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AUTOMORPHISMS OF THE SEMIGROUP OF
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LOCALLY CYCLIC GROUP
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In this paper the automorphism group of the semigroup
of finite complexes of a periodic locally cyclic group is
determined.

1. Introduction. Let G be a group, written additively but not
assumed to be abelian, and let F(G) denote the collection of finite
nonempty subsets of G. Then F(G) is a semigroup with respect to
the operation A+ B={a + bjlac A and beB}. The collection of
automorphisms of F(G) is a group under the operation of composi-
tion of functions and we shall denote this group by Aut F(G). The
automorphism group of G will be denoted by Aut G. Since the
collection of singleton subsets of G is the group of units of F(G),
we frequently identify G with {{g}|g €G}. Each automorphism of
G induces an automorphism of F(G) in the natural way. These
elements of Aut F(G) will be ecalled standard automorphisms. If
acAut G and a* is the standard automorphism of F(G) induced by
«, then the mapping which sends a@ to a* is an isomorphism of
Aut G onto the collection of standard automorphisms of F(G).

Our interest in Aut F(G) comes from our study of retractable
groups. In [1] it was shown that the retractions of a torsion-free
abelian group G generate a large class of nonstandard automorphisms
of F(G). In particular, it was shown that Aut F(Z) is countably
infinite, where Z denotes the additive group of integers. Since Aut Z
has only two elements, it was natural to inquire if the semigroup of
complexes of a finite cyclic group admits nonstandard automorphisms.
For a natural number », let Z, denote the group of integers modulo #.
Clearly Aut F(Z,) and Aut F(Z,) have only standard automorphisms.
In §3 we exhibit nonstandard automorphisms for F(Z;), F(Z,), and
F(Z;) and classify their corresponding automorphism groups. The
only automorphisms of F(Z;) are standard. In Theorems 2 and 3
we prove that if » =7, then Aut F(Z,) has only standard auto-
morphisms and hence, Aut F(Z,) is isomorphic to AutZ,. If @
denotes the additive group of rationals and G is a subgroup of Q/Z,
we can use the preceding results to characterize Aut F(G@) in terms
of AutG. It appears that the absence of retractions (retractable
groups are torsion-free) might restrict the number of nonstandard
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automorphisms. In Theorem 4 we show that an automorphism of
F(G) is standard if and only if the automorphism is inclusion
preserving.

In §2 (Theorem 1) we show that if A€ F(Z,) and 6 e Aut F(Z,),
then |A| =|A46|. This theorem was crucial for our work. Our
results are computational in nature and are established through a
sequence of lemmas. If X and Y are sets, then X\Y denotes the
set of elements in X but not in Y.

2. Preliminaries. We have been unable to determine if the
elements of Aut F(G) preserve the cardinality of subsets of G. The
purpose of this section is to prove that the elements of Aut F(Z,)
do preserve set cardinality.

LEMMA 1. Let G be a finite group and let A, Be F(G) with
|A| < |B| < |G|. Then there exists g € G\{0} such that |A + {0, g}| <
|B + {0, g}| and |B| < |B + {0, g}|.

Proof. To prove the lemma it suffices to take |B|=|A4| + 1.
If G\A = {xv ft xt+1} and G\B = {yv *t yt}’ let
A* = {((xi’ xi)’ gij)]i7 je{l’ s, b+ 1}7 1 #* jy and —®; + T; = gii}
and
B* = {((yn ys)y g,s)[’r, 8 e{lv A} t}’ T+ 8, and Y- + Ys = gn} .
Then |A*| =t(t + 1) > ¢(t — 1) = |B*| and 0¢ A*m, U B*x,.
Case 1. There exists g€ A*n,\B*7,. Then g = —x, + 2; for some
1% j. Since z,¢ 4, z; =2, + g¢ A+ g and since z;¢ 4, z;¢ AU
(A+g9)=A+1{0,9}). Thus|A4A + {0, g}| < |G|. If yeG\B, then there
exists z€ G such that z + g = y, and g # 0 implies that z # y. Since

g ¢ B*m,, we have that 2 ¢ G\B. Henceze Band so y€ B + g. There-
fore we have that

|A+{0, 0}l <|G|=[B+{0,9}] and [B|<[B+{0,g}.

