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GENERALIZED HOMOTOPY EXCISION THEOREMS
MODULO A SERRE CLASS OF

NILPOTENT GROUPS

GRAHAM H. TOOMER

We combine two well known homotopy equivalences of
Ganea and some recent work on nilpotent spaces to give a
common procedure for deriving the connectivity of generalized
excision maps, given that the spaces involved are nilpotent
rather than simply connected.

The main results are stated in the context of Serre classes of
nilpotent groups. Our proof of the Blakers-Massey theorem appears
to be new, and applies moreover to any map of nilpotent spaces
which induces an epimorphism of fundamental groups (cf. [18, Corollary
6, p. 487]). We close with a very general Freudenthal Suspension
Theorem.

M. Mather [16] has proved a theorem on mapping cones wich
yields two basic weak homotopy equivalences of Ganea [9, Theorem
1.1] ([10, Theorem 1.1]) as special cases. In the first part of this
paper we apply the former equivalence to study the excision maps
related to a fibration, generalizing Serre's classical theorem. (The
second part uses [10, Theorem 1.1] to derive a generalized Blakers-
Massey theorem related to a cofibration.) We have strived to emphasize
a parallel treatment in the organization of this paper. Thus each
part begins with a discussion of when the two generalized excision
maps (associated to a fibration (cofibration)) are homomorphisms of
nilpotent groups, in case ^ Φ {0}: see Corollary 2; and then we show
that it is only necessary to determine the mod ^ connectivity of
one of them: see Proposition 4. Ganea's equivalences are then used
to derive the mod ^ connectivity of one of the associated maps: see
Lemma 5. Finally we induct on the number of stages in a principal
refinement of a Postnikov tower of a nilpotent space (the dimension
of a finite CW complex) to prove the general result: see Theorems
1.12, II.7. (We chose a cellular argument over one using a homology
decomposition as it avoids simple connectivity and is less technical.)
The problem of finding a common procedure for deriving these
excision theorems was raised in [15, p. 52],

We give a brief review of how our work is related to [1], [3],
[11], and [17]. Associated to any space B and a fibration F ^+Y^X,
there is a transgression square
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πt(X, Y; B) -?-> πt^(X\ B)
s i l I62

πt(F;B)-ί-+πt(Y,F;B)

where t ^ 1, [15, (4.2'), p. 24]. Our proof of the mod ̂  connectivity
of βj. (when t ^ 2 and 1? = if(Cr, w)) is an adaptation of [9, Proposition
2.1] to our context (cL [1, Proposition 2.1].). For a given finite CW

A ft

complex A, a cofibration X-+Y —>Y/X and t ^ 2, [10, Theorem 1.1]
is used to determine the mod ̂  connectivity of πt(A; Y, X)—>
πt(A; Y/X) when A = S°. In the general case, we adapt [13, Theorem
6.1]. [11] and [1] were useful in translating this result into the
"transgression square"

πt(A; Y/X) >πt(A; Y/X, Y)

of [11, p. 82], where the case t = 1 is studied in detail. See Theorem
II.7 below (cf. 1, Theorem 2]). In [1], the Blakers-Massey theorem
of [17] is used instead of [9]; for this reason, the hypotheses that
πγX~ 0 and π2(Y, X) — 0 are needed in [1, Theorem 2]. Also, we
are not restricted to classes of finite abelian groups. Some generalized
excision theorems modulo a class of finite abelian groups are also
contained in [3], where spectral sequence techniques are used. We
remark that in [11, Theorem p. 77], B need only be nilpotent.

Combining our results with Lemma 1 (Lemma 1') of [11], we now
have a common procedure for the deriving of the connectivity of all
generalized excision maps, basing ourselves on Lemma 1.5 (Lemma II.5)
(and taking ^ = {0} if t = 1). Finally, each of these lemmas is in
turn a consequence of Mather's result in [16] and standard argu-
ments (if 9f = {0}).

Conventions. All spaces, maps and homotopies will be based.
GX is the reduced cone on X, and X ^ CX is given by x h-> [x, 0].
ΣX denotes the reduced suspension on X. PY ={ft)6 77|ω(0) = y0}
and PY—>Y will always be α>h-»α>(l).

The notation and conventions of [13], [14] will be used unless
otherwise stated.

Homology will always mean reduced homology with integer
coefficients.

