and also S/R) as an element of R-mod. Let M e mod-
R. If M = M@:Secmod-S has property A, (resp. D, and if
Tor? (M, S/R) = 0, then we show that M € mod-R property A, (resp.
D). We say that a ring R has a certain property if R considered
as an element of mod-R in the usual way has that property. An
immediate consequence of the above result is that if S has A, (resp.
D), then R has A, (resp. D). Also the above results yield an
alternative proof of the following well-known result which can be
found in Chap. I, §3, n°5 of [2]: If R is a subring of a right
noetherian (artinian) ring S and if S/R is left flat over R, then R
is right noetherian (artinian). Also we prove that a regular ring R
has property A, if and only if it is semisimple.

Next we consider the situation where there exists a ring homo-
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morphism f: R—S. Let Memod-R and M’ = Homj (S, M) € mod-S.
We study conditions under which M’ having property A, (resp. D,)
implies M has the same property. We apply these results to derive
conditions under which 3-injectivity of M’ implies 3Z-injectivity of M.

In [7] B. Sarath and K. Varadarajan obtain necessary and suf-
ficient conditions for the direct sum @ M, of a given family {M,}..;
of modules to be injective. Finally we generalize results in [7] and
furnish conditions under which the sequence

(2) 0— @ M, — IIM, — IM./® M, — 0

is pure-exact with respect to Zk, where {M,b}.., is an arbitrary
family in mod-R.

1. Preliminaries. Let R be a ring, U € mod-R, W e R-mod and
M an abelian group. Let 6: U@ W — M be a given homomorphism
of abelian groups. For any (u, w)e U x W we write {u, w) for the
element 6(u ® w). Given any subset X of U let Ly ={we W|{u, w)=
0 for all we X}. Clearly, L, is an additive subgroup of W. Let
Fw(0) = {Ly|X any subset of U}. We remark that L, has been
called an annihilator with respect to <,) in [1, §24].

ProroOSITION 1.1. With the above motation, the following condi-
tions are equivalent.
(a) F,(0) satisfies the ascending chain condition.
(b) There do mot exist any sequences {u™},s,, {W™}l,z, with
ume U, w™eW and satisfying
(i) ™, w™> +#0
(D) U™, sy = 0} Jor all m > n = 1.
Proof. (a)= (b). Suppose there exist sequences '™ in U, w™
in W satisfying (i) and (ii) of (b). Let X, be the subset X, =
{u®|k =zn} of U. Then Ly CLg,. . From {u™,w™) 0 and
{u™, w™) =0 for m >n we see that w™ € Ly, ., — Ly,. Thus Ly C
Ly, -+ is a strict ascending chain in .&(0) contradicting (a).
(b) = (a). Suppose L C L, C--- is a strictly increasing chain
of objects in (), where 4, are subsets of U. Let w™eL,,  —
L .. Then there exists a u™ e 4, with (u™, w™) # 0. Since u™ e
4, and w™eL, for all m >n we get (u™, w™) =0 for m > n.
This contradicts (b).

ProPOSITION 1.2. With the same nmotation as in Proposition 1.1,
the following are equivalent.
(a) Fw(0) satisfies the descending chain condition.
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(b) There do mot ewist sequences {u'™},s,, {w'™},=, with u™ e U,
w™e W and satisfying
(i) <u™, w™» = 0)
or all m = 1.
(11> <u(n), w(m)> =0 f >n =

The proof is similar to that of Proposition 1.1 and hence omitted.

For any subset Y of W let L, ={ucR|{(u,yy =0 forallyec Y}
Then L, is a Z-submodule of U. Let #,) = {Ly|Y any subset of
W}. The following proposition is an immediate consequence of Prop-
ositions 1.1 and 1.2 (cf. Proposition 24.8 of [1]).

PRrROPOSITION 1.3. The following are equivalent.

(a) Fw(0) satisfies the ascending (resp. descending) chain con-
dition.

(b) Z,(0) satisfies the descending (resp. ascending) chain con-
dition.

