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TAMELY RAMIFIED SUPERCUSPIDAL
REPRESENTATIONS OF G,

RoGer E. Howe

Let F' be a non-Archimedean local field of residual char-
acteristic p; then conjecturally the supercuspidal representa-
tions of GIl.(F') are parameterized by admissible characters
of extensions of F' of degree 7 provided that » is prime to
p. In this paper we establish the existence of the necessary
representations if the conjecture is to be true. They will
be realized as induced representations from certain subgroups,
compact modulo the center. The more difficult question of
whether all supercuspidal representations arise by this con-
struction will not be treated. We will also leave aside the
problem of computing the characters of these representations.

Let F be a locally compact non-Archimedean field of residual
characteristic ». To simplify certain parts of the discussion, we
take p to be odd. Let R be a maximal order, = a prime element.
Let F'*, R* be the multiplicative groups of F and R, and U=1+
TRCR*. Let F' be an extension field of finite degree. We define R’,
', F"*, R’*, U’ in obvious analogy with F. Let N(F'/F): F"* — F*
be the norm map.

If + is a character of F'*, and A & F'* is a subgroup, we will
say + is nondegenerate on A if there is no proper subextension F”,
F S F" C F’, such that ker N(F'/F")N A S ker+ N A.

Now suppose F” is tamely ramified over F. We will say a
character « of F’* is admissible if

(a) +r is nondegenerate on F"*, and

(b) if on U’, 4 = +" o N(F'/F"), where +'"' is nondegenerate on
U” < F"*, then F’ is unramified over F”.

In particular, + is admissible if it is nondegenerate on U’.

Given extensions F, F; of F, and characters +, of F;*, we say
9, and +, are equivalent if there is an F-linear field isomorphism of
F', onto F, which sends 4, to .

There are reasons for believing the following conjecture is true.

Conjecture: Suppose n is prime to p. Then the supercuspidal
representations of Gl,(F') are parametrized by admissible characters
of extensions of F' of degree n. That is, given F’ of degree n over
F, and + an admissible character of F”'*, then one may attach to
<r a supercuspidal representation V(i) of Gl,(F). Two characters
correspond to the same representation if and only if they are equiva-
lent. Finally, all supercuspidal representations of GI,(F') arise in
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this manner.

The evidence for this conjecture comes from the following sources:

(1) analogy with real groups,

(2) extension from Gl,,

(3) expected connections with division algebras of degree =
over F,

(4) Kirillov theory.

Here we will establish the existence of the correspondence in-
dicated in the conjecture, and in particular, of the necessary repre-
sentations. They will be realized as induced representations from
certain subgroups, compact modulo the center. The more difficult
question of whether all supercuspidal representations arise in this
way, will not be treated. We will also leave aside the problem of
computing the characters of these representations.

From now on F” will be a tamely ramified extension of F. In
F, let B denote the multiplicative group of roots of unity, of order
prime to p, and C the group generated by B and =. Similarly B’
stands for the roots of unity of F’ of order prime to p. Let e be
the ramified degree of F’ over F, and f the unramified degree, so
m = ef is the total degree. It is well known ([6]) that the prime
7' of F' may be chosen so that n’* = =b’, with b’ € B’. In this case,
7' is determined by 7 up to an eth root of unity, and the multi-
plicative group C’ generated by B’ and =’ is totally determined by
7. Moreover, we note C S C’ and N(F'/F)C')< C. Also, if FC
F"Z F’, then C” < (', and if F’ is galois, C’ is invariant under
the galois action.

Let | |» be the natural ultrametric norm on F, so that if F =
R/zR is the residue class field, with ¢ elements, and ord, is the
valuation attached to R, then |z|, = ¢7°*#, Define similarly | |5,
F', ¢/, ord,. Note that, on F,ord, = eord,, and ¢ = ¢’, so that
2|z = |2|7 for xe FF S F.