!• Excision and fibrations* Let F ^ Γ ^ I be a fibration and
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t ^ 1. For any space B, the commutative squares

F —

4
—> *

1
^x

and

F

I
3 y

—^x
induce generalized excision maps (py *)$:πt(X, *; JS)—>τrί(F, JP7; JB) and
(*, Λ : πt(X, Γ; -B)-+tf*(*, -f7; 5), [15, p. 13]. One shows that, for t ^ 2,
one is dealing with groups and homomorphisms as follows: Let Z
and W be the pushouts defined by

CF CY

I and ΐ
Y^—F χJL-γ9

Let p: Z—> X extend p by mapping CF to the base point and let
i\ΣF—*W be the map naturally induced by j . It is well known
that (p, *)# and (*, i)# may be identified with

Pi. [X, Ω'-'B] > [Z, Ω'-'B]

and

i$: [W, Ω'-ιB] > [ΣF, Ω^B] .

See [9, Proposition 1.6]
We are interested in determing when p$ and i, are homomorphisms

of nilpotent groups (when t ^ 2).
Recall that a based space (A, a0) is said to have a nondegenerate

base point if the inclusion αo

c l^A is an fe-cofibration (i.e., (A, a0) has
the homotopy extension property up to homotopy for all spaces).
We say that A is an amenable space if it is normal, Hausdorff, path
connected and has a nondegenerate base point. Our first lemma is
essentially due to Berstein and Ganea. We let nilG denote the
nilpotency class of a group G, and set nil {0} = 0.

LEMMA 1. Let A be an amenable space and B a space with
nondegenerate base point. Then

nil [A, ΩB] ^ L.S. cat A .

(Here we set L.S. cat a0 = 0.)

Proof. It is well known that (i) since B has a nondegenerate
base point, so does ΩB; and (ii) since A has a nondegenerate base
point α0, aQ will have a halo in A which is contractible in A to α0. The
result therefore follows from the inequalities of [4, Corollary 6.12].
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COROLLARY 2. Let F^Y—* X be a fibration of amenable spaces
with F and Y countably paracompact, and let B be any space with
nondegenerate base point. If L.S. cat X, L.S. cat ϊ r < oo, then for t^2,
(p, *)#:τrt(X, *; B)->πt(Y, F; B) and (*, j\.πt(X, Y; B)->πt(*9 F; B)
are homomorphisms of nilpotent groups.

Proof. Let t ^ 2. As in the proof of Lemma 1, Ωι~ιB =
will have a nondegenerate base point; here Ω°B = B. Identify (p, *)#
and ph (*, i)# and i#. We now check that Z =Y\JjGF and W =
X\JPCY are amenable. By [7, Theorem 4], F x I and Y x I are
normal. [2, Theorem 4.6.5] implies that CF, CY are Hausdorff and
hence by [8, VII, 3.4] applied twice, Y\jCF (and XuCY) are
normal. Now [2, Theorem 4.6.5] easily implies that YliCF, X u C Γ
are Hausdorff. It is elementary that Y\J CF, I U CY are path con-
nected. Let [y0] denote the image of y0 e Y in Y U C'X, where C'X
is the unreduced cone on X Using standard properties of h-
cofibrations, it is easy to see that (i) [y0] is a nondegenerate base
point for X\jCΎ and (ii) the natural map X\jCΎ-*X\jCY is a
(based) homotopy equivalence. It follows that X{J CY has a non-
degenerate base point. Similarly, Y U CF has a nondegenerate base
point. Thus Z and Y are amenable. Finally, L.S. cat Z ^ L.S.
cat Γ + 1, L.S. cat IT ^ L.S. cat X + 1 by [5, Theorem 2.6], and the
result follows from Lemma 1.

REMARKS, (i) Paracompact space and perfectly normal spaces
are both examples of countably paracompact spaces. See [7].

(ii) The reader may verify that Corollary 2 also applies to the

Serre fibration ΩX —> PX —»X when X is an amenable space of the
homotopy type of a simply connected CW complex, and L.S. cat X <
oo# In this case it is well known that (p, *)# is also induced by
the evaluation map ΣΩX—+X.

DEFINITION 3. Let B be a space, ^ a proper Serre class of
nilpotent groups, f:U-+V a map of connected spaces and N^2.
We say that (/; B) is an N-equivalence mod ^ if

πt(f;B):πt(V;B) >πt(U; B)

is a homomorphism of nilpotent groups and πt(f, B) is a ^-surjection
for t> N and a ^-injection for t^N (in the sense of [13, Definition
1.8]).