Case 2. A*m, & B*m,. Since |A*| > |B*|, there exists gec A*m,
such that if

J = {(@, )|, ©,), g) € A*}
and
K=y 9)I((¥, ), 9) € B},
then |J| > |K|. Let J={(z,,x;), --+, (x;, %;,)} and K = {(y,, Ys)
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<oy Yrp ¥.,)}, Where m >n. If 1<k < m, then x;,, =2, + g and
since x,,2;, ¢A, ;¢ A+ {0,9}. If zeG\(AU({x,, -+, 2, }), then
v =2+ g for some z€@G, z #+ x. Since x¢Jr,, we have that z ¢ A.
Thus 2 € 4 + {0, g}. Consequently, A + {0, g} = G\{=;, -+, #; }. Simi-
larly, B + {0, g} = G\{v.,, -+, v.,} and so [A + {0, g}| < |B + {0, g}|.

Suppose (by way of contradiction) that |B| = |B + {0, g}|. Then
B=B+{0,9}=G\{y,, -+, ¥,,} and hence n=1¢ and m =1¢ + 1.
Thus for each z;, ; + g = ; for some z;. Then 2, + 29 = 2; + g = 2,,
for some k,1 <k =t + 1. It follows, by induction, that z, + {g) <
G\A for each 7, 1 <7<t + 1, and so G\A is a union of cosets of
{g>. Therefore, o(g)|(t + 1). Similarly, o(g)|¢t and this is a contra-
diction as g = 0. Hence, |B| < |B + {0, g}|.

If A is an element of the semigroup F(G), define 14 = A and
for n > 1, define nd = (n — 1)A + A. Note that nA does not neces-
sarily equal {ne|ac A}.

LEMMA 2. Let G be a finite abelian group. If Ae F(G) and
|A+FkA| = |kA| for some k=1, then |lA + kA| = |kA| for all 1 = 1.

Proof. The equality holds for ! = 1. Assume that I =1 and
that |IA + kA| = |kA|. If aclA, then |lA + kA|=|—a + lA + KA|
and since kA < —a + A + kA, we have that kA = —a + [A + KA.
Therefore, |kA| = |A+EkA|=|A+(—a+1A+EA)| = |(L+1)A+EA|
By induction, the lemma holds for all I = 1.

The proof of the next lemma is straightforward and will be
omitted.

LEMMA 3. Let G be a group and let H be a finite subgroup of
G. If 6eAut F(G), then

(i) G@|F(H) is a semigroup tsomorphism of F(H) onto F(HS);

(ii) H and HO are isomorphic subgroups of G;

(iii) f 6|G is the identity, then H = HO.

LEMMA 4. If G is a finite group, beG\{0}, and 6 < Aut F(G),
then |{0, b}6| = 2.

Proof. Let 6 € Aut F(G) and 7 be the standard automorphism
of F(G) induced by (0|G)™'. Since 7 preserves set cardinality,
|Afn| = |A6| for all Ac F(G), and 67|G = ¢ where ¢ denotes the
identity mapping of G. Thus we may assume that 0|G =c¢. If
n = o(b) and H = <b), then H = (n — 1){0, b}. By Lemma 3, H = Hf =
(n — 1)({0, b}6). Further, n — 1 is the smallest natural number such
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that (» —1)({0, b}6) = H. If A = {0, b}6, then AC H and (n —1)A = H.
If BS G, |B|>2, and k=1, then by induction and Lemma 2,
|(k+1)B|>Fk+ 2 or |(k+ 1)B| = |kB|. In particular, if |A|> 2,
then since [((n — 2) + 1)A| = n, we must have that n = |(n — 1)4| =
[(n — 2)A|. Thus (» — 2)A = H, and this is a contradiction.

COROLLARY 1. Let G be o finite group and a, be G with o + b.
If 6 e Aut F(G), then |{a, b}d| = 2.

LEMMA 5. If G is a finite group and Ae F(G) with |A| =
|G| — 1, then |A0| = | A| for all 6 € Aut F(G).