We have FF=C-U, and F' = C'-U’'. Hence, given any xz€ F",
there is a unique ¢ € C’, such that ¢'x e U. Put another way, there
is a unique ¢ € C’ such that [¢ — x|, < |z|z. We call ¢ the standard
representative of x, and write ¢ = s.r. (). From the above, and
since the galois action fixes C’, we see for any g€ Gal (F'/F), either
g(e) = ¢, or [g(c) — ¢lp = ||z

Now consider M,(F). In M,F), M,(R)=A is a maximal compact
subring unique up to conjugacy, and GI,(R) = K is a maximal com-
pact subgroup, again the only one up to conjugacy. M,(R) is the
set of matrices preserving the lattices #n*R", and these are the only
lattices preserved by all of M,(R). Similarly K is the group of
matrices ¢ such that g(z*R*) = n*R*.

Now take F’ of degree m. A choice of basis of R’ over R
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defines an injection a: F’'— GI,(F') by the regular action. Clearly
a(R) € M,(R). We will identify F’ and a(F”). Under this identi-
fication, R’ preserves precisely the lattices n’'R™. We associate to
F’ the order A’ = N,er xAx™ = iz 7' An’"!, which is characterized
as the set of all matrices preserving the lattices n''R". We also
associate to F’ the group K' = N,erm 2Kzt = A" NGl (F). Then
clearly R'* < K’, and F’ normalizes K’, so F'*-K’ is an open
subgroup of GI.(F), compact modulo the center. A’ may also be
described as the intersection of all maximal orders of M,(¥) con-
taining R/, and K’ as the intersection of all maximal compact sub-
groups containing R'*.

This first lemma guarantees that this and succeeding construec-
tions have the necessary invariance properties.

LeMMA 1. Suppose F"' = gF'g™! is a subfield of M,(F') conjugate
to F'. Then iof R" =gR'g* < A, gn'' e K for some l. If R'"<Z A,
then gn''e K'.

Proof. The invariant lattices of B’ are, as we have said, the
lattices n”"R"*. Also, g takes R’-invariant lattices to R’-invariant
lattices. If R" S A, R™ = g(n"'R™) for some [, so gn'*e K. If R'C
A’, then #n'™R" = g(zx'"™R™). Since n'™"'R" is characterized as the
largest proper A’-invariant sublattice of #'"R", we see l(m + 1) =
l{m) + 1. Hence gr't = gr''® ig in K'.

Now we choose particular coordinates to get a very explicit
description of A’. Let F, & F’ be the maximal unramified subex-
tension, and let {b,}{_, be a basis of R, over R. We may assume
b,e B’ if we wish. Now define a basis {z,};., of R' over R by
Zsivs = @b, for 0 < j <e. With respect to this basis, we see that
if m =ke-+1, then 7'"R" = {Ja,z, = (a,, -+, &,): ord, (a;) = k, and
ordy (@;) =k + 1 if + = fl}. Thus a basis for #/"R"* is {zm**'2,}{1, U
{n*2,}1-51.,. Hence, we see that, in this basis A’={T=(t,;): ord, (¢;;)=0,
and ord,(t;) =1 if [ —1)/f1>[(JF—1/f]}. (Here [ ] denotes
greatest integer.)

Now let tr (M, (F)/F) denote the usual trace on M, (F). Then
(8, Ty = tr (M, (F)/F)ST) is a nondegenerate symmetric bilinear
form on M,(F). If V< M/(F) is a subspace, V* will denote its
orthogonal complement with respect to (,>. If LS M, (F) is a
lattice, (e.g., a compact open R-module) then L*={l € M, (F), {l, L)C R}
is also a lattice. L* is naturally isomorphic with Hom, (L, R). It
is very easy to see that M,(R)* = M,(R). Moreover, the descrip-
tion of A’, and the action of #n’ given above make it a simple
calculation to verify this lemma.