PROPOSITION 4. Let B and F^Y-* X satisfy the hypotheses of
Corollary 2 and suppose that (p; B): (Z; B) —> (X; B) is an N-equi-
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valence mod ̂ . Then (i; B): (W; B)—+(ΣF; B) is an N-equivalence
mod <if.

Proof. By Corollary 2, we are dealing with homomorphisms of
nilpotent groups. We have a ladder

πt(X; B) > πt(Y; B) — πt(X, Y; B) — πUX; B)

(*,i)#J (P,*
(̂TΓ; B) -±> πt(F; B)-^πt(Y,F; B)

and for £ ̂  2, (p, *)#3 = - J(*, j \ by [15, Theorem 4.3']. Invoking
the "mod <& four lemma" of [20], we easily deduce the result using
our identification of (p, *)# and p#_ly (*, j \ and i#_x .

We remark that when i f = {0}, Proposition 4 is essentially [11,
Proposition 1].

3 V

LEMMA 5. Let F^Y —+ X be a fibration and suppose that
( i ) F and Y are path connected, and X is simply connected.
(ii) ^ is a proper acyclic Serre class of abelian groups.
(iii) there are integers m ^ 1 and n ^ 2 such that Hr(F) e &

for r ^ m — 1 and HS(X) e <& for s ^ n — 1.
(iv) ^ is complete or the homology of F and X is finitely

generated in each dimension.
Then for any t ^ 2, p$. πt-χ{Z) —> TΓ^-X") is ^-injective for t < m + n
and ^-surjective for t ^ m + n.

Proof. Firstly, since 0 = π,X = π ^ 7 , F ) - » ^ ( 7 U CF), Z is simply
connected and kerp# is abelian. By [9, Theorem 1.1] there is a
weak homotopy equivalence F*ΩX—•>p"1(*) = Jp, and hence an exact
sequence

[1Γ(F) (x) H(ΩX)]t^ )—> J B Γ ^ F ) — > Tor [#(F), ίί(βX)] ί_3.

If ^ is not complete, (iv) and [18, Corollary 9.6.13] show that the
homotopy groups of X are finitely generated in each dimension. Now
ΩX is nilpotent and so by [13, Theorem Π.5.1] and [20, Proposition
A.I], Ht^(F) e(^ίoγt — 2<^m + n — 2 under either of the hypotheses
of (iv). Finally F is simply connected so that πt-i(F) 6 ̂  for t — 1 ^
m + n — 1. The exact homotopy sequence of p\X-+Z completes
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the argument.

We have given conditions which imply that p: Z —> X is an N-
equivalence mod ̂  and are interested in determining when for a
given space B, (p; B): [X, Ω'-'B] —> [Z, Ω'^B] is a <ίf-surjection for
t> N' and a ^-injection for t^Nf for some Nf. This necessitates
the following definition.

DEFINITION 6. Let G be an abelian group. We say that a Serre
class ^ of abelian groups is G-coacyclic if C e ^ ==> Horn (C, G) e ^
and Ext (C, G) e c<^.

The next proposition explains why this notion can be used in
conjunction with the universal coefficient theorem.

PROPOSITION 7. Let φ: A—+B be a homomorphism of abelian
groups and ^ a G-coacyclic Serre class of abelian groups. Then

( i ) coker φ € ^ => ker Horn (φ, lσ) e <^.
(ii) ker φ e ^ => eoker Ext (φ, 1G) e ^.
(iii) if φ is a ^-bijection, the same is true of Hom(φ, 1̂ ) and

Ext (φ, 1G).

Proof Since we are dealing with abelian groups, the usual six-
term exact sequence connecting Horn and Ext may be used.

It is time to give some examples of coaeyclic classes:

REMARK 8. Let G be any abelian group. The following Serre
classes of abelian groups are G-coacyclic Serre classes. (In (ii)-(iv)
we assume that G is also finitely generated.)

( i ) The class consisting of the trivial group.
(ii) The class of finitely generated abelian groups.
(iii) The class of finite abelian groups.
(iv) The class of finite P-torsion abelian groups, P a multiplicative

set of nonzero primes in Z.

Proof, (i) is clear. To prove (ii)-(iv) one uses the structure
theorem for finitely generated abelian groups and standard facts
about Horn and Ext in a straightforward way.