Proof. As in Lemma 4, we may assume 0|G =¢. Let a,bcG
with ¢ #b. Since |{a, b}| +|A| = |G|+ 1, {e, b} + A = G [3, Theorem
1]. Suppose (by way of contradiction) that A9 = B, where |B| < |A4]|.
Then there exists x, y € G\B with z = y. Since x¢{0, 2z — y} + B,
{0,z — y} + B=* G. By the preceding corollary, {0, z — y} = {a, b}
for some @, be G with a¢ #+ b. But then

{a,0} + A=G =G0 =({a, b} + A ={0, s —y} + B=G,

a contradiction. Hence, |A6| = |A].

If A, BeF(G) and A =g + B for some ge @G, then A is said to
be a (left) translate of B. Clearly F(G) is the union of mutually
disjoint translation classes. Moreover, if G is abelian and 6 € Aut F(G),
then 6 is completely determined by it action on the group of units
of F(G) and a system of representatives for the translation classes.

LEMMA 6. Let 6cAutZ, and {0,1}d =g +{0,1}. If 1=Za <
n — 1, then there exists he Z, such that {0, a}0 = h + {0, a}.

Proof. The translation class of {0, a} is the same as the transla-
tion class of {0, n — a}. Thus we may assume that ¢ < n/2. If »
is even and @ = n/2, then {0, a} is the only subgroup of Z, of order
2. By Lemma 3,{0, a}d = {0, a}. Therefore, we may further assume
that 1 < e < n/2. By induction we may assume that we have
verified the lemma for all b such that 1 £ b < a < n/2. If {0, a}d =
y + {0, t}, then, since {0, ¢} =t + {0, » — ¢}, we may assume ¢=n/2 and
since ¢ maps a translation class onto a translation class, ¢ =< ¢. Now
we have the equation (¢ — 1){0, 1} + {0, a} = (2 — 1){0, 1} and, taking
the image of both sides under 4, we obtain

(@ — g + (@ — 1){0, 1} + y + {0, ¢} = (2 — 1)g + (2a — 1){0, 1} .
Hence, {0,1, -+, —1,¢ ¢+ 1, ---,t+a—1} is a translate of
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{0,1, ---,2¢ — 1}. Since ¢t +a — 1 < mn — 1, t = a is the only possible
solution.

THEOREM 1. If AeF(Z,) and 6 Aut F(Z,), then |A8| = |A].

Proof. Let {0,1}0 = g + {0, b}. Since (n — 1){0, 1} = Z,, it fol-
lows that b is a generator for Z,. Let ¥ be the standard auto-
morphism of F(Z,) induced by the automorphism of Z, that maps
b to 1. Now ¥ preserves cardinality and hence, 6% will preserve
cardinality if and only if # preserves cardinality. Thus we may
assume that {0,1} = g + {0, 1}. Suppose (by way of contradiction)
that there exists B€ F(Z,) such that |BA| = |B|. We may assume
that if Ae F(G) with |A| > | B|, then |40| = |A|. Thus, |Bf| < |B|
and by Lemma 5, |B| <% — 1. By Lemma 1, there exists z€Z,
such that |B| < |B + {0, z}| and |Bf + {0, z}| < | B + {0, «}|, and by
Lemma 6, {0, 2}0 =k + {0, z}, for some h. Therefore,

[(B+ {0, 2})6| = | B8 + h + {0, 2}
= |Bf + {0, x}| < | B + {0, =}|
= [(B + {0, z})d| .

This is a contradiction and hence, \1A0| = A for all Ae F(Z,).