2. The five properties. Let M e mod-R and J a nonempty set.
We take U = M’ and W = RY'. For any & = (#;);c, in U and A =
(\j)jes in R let ¢: UxW — M be given by ¢(x, M) = Jz;\;. Notice
that the sum Sz,\; is only a finite sum since x€ R”. The map ¢
clearly induces a homomorphism 6: M’ @, R’ — M. Also R is a
left, right R-bimodule. Hence M’ @R is in a natural way a
right R-module. It is clear that 6 is an R-homomorphism. For any
subset T of U, L, = {x€ W|{(&, A\) =0 for all €T} is an R-sub-
module of W = RY!. In this case the family .#,(f) introduced in
§1 will be denoted by .# /(M). If J and J’ are any two sets with
|J| = |J'] = r # 0, using a bijection of J with J’ we can get a bijec-
tion of .7 /(M) with & 7'(M) preserving inclusions. Hence we write
(M) for any 7 /(M) with |J| = r.

We can respect the above considerations with U = M, W = R,
and ¢(®, M) = Ya;n; for any & = (x;) in MY and A = (\;) in R, In
this case we denote the family .#,(0) by either # (M) or Z,,(M).
Since R =0, we do not consider the case r =0 at all. Thus
throughout this paper » denotes a cardinal = 0.

DEFINITION 2.1. M is said to have the property A, (resp. 4,)
if #,(M) (resp. .#.,,(M)) has the ascending chain condition.

DEFINITION 2.2. M is said to have the property D, (resp. D)
if Z.(M) (resp. .#,,,(M)) has the descending chain condition.

DEFINITION 2.3. M is said to have the property P, if for every
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set I, 0— MYV — M*— M*/M?P — 0 is pure-exact with respect to &,.
The following two lemmas are implicit in [5].

LeEMMmA 2.4 (Fieldhouse). Let BC A, NCM be R-modules, 7: A—
A/B and e¢: M— M/N the canonical quotient maps. Suppose &.:
Hom (A/B, M) — Hom (A/B, M/N) s onto. Then for any fi:A—M
satisfying f(B) C N, there exists @ g: A— N such that f/B = g/B.

LemmA 2.5 (Fieldhouse). With the same notation as tn Lemma
2.4, suppose ¢,: Hom (4, M) — Hom (4, M/N) s onto. Suppose for
any f: A— M satisfying f(B) C N, there exists @ g: A— N such that
g9/B = f/B. Then ¢,: Hom (A/B, M) — Hom (A/B, M/N) is onto.

The set of natural numbers will be denoted by N. For each
cardinal number » we denote the eclass of modules isomorphic to
RY/L with |J| = and L countably generated submodule of R
by &,. In the statement of Propositions 2.6 and 2.7, M is a given
object in mod-R, » a given cardinal number and J a set with |J| = 7.

ProprosiTiON 2.6. Comnsider the following statements:

(a) M has property A,.

(@"y M has property A,.

(b) There do not exist any sequences {&'™},z., (M}, with ™ €
M, \™eRY and satisfying

(1) <&™, ™) #+0
(11) <§(M), A'(m> =0

(0" Same as (b) with M replacing M’.

(¢) For any set I, any submodule L of R and any map f:
R — M* satisfying f(L)C M there exists a g: RY'— M such
that g/L = f]L.

(d) For any set I, the sequence

0 Mo M M/MP—0

for m >n = 1.

18 pure-exact with respect to &,.

(e) The sequence 0— M™ — MY — M/ M™ —0 1is pure-exact
with respect to &,.

In general, we have (a) = (b) = (b') = (a’) and (a)= (¢) = (d) =
(e). If r is o finite cardinal all the statements (a) to (e) are
equivalent.

Proof. The equivalences (a) = (b) and (a’) = (b’) follow from
Proposition 1.1. (b) = (b’) is trivial since M c M’.
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(b') = (b): For each n =1 let J, = {jeJ|\} # 0 for some ¢ in
1 <1< mn}. Since M e RY we see that each J, is a finite set. Let
y™eM?” be defined by yi* = «* for jedJ, and y;*' =0 for jeJ —
J,. Then clearly (y™, ™) = (g™, A" for all m = n = 1. In par-
ticular, <y™, A" =0, (g™, A") =0 for m >n = 1.