DEFINITION 9 ([2]). Let G, H be groups and suppose that G acts
on H in such a way that either (i) G = H and G acts on itself by
conjugation or (ii) H is abelian. Let ΓGH denote the subgroup of H
generated by elements of the form {g*h)h^ where g h denotes the
action ofgeGonheH. Set Γ°H = H and if k ^ 1, Γk

GH = ΓG{ΓG-"H).
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The action is nilpotent of class at most e if Γk

GH = 0 for k^ c. A
path connected space B is nilpotent if for each n ^ 1, the action of
πxB on πnB is nilpotent of class cn < oo. See [6, p. 58]. We say
that a Serre class <& is B-coacyclic if ^ is {r^nBjri+^nB)—coacyclic
for each i ^ 0 and w ^ 1.

REMARK 10. Suppose that B is a nilpotent space and the homology
of B is finitely generated in each dimension. Then the homotopy
groups of B are finitely generated in each dimension by [13, Theorem
5.1] and thus each ΓχJ5/Γί+1τr%J3 is finitely generated. Thus the
examples (ii)-(iv) of Remark 8 are all B-coacyclic.

LEMMA 11. Suppose that f:U—+V is a map of nilpotent spaces
and let B be a nilpotent CW complex with πt(B) — 0 for i ^ d + 1.
Let ^ be a proper Serre class of nilpotent groups such that the
class of abelian groups in ^ is B-coacyclic. If f:U—*V is an N~
equivalence mod^, then (/; B): (V; B)—*(U; B) is a (d — N)-equi-
valence

Proof. We induct on the number c of stages in a refinement of
the Postnikov tower of B into principal fibrations (see [12, Theorem
2.2.9]). The case c = 1 means that B = K(π, ri), π abelian and n ^ 1,
so we can apply the Universal Coefficient Theorem [18, 5.3.3] and
Proposition 7.

Suppose inductively that the result is true for any nilpotent CW
complex whose refinement has ^ c — 1 stages, c ^ 2. Then we have
a pullback

A > PK{G9 n + ϊ)

A > K(G, n + ΐ)

where A is a nilpotent space with at most c — 1 stages and G =
Γ χ i / Γ ί + 1 ί r % ϊ for some i - see [12, Theorem Π.2.9]. The long exact
homotopy sequence of the fibration A —> A —> K(G, n + 1), Proposition
7 and the "mod ^ four lemma" complete the argument, for c < oo.
The easy details are left to the reader.

THEOREM 12. Let F^Y-^ X be a fibration of amenable spaces,
with F and Y countably paracompact, L.S. cat X, L.S. catF < oo.

Suppose that
( i ) F is nilpotent and X is simply connected.
(ii) there are integers m ^ 1 and n ^ 2 such that Hr{F) e <&
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for r ^ m — 1 and HS(X) e <& for s ^ n — 1, where ^ is a proper
acyclic Serre class of nilpotent groups.

(iii) & is complete or the homology of F and X is finitely
generated in each dimension.

(iv) B is a nilpotent CW complex satisfying

π.(B) = 0 for i^d + 1.

(v) &' is a B-coacyclic Serre class, where (^?t denotes the
(Serre) class of abelian groups in ^.
Then (p, *),: πt(X, *; B) — πt(Y, F; B) and (*, j)t: πt(X, Y; B) ->
πt{*> F; B) are ^-surjections for t > d — m — n + 2 and ^-injective
for t^d — m — n + 2.

Proof. By Corollary 2, (p, *)± and (*, j)t are homomorphisms of
nilpotent groups. By Lemma 5, p:Z—> X is an (m + n — Inequi-
valence mod ^. Now 0 = π,X = π^Y, F) -» π,(Y U CF) = πxZ and
so Lemma 11 may be applied to p: Z —> X with JV = m + w — 1. We
deduce that p : Z - ^ X (and hence also i:W—>ΣF by Proposition 4)
is a (d — m — n + Inequivalence mod ^ . The result therefore follows
from our identification of (p, *)t and pt_19 (*, j)t and i^i

We remark that, by considering ΩX—> PX —• X and B = K{G, m),
Theorem 12 yields results on the kernel and cokernel of the cohomology
suspension map H*(X, G) —> H*~\ΩX, G) where X is a simply connected
CW complex of finite dimension. See Remark (ii) following Corollary
2 above.