3. Determination of Aut F(Z,). Let G be a group, H be the
group of standard automorphisms of F(G), and K be the group of
automorphisms of F(G) that are the identity on the group of units
of F(G). Then K is a normal subgroup of Aut F(G), HN K = {¢},
and Aut F(G) = KH. If 6K and G is abelian, then # is uniquely
determined by its action on a system of representatives of the trans-
lation classes of F(G). Clearly F(Z,) admits only standard auto-
morphisms. The verification of the following assertions are computa-
tional (some are lengthy) and will be omitted. If G = Z,, then there
exists 6eAut F(G) with |G =¢, {0, 1}6 = {0, 2}, {0, 1, 2}6.= {0, 1, 2};
K={,0,6, H={, B} where (1)8 =2, and B8 =0¢. Thus,
Aut F(G) = KH and is isomorphic to S;, the symmetric group of
degree 3. If G = Z,, then there exists e Aut F(G) with 0|G =¢,
{0,1}6 = {0,3}, {0,2}¢ = {0,2}, {0,1,2}6 = {0,2, 3}, {0,1,2,8}6 = {0,1,2,3};
K=1{,0,6,6 6%, H={, B}, where (1)3 =3, and 8798 = 6. Thus,
Aut F(G) = KH and is isomorphic to D,, the dihedral group of order
8. If G = Z,, then there exists 0 € F(G) with 0|G = ¢, {0, 1}0 ={2,4]},
{0,210 = (3,4}, {0,1,2)0 =1{1,3,4}, {0,1,3)0 ={2,3,4}, {0,1,2,3)0 =
{0,1,2,38}, {0,1,238,4}0=1{0,1,2,8,4}; K={,6}, H={,n 7%},
where (1) = 2, and 87 = 76. Thus, Aut F(G) = KH and is isomorphic
to the direct product of Z, and Z,. Finally, if G = Z,, then K = {¢}
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and Aut F(G) is isomorphic to AutG.

The remaining portion of this paper is devoted to showing that
Aut F(G) consists only of standard automorphisms if G is a subgroup
of Q/Z and |G| =17, and hence Aut F(G) is isomorphic to AutG.
The proofs of the next three lemmas are straightforward and will
be omitted.

LEMMA 7. If Ac F(G) and L(A) = {g|g + A = A}, then L(A) is
a subgroup of G and A is a union of right cosets of L(A). If G
18 finite, then the mumber of translates of A is the imdex of L(A)

wm Q.

LemMA 8. If G is a finite group, Ac F(G), and |A| = |G| — 1,
then L(A) = {0} and all subsets of G of cardinality |G| — 1 belong
to the tranmslation class of A.

LeEMMA 9. If a is a gemerator of Z, and A = k{0, a}, where
1<k=<n—2, then L(A) = {0}.

For the remainder of this paper we shall assume that n = 7.

LeMMA 10. If 6eAut F(Z,) end {0,1}0 = {0, 1}, then {0, r}0 =
{0, 7} for every re Z,\(0} and 6|Z, is the identity.

Proof. We first assume that 1 <r <n/2. If r=n/2, then
{0, 7} is a subgroup of Z, and by Lemma 3, {0, r}¢ = {0, »} since it
is the only subgroup of order two. Thus we may suppose that
1<r<n/2. By Lemma 6, {0, }6 = h + {0, r} for some he Z,. Now

(r — 1){0, 1} + {0, } = (2r — 1){0, 1} .
If we apply 6 to each side of this equation, we have that
(r — 1){0,1} + 2 + {0, 7} = (2 — 1){0, 1}.
It follows from Lemma 9 (that h =0 and so {0, }6 = {0, 7).

We now show that (1) = 1. We do this by considering separate-
ly the cases where » is even and % is odd.

Case 1. miseven. Then {0, 1} + {0, 1, 3} = {0, 1, 2, 3, 4} = 4{0, 1}.
Applying 6 to this equation we have {0, 1} + {a, b, ¢} = 4{0,1}. It
follows that {e, b, ¢} = {0, 1, 8} or {a, b, ¢} = {0, 2, 83}). Now the follow-
ing equalities hold:

(1) ”;4{0,2}+{0,1,3}=(n—1)+<n—2){0,1}
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and

(2) ”;4{0,2}+{0,2,3}=2+(n—2){o,1}.

Suppose that {0, 1, 3}¢ = {0, 2, 8}. Then, using (1), we obtain

”54{0, 2} + {0, 2, 8} = (n — 1)8 + (n — 2){0, 1} .

Using this equation, equation (2), and Lemma 9, we have that
(n — 1)8 = 2 which is a contradiction since 2 is not a generator of
Z,. Thus {0,1,3}6 ={0,1,3}. Applying 6 to equation (1) and by
Lemma 9, we have (» — 1) = n — 1 and hence, (1)§ = 1.