(a) = (¢): Let L be a submodule of R and f:R” — M* be a
map satisfying f(L)c M. Let {¢/} denote the canonical basis of
RY, namely, e/ = (u;); e, With u; =0 for 7+ j and w; =1. Let
fle)) = @), with zie M. For any iecI define y'e M’ by y; = i
vjedJ. Let H(I) denote the set of finite subsets of I. For any
FeHI) let K, ={MeR”"|{y,A) =0 for ielI—~F}. If F,F' in
H(I) satisfy FFC F’ we have K, C K,.. Each K, is an element of
F,(M). Since .#,(M) satisfies the ascending chain condition, there
exists an F, € H(I) such that K, is maximal in {K;}pcrp. For any
FeHI) we have K;C Ky z, D K;,. The maximality of K, yields
K;r, = Ky, Hence K, DK, for all FeH(I).

Let A = (M;);c; be any element of L. The ¢ coordinate of f(\)
is X;#in;. Since f(A) e M we see that there exists an Fe H(I)
(depending on ) such that 3; #i\; = 0 for eI — F. Hence (y’, M) =
Suyn; =S xn; =0fortel — F. This proves that L C Urenw Kp-
From K,cC K, for all _FeH(I) we get LC K,. Let v'eM” he
defined by v{ = {gf fi(;ri@eeIFi P The map g¢: R — M carrying e’
to v? is easily seen to fulfill the requirements of (c).

(¢) = (d): Every Eec %, can be identified with R‘’/L for some
LcR”. If e M*— M*/M“® denotes the canonical quotient map,
then ¢,.: Hom (R, M’) — Hom (R“", M*/M") is onto since R is free.
Lemma 2.5 now shows that ¢,: Hom (E, M*) — Hom (&, M'/M") is
onto.

(d) = (e) is trivial.

To complete the proof of Proposition 2.6 we have only to show
that () = (b) when 7 is a finite cardinal. If possible let &' ¢ M’,
A" e R satisfy (i) and (ii) of (b). Let ™ = (z{), A™ = (\). Let
Y = (Yi)wz € MY be given by yi = af”. Let f: R’ — M" be the map
carrying ¢/ onto y’. Let L be the submodule of R generated by
MY, n =1, Then RV/Le%,. The mth coordinate of f(\™) is
Sy But 3; yaar =30, oA = (@™, M), Since (g™, M) =0
for m > n, we get f(A™)eM"™. Hence f(L)cM™. Let e M"—
M"/M™denote the quotient map. By (e) the map &,: Hom (R"Y/L,
M) — Hom (RY'/L, M¥/M*’) is onto. Hence by Lemma 2.4 there
exists a map g: RV — M satisfying g/L = f/L. Now let g(¢?) =
(U3)pze From f(A™)=g(A™) we immediately get 3); ¥\ = 3; uh\{™
for all m. In particular, >; wI\™ = 33; yIA® = D250 #= 0 by (i)
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of (b). Hence for any n =1, there exists at least one jeJ such
that uf = 0. Since J is a finite set and n varies over the infinite
set N, it follows that there exists at least one j€J with ui = 0 for
infinitely many n. This contradicts the fact that (uj) is in M™.

This completes the proof of Proposition 2.6. Actually the proof
is patterned after the proof of Lenzing [Proposition 1 of [6]].

It follows from this proposition that A4, < A, for any cardinal
r. However, we will continue to use both the notations. Another
consequence of the proposition is the equivalence of A, and P,. In
general, we only have A4, = P,.

ProposITION 2.7. Consider the following conditions:

(a) M has property D.,.

(b) There do mot exist sequences {£™} in M’ and {(M™} is RY

satisfying

(1) <&™, M) #=0
(i) g™, M™y =0

(a") M has property D.,,.

(®") Same as (b) with M replacing M.

Then we have (a) = (b), (a’) = (b") and (b)=(b’) (thus (a)= (b")).

Jor m >mn = 1.

Proof. The equivalences (a)=(b), (a’)=(b’) follow from Proposi-
tion 1.2. The implication (b) = (b’) is trivial since M < M.

COROLLARY 2.8. Let G, denote any ome of the properties A,,
Dr: D(r)-

(i) Let N be a submodule of M. If M has G, so does N.