A Q

II* Excision and cofibrations* Let X-+Y —*Y/X be a cofibration
and £ ̂  1. For any space A, the commutative squares

and I 1

induce generalized excision maps (q, *)#: π^A; Y, X)-~>^(A; Y/X, *)
and (*, i)#:^(A; *, JC) —π t(A; Γ/X, Γ) [15, p. 13]. To see that we
are dealing with groups and homomorphisms, let Z and W be the
pullbacks defined by

P(Y/X) PY

and

Y/X X - ^
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respectively. It is well known that there are natural maps p:W*-+
Ω(Y/X) (induced by q) and e: X—»ϋΓ (which is a lift of i) such that
(q, *)# and (*, ί)# may be identified with

pt: [Σ^A, W] > [Σ^A, Ω(Y/X)]

and

e*:[Σ^A, X] >[Σ^A,Z]

respectively. (See [1, Lemma 3.7].)
We will use the following lemma to show that e$ and p$ are often

homomorphisms of nilpotent groups.

LEMMA 1. Let A be a finite CW complex and let B be any
nilpotent space. Then the group [ΣA, B] is nilpotent.

Proof. Let BA denote the path component of the unique constant
map in the function space of based maps from A to B. We can
identify [ΣA, B] and n^BA), and the latter group is nilpotent by
[12, Corollary Π.2.6].

REMARK. If A is a connected CW complex and B has a non
degenerate base point, we may use Lemma LI to deduce Lemma 1.
The details are classical and familiar. Likewise for Corollary 2 below.
Since nilpotency is required for Lemma 5 below anyway, we will
not pursue this aspect.

COROLLARY 2. Let I - i r Λ Y/X be a cofibration with Xand Y
nilpotent, πx(Y, X) = 0. If A is a finite CW complex, then

(qf •),: πt(A; Y, X) > πt(A; Y/X, *)
(*, i)»: πt(A; *, X) > πt(A; Y/X, Y)

are homomorphisms of nilpotent groups for t > 1.

Proof. For t Ξ> 3, all group are abelian. For t = 2, we need
only check that Z, W, and Y/X are nilpotent spaces in view of our
identification and Lemma 1 above. Since X, Y are path connected
and π,(Y, X) = 0, πγ(Y/X) = 0. Thus Z is path connected. Also,
πQ(W) = πx(Y, X) = 0. Now Z may be regarded as the fibre of a
fibration E—+Y/X where E has the (based) homotopy type of Y, and
hence by [12, Iϊ.2.2], Z will be nilpotent. Similarly for W. Ω(Y/X)
is evidently nilpotent.

DEFINITION 3. Let / : U~*V be a map of nilpotent spaces, N^2,
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and A a space. We say that (A; f) is an N-equivalence mod ̂  if

πt(A; / ) : πt(A; U) -—> πt(A; V)

is a ^-injection for 1 <̂  t < N and a ^-sur jection for 1 ̂  t ^ N,
where ^ is a proper acyclic Serre class of nilpotent groups.

PROPOSITION 4. Let A and I ^ > r Λ Y/X satisfy the hypotheses
of Corollary 2. If (A; e): (A; X) —> (A; i?) is an N-equivalence mod^,
so is (A; p): (A; W)-> (A; Ω(Y/X)).

Proof. Corollary 2 shows that (A; e) and (A; p) will induce homo-
morphisms of nilpotent groups.

The "mod ^ four lemma" of [20, Appendix] together with the
homotopy ladder of [15, Theorem 4.3, p. 23] (and the identification
prior to Lemma 1) easily yield the result. The details are dual to
those of Proposition 1.4 and are omitted.

LEMMA 5. Suppose that (i) X and Y are nilpotent and 7tx{Y, X) —
0; (ii) cέ? is complete or the homology of X and Y is finitely generated
in each dimension) (iii) there are integers m ̂  1 and n ^ 2 such
that Hr(X) e 9f for r ^ m - 1 and HS(Y/X) e <Sf for s ^ n - 1.

Then et_γ\ πt_γ(X) —• π%_£Z) is a ^-injection for t — 1 < m + n — 2
and a ^-surjection for t — 1 -^ m + n — 2.

Proof. According to [10, Theorem 1.11, there is a weak homotopy
equivalence Σ(Z \Je CX) —> X*Ω(Y/X), and the Kiinneth formula yields
the exact sequence

[H(X) <g> H(Ω( Y/X))}^ > — Ht^(z U CX)

—» Tor [H(X\ H(Ω(Y/X))]t_2 .