Case 2. n is odd. In this case we have the equation
1+ (n— 2){0,2} = (n — 2){0, 1}.

By applying 6 to this equation we conclude that (1)§ = 1.

Next suppose that #/2 < < n. Then {0,7} =7+ {0, — 7}, so
that {0, 7}0 = 76 + {0, » — r}0 = » + {0, n — 7} = {0, 7}.

LemMmA 11. If 6eAut F(Z,) and {0,1}0 = {0, 1}, then A6 =A
for every Ae F(Z,).

Proof. By the preceding lemma, {0, r}¢ = {0, r} for every re
Z,\{0} and 0|Z, is the identity. If A€ F(Z,) and |A| =n — 1, then
A is a translate of (n — 2){0, 1} and so 46 = A. Suppose (by way
of contradiction) that there exists A € F(Z,) such that A0 = A. Then
|A] £ n — 2 and we may assume that if Be F(G) with |4| < |B|,
then B6=B. Let weAf\A and weZ\A with w =+ u. Then
weéA+ {0, w — u}, but we 46 + {0, w — u} = (4 + {0, w — u})d. By
the maximalily of |A],|A| = |A + {0, w —u}| = |A|andso A=A +
{0, w — u}. Therefore, w — u € L(A) and so |L(A)| = 2. By Lemma
7, A=, (L(A) + a;). Since subgroups of Z, are fixed by 6, all
cosets of L(A) are fixed by 6. Hence, t = 2. Now L(A) + u & A.
Since we have shown that w — u € L(A) for every w e Z,\A, we have
that Z,\A is a single coset of L(A) and hence, A is the union of all
but one coset of L(4). Let a be the smallest positive integer such
that L(A) = {(a). Then a > 2 and a system of representatives for
the cosets of L(A) in Z, is {0,1, ---, @ — 1}. We may assume that
{ay «++ya}c{0,1,--,a —1}. Let b€{0,1,---,a — 1} such that
L(A) +b=LA)+w. If x=(a—1)—0>b, then {a, + =, -+, a, + @}
is a system of representatives for all but one coset of L(A). The
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coset not included is L(A4) + (¢ — 1). Then L(4) + {0,1, ---,a — 2} =
L (L(A) +a;, +2) = A+ 2. Now L(A)§ = L(A) and

{0, 1) cen, @ — 2}0 = (a'— 2){0! 1}

and consequently, (A + 2)§ = A + x. Since z6 = z, we have that
Af = A, which is a contradiction. Thus the lemma is proven.

LEMMA 12. If 6eAut F(Z,) and {0,1}0 = ¢ + {0, 1} for some
ceZ,, then {0, a}d = ac + {0, a} for 1L < a < n/2.

Proof. By Lemma 6, {0,a}0 = h + {0, a} for some heZ,. If
2 < a < n/2, then (a — 1){0, 1} + {0, a} = (2¢ — 1){0, 1}. If we apply
6 to this equation we obtain (¢ — )¢ + (o — 1){0, 1} + h + {0, a} =
(2¢ — 1)¢ + (2 — 1){0, 1}. Thus, (@ — 1)¢ + h = (2a — 1)c(modulo »),
and so & = ac(modulo n).

LEMMA 13. Let acZ, with 2 < a < n/2. Then

(i) if k and l are positive integers such that k{0, 1} + {0, 1, a} =
0, 1}, then ¢« — 2 <k and 2¢ — 2 < [;

(ii) 4f k and | are positive integers such that Fk{0,1} +
0,0 —1,a} =1{0,1}, then ¢« —2=Fk and 20 — 2 < ;

(iiil) ¢f 1< b < a— 1, then there exist positive integers k and
U such that k < a — 2 and k{0, 1} + {0, b, a} = {0, 1};

G(iv) <f z,y,2€Z, with z<y<z<n and (a~— 2)0,1}+
{2, y, 2} = (2a — 2){0, 1}, then © = 0 and z = a;

(v) (e—2){0,1} + {0, 1, a} = (2a — 2)}0, 1};

(vi) (e — 2){0,1} + {0, @« — 1, ¢} = (2a — 2){0, 1}.