LEMMA 2, A'*f = 7" A,
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Now let F” < F’ be any subextension of F.

By virtue of the action of F'” on F*, we may identify F'™ and
F"', where n = Ik and k is the degree of F'" over F. In this identi-
fication, R™ becomes R"' and the commuting algebra of F” is just
M,(F"). We note that A, = M(R") & M,(R).

Of course we have F' & M,(F"), and from the definition of A’,
it is clear that 4; = A’ N My(F") = Nuer A 27"

In this next lemma, @ denotes direct sum.

LEmMMA 8. A'= AP (M(F'")* N A). In particular, A’ = R' P
(FIJ_ N AI).

REMARK. Whereas Lemmas 1 and 2 hold also for wildly ramified
fields, Lemma 3 does not, and the resultant bad geometry makes
analysis more difficult for that case.

Proof. This is a relation between various trace maps. a: A'™* —
Hom;y (4], R), defined by a(x)(d) = {x, b) has as kernel M(F")" N A’*.
Hence, if we can show a(M,(F")N A’*) = Hom, (A}, R), then A'* =
(M(F") N A™) D (M,(F'")* n A’™*), and dualizing gives the decomposi-
tion of A’. By Lemma 2, A™* = z"*"°A’. Since 7’ preserves M,(F")
and M,(F")*, A" N M(F") = n"°Al.

Let ¢’ be the degree of ramification of F’ over F” and let ¢”
be the degree of ramification of F” over F. Then ¢ = ¢e’¢”. Rea-
soning with F” instead of F, we see that n'""“A; = Homy. (4], R").
Now on M,(F"), we have tr (M, (F)/F) = tr (F"/F)otr (M(F")/F").
Since F" is tamely ramified over F, the different of F'” over F is
¢"—1, so that 7'"*"*"R"”"=Hom, (R", R). It follows that z"**'(z"~*A)=
Homj, (A], B). But now zn''"¢'(z'~*A]) = g'*0~"+~“ Al = g"*°A], and
the lemma is proved.

We now establish some facts about the geometry of the adjoint
action of GI, on M,. This study is suggested by Kirillov theory
and has important implications for the representation theory of Gi,.

For T, Se M, (F), write ad,(S) =[T,S]1=7T8S —ST. If T and
W commute, then (W, [T, S])=tr (WTS)—tr (WST)={W,T], S)=0,
so ad, has image in the orthogonal complement of ker ad,, the
commuting algebra of T. By dimension counting im ad, = (ker ad,)".
If {,) is nonsingular on ker ad,, then ad, will be nonsingular on
im ad,.

Now suppose T =ceC’' < F’, and write ¢ = n'"b, be B’. Let
F" be the subfield of F’ generated over F by ¢. Clearly ad, (4") &
‘z'™A’.  Since also ad, (M,(F")*) < M(F")*, we conclude that if X =
A'N M(F")*, then ad, (X) € z'"X.
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LEMMA 4. In fact ad, (X) = #'™X.

Proof. We see ad, (¥) = ¢y — yec = (cyc™ — y)c. Since ¢cX = n'"X,
the lemma is equivalent to the statement that the map: B: ¥y —cyc™' —y
maps X onto itself. But since B/(X) < X, it suffices to show that
B has as determinant an element in R*. But now the eigenvalues
of B are all of the form ¢™'¢ — 1, where & is a conjugate to ¢ by
the galois group of F' and not equal to ¢. From the properties of
C’ noted above, it follows that ¢7'¢ — 1 has norm in R*, so also the
determinant of 8 is in R*.

Lemma 4 has as a consequence one of the basic facts we will
need. Before stating it, we need one more observation. We filter
the group K’ by a sequence of subgroups K' = K, 2K 2K, ---,
where K, =1+ n"A’ for 1 = 1. For 1 =1, K; is a pro-p group.

F" is still the subfield of F’ generated by ce(C’.