(ii) If M, M, are any two modules having G, so does M, P M,.

ExaMPLE 2.9. In mod-Z the sequence 0— Q¥ — Q' — Q/Q" —0
is split exact and hence pure-exact with respect to any family of
modules. In particular, @ has property P, for every cardinal .
However, we will show that @ does not have A4, . Let z*ec@",
A e Z™ be defined by A*® = (AF),., where

(=1)**(n + 1) for n < 2k
0 for n > 2k

)"Enk) —

for all k= 1; 2 = (1/n + 3),s, and ¥ = (2¥’) where

for n <2k — 2

n+1
ik =

1 for n =2k —1
n+ 3
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for £ = 2. Then (&, Ax*> =0 for all I >k =1 and (g%, A\¥> %= 0
for all £k = 1. Hence by Proposition 2.6, @ does not have A .

ExAMPLE 2.10. Since A, = P, it follows from Corollary 2.8 that
P, is a hereditary property. However, for an infinite cardinal r, P,
is not hereditary. In mod-Z, @ has P, for all ». But Z does not
have P,,. Let p be any prime and u® € Z" be defined by ui’ =

2;"—’6 ﬁ Z § zlﬁ - 1. Let &: Z¥ — Z"/Z'"™ denote the quotient map. If
v® = g(u®) then pv**" = ¢ for all k. Let I' denote the subgroup
of Q consisting of elements of the form m/»” with meZ, r = 1.
There exists a unique homomorphism f: I"'— Z"/Z'™ satisfying f(1) =

Y, f(1/p%) = v**, However, Hom (I", Z") = 0.

REMARK 2.11. Suppose R is a commutative ring. Using Prop-
osition 1.3, it is easily seen that any artinian (resp. noetherian)
module M has property A, (resp. D,) for all k = 1. In particular,
in mod-Z, the modules M, = Z/p"Z have both A, and D,. If M=
®.-. M,, then pZ D p*Z> --- is a strict descending chain in Z (M).
Thus M does not have D,.

REMARK 2.12. Let R = [];.; K; be the direct product of in-
finitely many fields. Then each K; as an R-module has property A,
for all k. However, M = @;.; K; does not have property A,.

Remarks 2.11 and 2.12 show that 2.8(ii) cannot be generalized
to infinite direct sums (hence by 2.8(i) to infinite direct products of
modules as well). The following result is essentially due to C.
Faith [4].

PROPOSITION 2.13. The following conditions on a ring R are
equivalent.

(a) Ewvery imjective module has property A,.

(b) Ewvery module has property A,.

(¢) R is moetherian.

(d) Ewvery module has property A, for oll k= 1.

Proof. (a)= (b) is immediate from 2.8(i), since every module is
a submodule of an injective module.

(b) = (c): Let 5# denote the family of all (right) ideals of R
and M = @,.. R/L. Then F (M) = 57

(¢) = (d): When R is noetherian, R* is noetherian. Hence .7;(M)
has the a.c.c. for any M € mod-R.

(d) = (a) is trivial.

PROPOSITION 2.14. The following conditions on a ring R are
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equivalent.
(a) Ewvery injective module has property D.,.
(b) Ewvery module has property D,.
(¢) R is artinian.
(d) Every module has property D, for all k = 1.

The proof is similar to that of Proposition 2.13 and hence omitted.

REMARK 2.15. Let M be a module having the property A..
Then by Faith’s theorem [4], if M is injective, then it is Y-injective
(namely, M'" is injective for every set I). In particular, M is 3
direct summand of M’ for any set I. However, this property does
not characterize injective modules among modules having A,. Let
R Dbe a left artinian ring which is not self-injective. Then by Prop-
osition 8 of Lenzing [6] it follows that R is a direct summand of
R for all I. But R is not injective.

3. Behavior under base extension. Let R be a subring of
S, Me mod-R and M' =M @z S cmod-S. J denotes a set with |[J|= 1.

THEOREM 3.1. Suppose Torf (M, S/R) = 0. If M’ has property
A, (resp. D), then so does M.