Now Y/X is simply connected HS(Y/X) e ΐT for s ^ n - 1. By [18,
Corollary 11, p. 507], Ht(Ω(Y/X))e^ for i ^ n - 2. Also, HS(Y/X)
is finitely generated for each s ^ 0 if X and F have finitely generated
homology in each dimension. By [18, Corollary 13, p. 508] Ht(Ω(Y/X))
is finitely generated for each i ^ 0 in case ^ is not complete. The
exact sequence above and [20, A.I] imply that Ht^{Z \Je CX) 6 ^
for t - 1 ̂  m + n - 2. That is, βt^: Ht^(X) -> Ht^{Z) is a ĝ17-
injection for έ — l < m + ^ — 2 and a ^-surjection for t — 1 ^
m + -̂  — 2. The result now follows from [14, Theorem 3.4].

Our next result is the analogue of Lemma 1.11, and the case
N = oo is [13, 6.1].
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LEMMA 6. Let f:U—>V be a map of nilpotent spaces, and let
A be a finite CW complex of dimension d. If f:U*->V is an JV-
equivalence mod^, then (A; f):(A;U)—>(A;V) is an (N — d)-equi-
valence mod ̂ . (// ^ = {0}, we can dispense with the requirement
that U and V be nilpotent.)

Proof. This follows the method of [13, Theorem 6.1], using the
"modί^ four lemma" [20, Appendix] instead of the "mod ^ five
lemma." Details are left to the reader.

THEOREM 7. Let X-^Y-~> Y/X be a cofibration and suppose that
( i ) X and Y are nilpotent spaces such that π^Y, X) = 0.
(ii) there are integers m ^ 1 and n ^ 2 such that Hr(X) e ^

for r <; m — 1 and H8(Y/X) e ̂  for s ^ n — 1, where ^ is a proper
acyclic Serre class of nilpotent groups.

(iii) <if is complete or the homology of X and Y is finitely
generated in each dimension.

(iv) A is a finite CW complex of dimension d.
Then

(q, *),: πt(A; Y, X) > πt(A; Y/X, *)

(*, i)»: πt(A; *, X) > πt(A; Y/X, Y)

are ^-injections for 2 ^ t < m + n — d — 1 and ^-surjections for

2^t<^m + n — d — 1.

Proof. This is analogous to the proof of Theorem 1.12: By
Corollary 2, all groups in sight are nilpotent, and by Lemma 5,
e:X~*Z is an (m + n — 2)-equivalence mod 9 ,̂ and so Lemma 6
applies. We deduce that (A; e): (A; X) —»(A; Z) is an (m + n — d — 2)-
equivalence mod ̂ . The result now follows from our identification
of (q, *)t and pt_lf (*,i)t and et_x together with Proposition 4.

Some special cases of Theorem 7 are worth mentioning. The
classical result (see e.g., [18, Corollary 6, p. 487]) is obtained by
taking A = S° and ̂  = {0} in Lemma 5. Notice that it is not neces-
sary to have πt(X) = 0 and πz(Y, X) = 0. See also [19, Corollary
6.22]. When ^ Φ {0}, and n ^ 3 the case A = S° is implied by [14,
Theorem 4.1]. For an application of Theorem 7, the reader may
verify that in [15, Theorem 7.1'], X need only be nilpotent.

COROLLARY 8. Let X be a nilpotent space and m ^ 1 a fixed
integer. If Ht{X) e <g* for i<^m — 1, where <g* is complete or the
homology of X is finitely generated in each dimension, then for any
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finite CW complex A of dimension d < °t>, the suspension homo-
morphism

E: [Σ^A, X] > [Σ*A, ΣX]

is a ^-injection for 2 ^ t < 2m — d — 1 and a ^-surjection for

Proof. We apply Theorem 7 to X<^CX->ΣX. It is easy to
check that the lift "e:X —> Z" of X^CX is the evaluation map
e:X—> ΩΣX, and it is well known that e induces the suspension
homomorphism.

Now let Q be a multiplicative set of primes in Z, and let ^Q

be the acyclic Serre class of Q-torsion nilpotent groups. If we take
^ = ^Q in Corollary 8, we may delete the hypothesis that the
homology of X be finitely generated, for ^Q is complete. Thus
Corollary 8 yields a localized version of the classical Freudenthal
Suspension Theorem:

COROLLARY 9. Let X be a nilpotent space and let m ^ 1 be a
fixed integer. If Ht{X) (x) Z{P) = 0 for i <^ m — 1 and A is any finite
CW complex of dimension d, then

• (̂p) L^ Ay -Xj(p) > yΣ A, ΣJL J(P)

is an injection for 2 ^ t < 2m — d — 1 and a surjection for 2 ^ £ ^
2m — d - 1.
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