Proof. Clearly (v) and (vi) hold. To see that (i) is true, we
observe that if 1<k <a— 2, then a — 1¢£%{0,1} + {0, 1, a} and so
there is no natural number ! such that k{0, 1} + {0, 1, o} = [{0, 1}.
Thus if & and ! are natural numbers such that k{0, 1} + {0,1, a} =
10,1}, thena — 2 < k and so 2¢ — 2 < I. The proof of (ii) is similar
and will be omitted. For (iii), let 1 < b < a — 1land k = max {b — 1,
a—(b+1)}. If k=0b—1, then k{0, 1} + {0, b, a} = (¢ + b — 1){0, 1}
and k=b—1<a—2. If t=a— (b+ 1), then k{0, 1} + {0, b, a} =
e —b—1)0,1} and k=a — (b + 1) < a — 2. For (iv) we suppose
that » < ¥ < 2z and (& — 2){0, 1} + {=, ¥, 2} = (2a — 2){0, 1}. Then we
bhave {r,z+1, -, 2+a—2}U{y, vy +1, -,y +a—2}U{z 2+
1, .-,z2+a—2}=1{0,1, ---, 20 — 2}. The elements from 2¢ — 1 to
n — 1 belong to Z, but not to the right hand side. The left hand
side is the union of three consecutive listings and so the elements
from 2¢ — 1 to n — 1 must occur betweenz +a — 2 and y,y +a — 2
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and z, or 2+ o — 2 and 2. The first two cases cannot occur as this
would force y or z to be larger than » — 1. Thus, 2z +a — 2 = 2a — 2
and so 2 =a. Then 2 = 0.

LEMMA 14. Let ac Z, with 1 < a < n/2 and 0 € Aut F(Z,) such
that {0,1}0 = ¢ + {0, 1}. Then
(i) {0,1,a}0 is in the translation class of either {0, 1, a} or

{0, — 1, a}
(ii) {0,a — 1, a}d is in the translation class of either {0, 1, a}

or {0,a — 1, a};

(iii) f {0,1, a}0 is in the translation class of {0,1, a}, then
{0,1,a}0 =ac +{0,1, a} and {0,a — 1,a}d = ac + {0,a — 1, a};

(iv) if {0, 1, a}0 is in the translation class of {0, @ — 1, a}, then
0,1, a}0 =ac+{0,a —1,a}l and {0,a — 1, a}d = ac + {0, 1, a}.

Proof. (i) Let {0,1,a}0 = {=,9,2}. By (v) of Lemma 13,
(@ — 2){0, 1} + {0, 1, a} = (2¢ — 2){0, 1}. If we apply ¢ to this equation
we obtain the equation

(@ — 2)c + (& — 2){0, 1} + {2, ¥, 2} = (2a — 2)¢c + (2¢ — 2){0, 1} .
Thus
(¢ — 2){0, 1} + {x — ac, y — ac, z — ac} = (2a — 2){0, 1} .

Without loss of generality we may assume that 0 = o —ac <y —
ac<z—ac<mn. By Lemma 18 (iv), # —ac =0 and 2 —ac = a. Let
b=y — ac. Suppose (by way of contradiction) that 1 <b < a —1.
Then by Lemma 13 (iii), there are positive integers k& and ! such
that k¥ <a — 2 and k{0, 1} + { — ac, y — ac, 2 — ac} = {0, 1}. Thus

(@ — 2)c + k{0, 1} + {z, y, 2} = (2a — 2)c + }{0, 1} .

Applying 67' to this last equation, we obtain an equation of the
form

d + k{0,1} + {0, 1, a} = f + 1{0, 1} .
Hence,

=(f—d)+ (e —2) — k + 10, 1}

and so
(@—2}{0,1} + {0, L, a} =(f—d) + (¢ — 2) — k& + 1){0, 1} .
Hence, (2¢ —2){0,1} = (f—d) + ((¢ — 2) — k + 1){0,1}. It follows
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that f=d (modulo n). Therefore, %{0, 1} + {0, 1, a} = [{0, 1}, but
this contradicts Lemma 13 (i). Consequently, {0, 1, a}f is in the class
of {0,1, a} or {0, — 1, a}.