LEMMA 5. If ke Ki, then k=1 + a)1 + b), where L +acK;N
M(F") and be M(F'")". (Then also 1+ be K, and acn'Al.)

Proof. By definition of K}, k =1+ z, with zen?A’. But by
Lemma 3, z=y+x, with y e n""A4] and x € #’*X (X as in Lemma 4). But
now put ¢ =y, b= (1+ y)'z. Then since multiplication by elements
from M,(F") preserves M,(F")*, this is the desired decomposition.

Let Ad denote the standard adjoint action of GIl, on M,. That
is, Ad(S)T)= STS™*. Then we have the following result on the
geometry of this action.

LEMMA 6. Take ¢ =n""beC’, and Se M,(F). Suppose Scc +
" A’, with j > m. Then there is ke K;_,,, and T € M,(F"") such that
S = Ad (k)(T). In other words, ¢ + n'"A’ = Ad K;_,(c + w'A)).

Proof. We may write S=c¢+ y + z, with yen'A], rvenX.
By Lemma 4, x =ad, () =[¢, z] withzen’"""X. Then Ad (1+2)S)=
S+ [2S8]+[SlkA+2)" '=c+y+x+ [2c] + [2y] + [22] +
[2, SlzQ+2) ' =c+y + [z 9]+ [z 2] +[2 S]zA+2) =c+y+ 7
where ez ™A’. Thus Ad(1 + 2)(S) is closer to ¢ + ©w'?A; than S
is. Continuing in this fashion, by a Hensel’s lemma argument, the
result follows.

We now begin to discuss representation theory. We will start
by constructing certain representations of K’, or more precisely of
F"* . K’, the normalizer of K'.

We notice that the commutator subgroup of K; and K is con-
tained in K,;, In particular, K, /K, is in the center of K|/K,,
and if 2¢ > j, Ki/K; is abelian. In that case also, the mapping
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yv: t"A'/n"" A’ — K;/K; defined by v(a) =1+ ¢ is an isomorphism of
groups, and commutes with the action of K’ by Ad on the two
quotient groups.

Now suppose y is a character of the additive group of F. Then

as is well known yx defines an isomorphism 4: Mn(F)—»M/“(\F), where
~~ denotes Pontryagin dual, by the formula 6(S)T) = xS, T)).
The natural action of Gl, on M, is denoted Ad*, and is given ex-
plicitly by Ad* S(v)(T') = v(Ad S™(T')). We see that ¢ is equivariant
with respect to the actions Ad and Ad*. That is, (Ad S(T)) =
Ad* S(6(T)). This property will be retained, insofar as it makes
sense, by the various maps obtained below from 6.

We will suppose for simplicity that the largest lattice in F' on
which y is trivial (the conductor of y) is R itself. Then for any
lattice L & M,(F'), L*, the annihilator of L in M,, is identified to
L* via 6; and for a subspace V, the orthogonal complement V* is
identified to the annihilator, also to be written V*. Thus, if L, S L,
are two lattices, ﬁl = L¥/L¥. In particular, if we write A'(j) =

e —
niA’, and Mj) = —7 — e + 1, then we have, if 1 < j, A'(1)/A'(H) =
A'(\L7)]A'(M4)). As mentioned above, these identifications commute
with the obvious (sub-quotient) actions, Ad and Ad*, of K'.

Combining ¢ with v, we get a map & KK, — AOM))/ANG))
when 2¢ = j. If y + A'(\(2)) = p(y) for some character « of K;/Kj,
we will say y represents . Again p¢ commutes with the obvious
actions of K'.

Now take j > 1, and let 4 be a nontrivial character of K; /K.
Suppose « has a representative yc F’. Then we see there is a
unique ¢ € C’ which represents +». We will call ¢ the standard repre-
sentative of . In this situation, we let F”" be the field generated
by ¢ over F', and retain the relevant previous notation. In particular
M,(F") is the commuting algebra of F”. For ¢+ =0, put H, = K. N
M,(F"). Then for ¢+ =21, H, =1+ n"A].

