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THE CONVERGENCE-PRESERVING REARRANGEMENTS
OF REAL INFINITE SERIES

GERALD S. STOLLER

Let € be the set of all permutations of the natural
numbers that carry convergent real infinite series into con-
vergent real infinite series. A strictly algebraic necessary
and sufficient condition which determines Z is given. % is
seen to be a monoid but not a group. The maximum subgroup
of € is shown not to be normal in <.

A related set of permutations are those that preserve
the sum of a eonvergent real infinite series when they carry
that series to a convergent real series. This set of permuta-
tions is not a monoid. By exhibiting three different sufficient
conditions for a permutation to belong to this set, we see
that necessary and sufficient conditions determining this set
will be difficult to ascertain.

Any automorphism of N, the set of nonnegative integers, deter-
mines a unique rearrangement of infinite series. This correspondence
is an anti-isomorphism. A subset of Sy, the group of all permutations
of N, is defined by the condition that it carries convergent real
infinite series into convergent real series. An algebraic condition
can be shown to specify the same subset. We will see that this
subset is a submonoid of Sy, but not a subgroup.

The problem of determining &, the set of all permutations of
N that carry convergent real infinite series into convergent real
infinite series, was considered nearly impossible to solve by E. Borel
[2, page 101]. A necessary and sufficient condition on permutations
of N for them to preserve convergence of real infinite series appears
in [3, Prob. 5.2.2]. Letting ¢ denote a permutation of N, this con-
dition requires that there exists a finite cardinal % such that o([0, »])
can be expressed as the union of not more than k% intervals of N
for each ne N. In fact, the set of permutations defined by this
condition preserves convergence of infinite series (and their individual
sums) in any normed abelian semigroup. Moreover, this is the largest
set of permutations that preserve convergence in the family of all
normed abelian semigroups. (For some normed abelian groups [e.g.,
the p-adics] the set of permutations preserving convergence is larger.)

& is easily shown to be a submonoid by using the convergence
preservation property. We show that & is not a subgroup by
establishing the necessary and sufficient conditions of [3, Prob. 5.2.2]
and then exhibiting the permutation p defined by
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(Yn e N)(vm €0, n])
on(n + 1)+ 2m) = n(n + 1) + m and
onn +1) +2m +1)=(n + 1+ m .

(We can also exhibit a convergent real infinite series that is carried
into a divergent real infinite series by p7'.)

Let % be the maximum subgroup of . We now focus on
how “Z resides in &.

THEOREM 1. “Z & s not normal in &.

Proof. Pick 7 €% such that N can be decomposed into intervals
of ever increasing lengths on which 7 acts as depicted in Fig. 1.
Let 0 €. .#% act on these intervals by cycling the left half interval
into the right half interval, and vice versa (see Fig. 2). Note ¢* =
e, the identity permutation. 7o7™* acts on the left quarter of such
an interval as shown in Fig. 8. Because of the increasing number
of gaps, we have tot7'¢ &.
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& contains all the torsion elements of . In fact, we also
have te &\ A Z implies 7" ¢ Z & for all ne N\{0}. Since & is not
a group, we have elements of period 0 in &. . “Z also contains
elements of period 0, for instance the element k£ of Sy which cycles
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arbitrarily long sequences of nonnegative integers one position to
the right and takes the last integer of the sequence into the first
integer of the sequence.

The subgroup lattice of .~ % appears to be rather rich, and
many conditions can be used to pick out subgroups of <. Three
such conditions on 6 € % are:

(i) 0 < infa(n)/n and sup o(n)/n < co.

(ii) lim o(n)/n = 1.

(iii) |o(n) — n| is bounded.

Each condition implies the previous one. The last condition by itself
defines a subgroup of Sy that is a proper subgroup of .#Z. Sub-
groups of Sy defined by these three conditions will be used in another
paper.

A related set of permutations is composed of those permutations
that, when they carry a convergent real infinite series into a con-
vergent real infinite series, both series have the same sum (i.e., the
permutation preserves sums of convergent real infinite series). This
gset is not closed under composition, as can be derived from the
following theorem.

THEOREM 2. Ewery permutation in Sy can be written as the
product of two permutations, each of which maps [0, n] onto [0, n]
Sor infinitely many n e N.

Proof. Pick any peSy. Pick any m,e N and define ¢ on [0, m,]
by making it equal to p there. Let m, > sup (¢([0, m,])) and define
o on (m, m,] so that it maps [0, m,] onto itself. Now define ¢’ on
[0, m,] so that oo’ agrees with o on this interval. Let

m, > sup (a'([0, m,]))

and define ¢’ on (m, m,] so that it maps [0, m,] onto itself. Now
define o on (m,, m,] so that oo’ agrees with o on this interval. Con-
tinuing in this way, we eventually get ¢ and ¢’ as concluded.

Obviously, the permutations ¢ and o' of the above theorem
preserve the sums of convergent real infinite series. A sufficient
condition for o €Sy to preserve the sums of convergent real infinite
series is that there exist finite cardinals ¥’ and % such that, for
infinitely many » € N, 0 maps a union of not more than %’ intervals
that contains [0, »] onto a union of not more than % intervals. The
above o and o’ satisfy this condition with &’ = 1. However, this
condition is not necessary, as can be seen by constructing a permu-
tation satisfying the following condition, which implies that the two
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infinite series involved have the same sum, provided both are con-
vergent. Let £ € Sy. Let there be sequences M and M’ and M” such
that lim M, = « and (vke N) M, < M, < M, and let %, %', and %"
be the collections of maximal intervals not containing 0 of ([0, M,]),
¢([0, M;]), and &([0, M;']) respectively. If card (% N %) is finitely
bounded, and (Vke N) %' = % U4, then whenever { (via its
induced mapping of infinite series) carries one convergent series to
another, both must have the same sum. Obviously, this second
sufficient condition covers different ground from the first condition.
A third condition is obtained by changing two hypotheses of the
second condition: change M; to M,,, throughout (in effect adding the
hypothesis M,' = M,,,), and replace “card (%N %") is finitely bounded”
by “card (_% N .%")/inf (card (_%), card (_%")) is bounded away from
1.” Because of this hodgepodge of sufficient conditions, it appears
unlikely that a necessary and sufficient condition can be stated.

A result by Riemann [1, page 368] shows the existence of permu-
tations that carry one conditionally convergent series to another,
but do not preserve the sum. A specific example can be constructed
as in [1, Exer. 12-18]. Together with Theorem 2, such an example
shows that the set of permutations which preserve the sum when
they carry one convergent series to another is not closed under com-
position (and so is not a monoid).

Several open questions remain. [\ PZ 0 ' is the maximum
normal submonoid of &. Is it a subgroup too? This intersection
contains the subgroup of Sy that consists of the finite permutations
(those that move only finitely many elements of N). This subgroup
is the maximum normal subgroup of Sy (see [6] and [5]; related
work appears in [4]). Is this intersection larger than the subgroup
of finite permutations? Is there a characterization of this intersection’s
elements that provides an easy test to see if an element belongs to
this intersection?

Similar questions (and others) can be raised for both .#Z and
the smallest subgroup of Sy containing &. Of course, the first
problem is to determine this subgroup, U3, (Z7'¥")’. Is it proper?
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