The proof of (ii) is similar. Parts (iii) and (iv) then follow from
what has been shown.

The proof of the next lemma is straightforward and will be
omitted.

LEMMA 15. If n is even, a€Z,, o 15 odd, and 1< a = n/2,
then

(i) (n—4)/2{0,2} +{0,1, a} = (v — 1) + (n — 2){0, 1};

(ii) (= —4)/2{0,2} + {0, — 1, a} = (¢ — 1) + (= — 2){0, 1}.

LemMMA 16. If n is even, 6 € Aut F(Z,), and {0,1}0 = ¢ + {0, 1},
then 0 is a standard automorphism and ¢ =0 or ¢ =n — 1.

Proof. By Lemma 15,

(1) 1+”54{0,2}+{0,1,3}=(n—2){o,1}.

By Lemma 14, {0, 1, 3}¢ = 8¢ + {0, 1, 8} or {0, 1, 3}¢ = 3¢ + {0, 2, 3}.

Case 1. {0,1,3}0 = 8¢ + {0, 1, 8}. Then {0, 2, 3}¢ = 3¢ + {0, 2, 8}.
If we apply 6 to equation (1), then by Lemma 12, we obtain that

Lo + 2 = L) + - 40,2} + 3¢ + {0, 1, 3)

= (n — 2)e + (» — 2){0, 1}
so that

W8+ ¢+ - 40,2} + 10,1, 3} = (n — 2)(0, 1} .

By equation (1), we have that (1)d +c¢+ (n — 1) + (n — 2){0, 1} =
(n — 2){0, 1} and hence, (1)0 + ¢ + » — 1 = 0 (modulo #). Consequent-
ly, (1) + ¢ — 1 =0 (modulo »). By Lemma 15, we have that

(2) ”;4{0,2}+{o,2,3}=2+(n—2){0,1}.

Applying 6 to this equation we obtain that —2(1)0 +c¢+2=0
(modulo #). Thus, 3¢ = 0 (modulo n). If n =8, then ¢ =0 and by
Lemma 11, § = ¢. Suppose that # = 10. Then by Lemma 15, we
have that
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1+ ’”;4{0,2}+{o,1,5}=(n—2){0, 1

and

”‘2‘4{0,2}+{0,4,5}=4+(n—z){o,l}.

Subcase 1.1. {0,1,5}¢ = 5¢ + {0, 1, 5}. Then we have that

n—4
2
=(n — 2)¢ + (n — 2){0, 1} .

¥+ (n — 4)ec + {0, 2} + 5¢ + {0, 1, 5}

Hence, (1)4 + 8¢ — 1 + (n — 2){0, 1} = (» — 2){0, 1} and so (1)6 + 3¢ —
1 =0 (modulo #). Since 3¢ =0 (modulo %), we have that (1) =1
and ¢ = 0. Therefore, by Lemma 11, 6§ = ¢.

Subcase 1.2. {0, 1, 5} = 5¢ + {0, 4, 5}. By an argument similar
to the one given in Subcase 1.1, we obtain that (1) +3c +4 =0
(modulo n). Since 3¢ =0 (modulo %), (1)0 = (n — 4) (modulo =), but
this is impossible as n — 4 is not a generator of Z,.

Case 2. {0,1,3}0 =3¢ + {0,2,3}. Then by Lemma 15 and the
same techniques as above, we obtain the congruences (1)d +¢ + 2= 0
(modulo #) and ¢ —2(1)d — 1 =0 (modulo #). Then 3¢ = (n — 3)
(modulo 7). If » =8, then ¢ =7 (modulo 8) and (1) =7. If 7 is
the standard automorphism of F(Z,) that takes 1 to —1, then
{0, 1}69 = {0, 1} and so, by Lemma 11, 7 =¢. Thus, ¢ = 7" and
hence ¢ is standard. If n = 10, then, as in Case 1, (1)¢ =n — 1 and
¢=mn —1. Thus, 0 is standard.