+ is invariant under Ad* K;. Suppose 2¢ = j and ¢ is a char-
acter on K;/K; which agrees with 4 on K;_,. We will say @ lies
over .

LEMMA 7. Notations as above.

(a) @ 8 conjugate by Ad* K| to @', which has o representative
TeMF".

() If @ has a representative T e M,(F"), then the tisotropy
group of ¢ under Ad* K’ is contained in H,- K;_,.

Proof. (a) Since ¢ is the standard representative for +r, and
is nontrivial on K;_,, we see ce A'(\(J)) — A'(\(j — 1)), so ¢ = 7'},
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with d’e B’. If S is a representative for ¢, then since ¢ lies over
o, Sec+ A'(M7 — 1)). Now it follows from Lemma 6 that S =
Ad K(T), with ke K;, and T € M,(F"). Then also, by the equivariance
of ¢, Ad* k(@) = ¢’ is represented by T.

(b) If TeM,(F") represents @, then we have, as above, T ¢
¢+ ANJ —1). If ke K, and Ad* k(p) = @, then we have Adk(T) e
T + A'(M3). Write k=14 2. Then AdK(T)= 1 +2TA + 2" =
T+ [2,T](1+ 2. Hence AdA(T)ecT + A'(\Mz)) if and only if
[2, T1e A’(\(3)). But now write 2=y + « with ye M, F"), z¢
M(F")*. Then clearly ke H,- K;_, if and only if zen’""'X, where
X is defined as in Lemma 4. Write X(a) = 7n'*X, analogously to
A'(a). Now calculate [2, Tl =[y+ 2, ¢+ T —c]l=[x,c]+ e, T —c]+
[#, T]. Lemma 4 shows that if xe¢ X(a) — X(a + 1), then [z, c]e
X(a+\(J) — X(a + \(J) + 1), whereas it is immediate that [x, T —c¢] e
X(a + MJ) + 1). Since [y, T]e M,(F"), it is now clear from Lemma
3 that [z, T]e A'(\(2)) if and only if ze X(j —4). Following back
through the argument, (b) is proved for k¢ K.

Now take any ke K’. Then if Ad*k fixes @, it must also fix
 on Kj_, But this means Adk(c)ec+ A'(Mj —1)). Then by
Lemma 6, Ad k(¢c)=Ad k(T) for some ke K, and Te(c+A'M7F—1))N
M,(F"). From the next lemma it follows that kk:*e M,(F"), or
ke H,-K,. By reduction to the previous case, then, the whole of (b)
1s proved.

LEMMA 8. Suppose T, and T, belong to (¢ + A’ (M7 — L)) N M(E"),
and suppose for some geGl,(F), Adg(T) = T,. Then gecM,(F"),
that s, Ad g(c) = c.

Proof. By assumption, S;=c¢ 'T,cc K:;. Hence S?" —1as m— co.
Since ¢ and T, commute Sf = ¢™*T¢. Since C' modulo the subgroup
generated by = is p-regular, there exists a sequence m, soing to
infinity, such that ¢?™ = ¢"'z%. Then (Y;), = x°«T?"*—c¢ as @ — .
Since Ad g((Y).) = (Y.). we get in the limit Ad g(c) = c.

REMARK. Lemma 8 provides an explicit proof of a fact that
was implicit earlier and is worth noting: namely, if x € F”, then the
field generated over F by =z contains s.r. (x), so that any subfield
of F' is generated by its intersection with C’'.
~ Take qaelg/?{}, and suppose ¢ lies over «+ and is represented
by TeM(F"). We want to make explicit the relation between ¢
and its restriction to H,/H;.