Proof. We will prove this for A, (the proof for D, is similar
and hence omitted). If M does not have A, there exist sequences
2™ e MY and A™ e R such that (g™, A™) # 0 and (g™, A™) =0
for m>nz1. Let y" =2"Q1leM" @S =M". Regarding
A™ as elements of S we have

@™, ™) = @™ @1, = @™, M) @le M.

When Tor? (M, S/R) = 0, the map u+—u @ 1 of M in M’ is injective.
Hence (y", A™) # 0 and {(y'™, A™) =0 for m > n = 1. This means
M’ does not have A4,,,.

REMARK 3.2. In general M ® S+ (M Q S)’. If S is finitely
presented as a (left) R-module we can identify M’ @ S with (M Q) S)’.
In this case the analogue of Theorem 3.1 is valid for the property
D, as well.

ProPOSITION 3.3. Suppose R is a subring of a moetherion (resp.
artinian) ring S. Then any M€ mod-R with Tor? (M, S/R) =0 has
property A, (resp. D).

Proof. Immediate consequence of Propositions 2.13,, 2.14 and
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Theorem 3.1.

COROLLARY 3.4. Let R be a subring of a ring S and let S/R
be flat as a left R-module (equivalently, let S be a faithfully flat
left R-module). If S is right noetherian (artinian), then R is right
noetherian (artinian).

This corollary is actually proved in §8, No. 5, Chap. I, of [2]
by different methods.

PRrOPOSITION 3.5. Let R be a von Neumann regular ring. Then
R is semi-simple = R has A,.

Proof. Immediate consequence of Proposition 2.6 and the well-
known fact that a regular ring R is semi-simple < there does not
exist an infinite family of orthogonal idempotents.

4. Behavior of Hom; (S, M). Unless otherwise mentioned we
consider the following situation. R is a subring of S and : R— S
denotes the inclusion. We assume that there exists an augmentation
e: S— R (namely, a ring homomorphism satisfying ¢os = Id;). Let
K =kerec be the augmentation ideal in S. Then as an R-module
we have S= RGP K. Moreover, SK =K = KS. In particular,
RKc K. In what follows J denotes a set with |J| = .

LEMMA 4.1. Let {4} be any family of elements of RY'. Let
N be the R-submodule of RY' generated by {w'*'} and V the S-sub-
module of S gemerated by {u'*}.

Then V N RY' = N.

Proof. Clearly VNR”DON. Let l=23u*s,eVNR” with
s,€8 (and s, =0 for almost all g). Let s,=r,+ t, with r,eR,
t.c K. If u* = (uf");., we have u"* t, = (u{'t,);c,. Since RKCK,
it follows that u{t.€ K for each jeJ. Hence u'*'t,c K. As an
R-module we have SY' = RV’ @ K“' and the element ! of R“’ has
the representation (3, ur,) + . u™t,) with >, u”r,e R and
Seut, e K9, It follows that [ = >, #“r,. In other words, [ € N.
Thus VN RV CN.

Let I', (resp. I'.) dedote the class of R-submodules of S of
the form RY 4+ V where V is an S-submodule of S generated by
finitely many (resp. countably many) element of R,

THEOREM 4.2. Suppose M e mod-R satisfies Exti (SY'/L, M) =0
for any Lel, (vesp. I')). Let M’ = Hom,(S, M). If M’ has A,
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(resp. D,), then M has A, (resp. D,).