THEOREM 2. If m 1is even, then Aut F(Z,) consists only of
standard qutomorphisms and so is isomorphic to Aut Z,.

Proof. 1f 6GecAutF(Z,), then {0,1)0 =h + {0,r} for some
h,reZ, Let 7 be the standard automorphism of F(Z,) that takes
r to 1. Then {0, 1} = ¢ + {0, 1} for some c€ Z,. By Lemma 16,
07 =¥ is a standard automorphism and hence 6 = %™ is standard.

For n odd, we proceed almost as above.
LEMMA 17. If n s odd, then

(i) (n—3)/2{0, 2} + {0, 1, 8} = (n — 2){0, 1};
(i) (n — 3)/2{0, 2} + {0, 2, 8} = 2 + (n — 2){0, 1}.
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THEOREM 3. Ifn is odd, then Aut F(Z,) constists only of stand-
ard automorphisms and so is isomorphic to Aut Z,.

Proof. If 6ecAut F(Z,), then {0,1}0 = h + {0, r} for some
h,reZ,. Letnbe the standard automorphism of F(Z,) that takes r
tol. Then {0, 1}67 = ¢ + {0, 1} for some ce Z,. If {0, 1, 3}4n = 3c +
{0, 1, 3}, then we apply 07 to (i) of Lemma 17 and obtain the con-
gruence 2¢ =0 (modulo n) and so ¢ =0 (modulo »). Thus, by
Lemma 11, 67 is a standard automorphism and consequently, @ is
standard. The same conclusion holds if {0, 1, 3}67 = 3¢ + {0, 2, 3}.

The following theorem gives a characterization of standard auto-
morphisms for arbitrary groups. It was proven in [1, Theorem 5]
and, for completeness, we repeat the proof here.

THEOREM 4. If G is a group and 6¢€Aut F(G), then 0 is a
standard automorphism +f and only if A, Be F(G) with A< B
wmplies that A < B6.

Proof. Clearly if 6 is a standard automorphism, then 6 preserves
set containment. Conversely suppose that ¢ is inclusion preserving,
let « =6|G, and 6, be the standard automorphism of F(G) induced
by @. We proceed by induction on the cardinality of the sets in FI(G).
If Ac F(G) such that [A]| =1, then 46 = A46,. Assume that for all
Ac F(G) with |A| <k, A0 = Ad,, and let Be F(G) with |B| =k + 1.
If D = Bf,, then there exists Ce€ F(G) such that C6 = D. Since @
is inclusion preserving, if b€ B, then ba = bd ¢ B4. Hence, B, < Bf.
If zeC, then zac€Cfd = D. Thus, za = ba for some be B and so
x=">b. Therefore, CS B. If C= B, then, by the inductive hypothesis,
Co =Ch,=D = Bl, and so C = B. Therefore, C = B and so Bl =
C6 =D = Bf,. Thus, 6 is the standard automorphism 4,.

We now extend our results to a larger class of groups.

THEOREM 5. If G is a subgroup of Q/Z such that |G| > 5, then
Aut F(G) comsists only of standard automorphisms and hence
Aut F(G) is isomorphic to AutG.

Proof. If G is finite, then G is cyclic with |G| > 5 and so
Aut F(G) consists only of standard automorphisms. Suppose that G
is infinite and let A, Be F(G) with A C B, and let 0 € Aut F(G). Then
there is a finite cyclic subgroup H of G such that B < H and |H| > 5.
Since H is the only subgroup of G of order |H|, we have, by
Lemma 38, H = Hf. Thus, 0|F(H)ec Aut F(H) and so ¢|F(H) is a
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standard automorphism of F(H). Hence, A6 = Bf. By Theorem 4,
0 is a standard automorphism of F(G).

COROLLARY 2. If P denotes the set of prime integers and q € P,
then Aut F(Z(g*)) ts tsomorphic to Aut Z(g”) and Aut F(Q/Z) is
tsomorphic to Tl,.r Aut F(Z(p=)).

Proof. By [2, p. 221-222], Q/Z is isomorphic to >,., Z(p~) and
Aut Q/Z is isomorphic to II,.» Aut Z(p~). With these observations
the corollary is an immediate consequence of the theorem.
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