We still have 2¢ = j. Let E(4, j) be the set of elements of the
form 1+ y + x, where y€ A'(j) and z¢€ X(¢). Then in fact E(3, j)
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is a group. Obviously, K; S E(i, j). Moreover, Lemma 3 shows
K,=H,-E@#, 7). In fact E(¢, j) is normal in K; and K;/K;=
(H,/H;) - (E(3, 7)/K;) (direct product); furthermore, E(¢, j) is nor-
malized by H, and H,-K;K,= (H/H,) - (E®, j)/K}) (semidirect
product). As a corollary to this, and for future reference, we re-
mark that any representation of H,/H; may be extended to H,- K;
by letting it be trivial on E(4, 7).

In fact, ¢ arises in just this manner. For, since ¢ is represented
by Te M/(F"), it is trivial on E(¢, j), and therefore comes, by ex-
tension, from a character ¢” of H,/H;. ¢ may be described as
follows.

On My(F"”) we have the F”-bilinear form <(,)”, given by
(S, TY" = tr (M,(F")/F")(ST). 1If x" e F", then 0" ML(F")——»M?F")
may be defined by 6”(S)(T) = x"(KS, T)>"). On the other hand, if
T: m)HM/l(F”) is the natural projection, -6 is also an isomor-
phism between M,(F') and its dual. Since on M(F"), (S, T) =
tr (F")/F)(S, T)"), we see that if y” = yotr (F"/F), then 0" =704.
Therefore, with this choice of ¥”’, we may identify }f./?{,- with
AN)/AI(N7), where A\(j)= —j—e+ 1, and we have written
Aj(a) = 7'*A], in analogy with A’(a¢) and X(a). (Note that the an-
nihilator of A; is identified via 6" with A)(—e + 1), and not with
A(—é¢ + 1), where ¢’ is the degree of ramification of F” over F"”,
because the conductor of ¥” is not R” but @ *"R”, ¢” being the
ramified degree of F'" over F.) Finally, we see that in the above
identification T becomes a representative for ¢ on H,/H;.

Now ¢ itself represents some ¢,c Ki/K;, and ¢, clearly lies
above 4. Also, the isotropy group under Ad* K’ of ¢, is clearly
H,-K;_; and if ¢; is the restriction of ¢, to H,/H;, then ¢; is
again represented by ¢ and is Ad* H -invariant.

LEMMA 9. If 2t =3+ ¢ — 1, then @, s the restriction to H,
of a linear character of GL(F"). Moreover, j =¢' + 1, so this always
holds for 1 = 5 — 1.

Proof. 1t suffices to show that Sl,(F")N H; S kergp,. ¢ is
given on H; by @1l + T) = y"(ctr (M(F")/F")T)). Here Te Ai%)
and ord;.¢c =\({y)= —7J —e+ 1, and ce F”, and the conductor of
y'is 7" R" = ' °*R". Thus, writing tr (M,(F")/F") = tr for this
proof, we will have 1 + Teker ¢, if ord;. (¢) + ord,. (tr T) = ¢’ — e.
Thus, we must show that, if det(1 + T) =1, then ord, (tr T') =
¢ + 47— 1. But since ce F", ord; (c¢) is divisible by ¢, and there-
fore sois 5 — 1; and since 7 > 1, certainly j = ¢ + 1. Also, we are
reduced to showing ord,. (tr T) = (§ — 1/¢') + 1.
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Now T e Al(3) = n"*A], so T e Al(ie') < " M,(R"). Let F be an
extension field of F" containing the characteristic roots p, ---, o,
of T. Let ord,.. denote the extension of ord,. to F. Then z"~T* e
M,(R") implies ord;.. (0.) = i/e’.

The condition det (1 + T') = 1 means >\;_, 65(0,, + -+, ) = 0, where
o, is the Bth basic symmetric polynomial in the p,’s. In particular
0,0y *++, 01) = Db Po = tr T. Thus, the above relation implies
trT=— 3}t .040, -+, 0,). Hence, ord,. (tr T) = 2i/¢’. Thus, we
require 2i/e’ = (j — 1/e’) + L or 2e = j — 1 + €', as was to be proved.