Proof. We prove the theorem only for A,. The proof for D,
is similar and hence omitted. Suppose M does not have A,. Then
there exist g™ € M’, A € R with {(&™, A™) = 0 and (2™, A™) =0
for m >n=1. We identify M’ with Hom (R, M). An element
% € M’ corresponds to the homomorphism a,: R’ — M given by a,(A) =
(@, A). For n =2 let V, be the S-submodule of S generated by
A eeo, A"V and L, the R-submodule of R’ generated by AY, ---,
AP, From Lemma 4.1 we get L, = V,N RY. Denote the map
a,(n): R —M by f™. Then f*(L,) =0. If ¢":R"+V,—>M
is defined by ¢™(% + ») = f™(u) for any € R, ve V,, then using
the facts that V,N R = L, and that f"(L,) = 0, it can easily be
shown that g™ is a well-defined R-homomorphism. Clearly R“ +
V.el',. By assumption, Exty(S“’/RY + V,, M)=0. It follows
that ¢ can be extended to an R-homomorphism h™: S — M.
Under the usual identification of Homj, (S, M) with Hom, (S, M)’ =
M let b correspond to the element A™ = (h{™) e M"’ with h{" e M'.
Then the element <A™, A*> € M’ = Hom, (S, M) satisfies (h'™, MV )(s) =
Sihm(\s)e M for every seS. But (™, APs)A) = 3; M (MDs).
Since A™/V, =0, it follows that <A™, A7s8) =0 for 1<7i<n — 1.
In other words, <A™, A")s) =0 VseS whenever 1L <i1=<n — 1.
Hence (A", V") =0in M’ for 1=t <n—1. Also <A™, A")1) =
S™O™) = (g™, M™) %= 0. Thus M’ does not have A4,.

Let M be an injective module in mod-R. Then M’ = Hom, (S, M)
is injective in mod-S [Proposition 1.4, §1, Chap. VI, [3]].

COROLLARY 4.3. With the same conventions as at the beginning
of this section, let M € mod-R be injective. If M' 18 Z-injective in
mod-S, then so 18 M in mod-R.

Proof. This is because an injective module is X-injective if and
only if it has A,.

REMARK 4.4. Theorem 4.2 and Corollary 4.3 are not valid for
an arbitrary ring S containing R as a subring. For instance, let
R be a non-noetherian integral domain and S its quotient field. Since
R is non-noetherian, there exists an injective module M € mod-R which
is not Z-injective. However, since S is a field, M’ = Hom; (S, M)
is Z-injective in mod-S.

REMARK 4.5. Let R be any ring and 2 a two-sided ideal of R.
Let f: R— R/Y be the canonical quotient map. Let E e mod-R and
E' = {xc E|2%W = 0} = Hom, (R/¥, E) e mod-R/A. Suppose E’ does not
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have A, in mod-R/%. Then there exist 2™ € E’ and A™ € R such that
™) £ 0 and 2™ f(A™) =0 for m >n=1. But 2™\ = g™ f(\"),
Thus ™A™ %= 0 and z™A™ =0 for m >n =1. Since 2™ eF it
follows that E does not have A,. Now if E is R-injective, then E’
is R/Y-injective. By the argument above if E is X-injective, then
so is E' in mod-R/¥U. Since E'" = {xc E?|2A = 0} this last fact
can also be seen directly.

5. Arbitrary family M,. Let {M,}..; be any family of modules.
For any k-tuple (2, «--,2%) with 2®9ellIM, let Tiw,... pi0) =
{()\,m’ veo, )\,(k)) c R* | Z“Iic:1 @‘“)\,‘i) e @ Ma}‘ |

DEFINITION 5.1. A k-tuple (2%, ---, 2*) with 2 € [TM, is called
“special” if there exists a finite subset F' of I such that >})%, 2@\ =0
for all el — F and (A", .-+, M) e T,w,... .0, Here 2% = (&), ;.
For any integer k£ = 1 the following result is the analogue of Prop-
osition 2.6. Its proof is practically similar to that of Proposition
2.6 and hence is omitted.

PROPOSITION 5.2. Let {M,}..; be any family of R-modules and
k an integer = 1. Then the following statements are equivalent.
(a) FEach k-tuple (¥, ---, ) of elements from I[IM, is special.
(b) For every countable infinite subset X of I and any enumera-
tion of X, there do not exist families of elements (@i )uex, * =) @F)pey
W Tluex My and (M) pexy =0y M) pex 98 R satisfying
(i) Sk, 2NP = 0 for all pe X and
(il) Sk, 2\ =0 for v > p in X.
(¢) The sequence 0 —P M,—IM,—IIM, /P M,—0 1is pure-
exact with respect to &5.
(d) For every countable subset X of I the sequence 0—@,cx M,—
MHeex My — aex Mo/®uex M, — 0 is pure-exact with respect to &.
(¢) For any LC R*™ and f: R® — IIM, with f(L)C & M, there
exists ¢ g: R® — @ M, satisfying g/L = f|/L.
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