We come now to a key result for this construction. The result
actually holds in a wider context than that of GI,(F'). It is at least
true for all central simple algebras over F, and probably has an
analogue in any semisimple group where no wild ramification occurs.
For division algebras, it yields an inductive method for the complete
determination of the representations (when the degree is prime to p).

" is the character of H; , gotten by restricting + from K;_,.
A representation of H, will be said to lie above " if its restriction
to H;_, is a multiple of . Similarly, if O(y) is the Ad* K’ orbit
of 4 in K{J’-:, a representation of K’ will be said to lie over O(y) if
its restriction to K;_, contains precisely the characters in O(+).

THEOREM 1. There exists a ome-to-one correspondence between
the representations of H, lying over + and the representations of
K' lying over O(y).

REMARK. The correspondence which is described below is very
simple and functional, and would seem to deserve to be called ca-
nonical, though in what sense is at present unclear. One sense
involves the characters of corresponding representations. This will
be gone into elsewhere.

Proof. We divide the theorem into two cases, j even and j odd.
The case of even j is very simple. Let W be a representation of
K’ lying above O(y), and let W” be the corresponding representa-
tion of H,. We describe how to get W from W”. Since j is even,
%2 = j/2 is an integer. Take W' and extend it to W" on H,- K, by
letting it be trivial on E(%, j), as described above. The induced
representation of K’ is then W.

We must show that each W lying over O(y) arises uniquely in
this fashion. This is easily done, using standard representation
theory for finite groups. We briefly recall this.

Let G be a finite group, N a normal subgroup. Let N be the
set of representations of Nj; G, those of G. Conjugation by G in-
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duces an action of G/N on N, denoted Ad* G/N or Ad*G. A repre-
sentation W of G restricted to N is a direct sum of a certain number
of copies of the representations in some Ad* G/N arbit 0. W is
said to lie above O. To find all representations lying above O,
proceed as follows. Fix Y €O, and let G, be the isotropy group of
Y under Ad*G/N. If Z,---, Z, are all the representations of G,
lying above + then Z,, --., Z, induce distinct irreducible representa-
tions of G, and all representations of G lying above O are obtained
in this way.

Applying this to our situation, we have seen in Lemma 7 that
every Ad* K’ orbit in K;/K; (where now 2¢ = j) which lies above
O(+r) contains an element @ which lies over + and whose isotropy
group I, is contained in H,- K;. Furthermore, if Z is any repre-
sentation of I, lying over @, then Z is trivial on E(3, j), and so
then will W”, the representation of H,- E(¢, j) induced from I,, be
trivial on KE(4, 7). Evidently, then, inducing further on up to K’
yields an irreducible representation W of K’. It is evident by this
that all representations W of K’ lying above O(y) arise in this
manner, and furthermore, that distinct W’’s lying above the same
Ad* H, orbit in Ii/?fj yield distinct W’s. Finally, Lemma 8 guar-
antees that a subset of K/Q/?{; which lies over 4, has representatives
in M,(F"), and belongs to a single Ad* K’ orbit actually belongs to
a single Ad* H, orbit. Hence any two distinct W'’s yield distinct
W’s, and the theorem is established for j even.

When j is odd the procedure is more complicated. Let 7 = 2¢ + 1.
Our first goal will be to construct a certain representation on H,-K;.
When this is done, we may proceed just as for even j.

Let @"” be a linear character of GI,(F") lying above ' on
H;_/[H;. By restricting to H, then extending to H,- K., we get
a character ¢ on this group. Of course, by definition E( + 1, j) &
ker #. We see that H /ker ¢” is central in (H,- K;)/ker $ = 5%, and
that (H,- K)/(H,-K},) = 57|% (2 = center of £#°) is isomorphic
to (Z/pZ)** for some «. We also observe that Ad H, factors to an
action by automorphisms on 5%, again denoted by Ad. H, of course
acts trivially. Since Ad GIl,(F") preserves M,(F")*, we see that this
action has the following property: for x € H,, ye 57, Ada(y) =y if
and only if Adxz(y) = y mod 2~

Since the commutator group of K; is contained in K;_,, the func-
tion a(z, ¥) = Y(xyz'y™) is well defined on K; x K.

LEMMA 10. a(x, y) factors to a mnondegenerate antisymmetric
biadditive form a:(S#|%) x (7| %)— T, T being the unit circle.

Proof. If x=1+a, y=1+b, then, modulo K; we have
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zyx~'y™t = 1 + [a, b]. Therefore a(z, y) = (1 + [a, b]) = x(e, [a, b])).
This immediately gives antisymmetry and biadditivity of a. If
either z or y € Ki,,, then zyx™y'c€ K}, so a(x, y) = 1. Also, if, say,
x € H,, then write b = b, + b,, with b, € 4)(z), b, € X(2). Then a(z, y) =
x(e, [a, b, + b,])) = x(<e, @, b,])) - x(<e, [a, b,])). The first factor is 1
because ¢"” is a character on H,;, and the second factor is 1 because
{e, [a, b;]>) = 0, since [a, b,] € M,(F")*. Thus we see a factors to a
form @ on Ki/H,-K;,, = 57/%2. It remains to show this factored
form is nondegenerate. But we have a(x,y) = x(q, [@, d])) =
1({e, al, b)). If x does not represent zero in 5#/%, then Lemma 4
shows [¢, a]€ A'(MJ) + 9) — A'(MJ) + 2+ 1) = A'(Me) — 1) — A'(\(3))-
On the other hand, b is arbitrary in A’(1). Since A'(2)* = A'(\()),
we conclude that for some y, a(x,y)# 0, so & is indeed non-
degenerate.

REMARK. It is precisely here that our assumption of p odd
makes its impact. We are dealing with the representation theory
of a 2-step nilpotent p-group. The extra complications in this theory
that arise when » = 2 could be handled, but at the expense of a
long digression.

We want to find a representation of H,- K, that lies over ¢ on
H,-K}.,.. Let 57 be the image in 5 of E(,j—1), and & =
2 N 257 Then it is not hard to see that 57/% = 5#/2. Also, it
is easily verified that H,- Ki/ker » is a homomorphic image of the
semidirect product H,/H; X. .57, where the first factor acts on the
second by Ad. (Of course H,/H; acts trivially.) + becomes a faithful
character 4 on ﬁg, which is isomorphic to Z/pZ.

A Heisenberg p-group is a 2-step nilpotent p-group P such that:
(1) the center 2 (P) is isomorphic to Z/pZ; (2) the center and the
commutator subgroup of P coincide; and (3) every element of P has
order p. A quick check shows that 57 is a Heisenberg p-group.
Here one uses Lemma 10.

A Heisenberg p-group is determined by its order, which is p’
for any odd v > 1. Owing to the celebrated Weil representation
(I9]), the representation theory of Heisenberg groups is very well
known. We summarize what we need.

Besides one-dimensional representations, P has exactly p — 1
irreducible representations, each of dimension p“~“/* (where p” is the
order of P), and each one determined by the character 4 it defines
on. 2 (P). Call such a representation Y(4r). Y(4) is induced from
any character of any maximal abelian subgroup which agrees with
& on Z(P).

The automorphism group of P which acts trivially on 2°(P) is
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isomorphic to Sp (p, v — 1) X, P/2(P) (semidirect product), where
the second factor is the inner automorphism group, and the first
factor is the group preserving a symplectic form on a Z/pZ-module
of dimension ¥ — 1. It is known that for each (nontrivial) ¢, Y(¥)
extends in a unique way to Sp (p, Y — 1) X, P. An arbitrary group
G of automorphisms will belong to a conjugate of Sp(p,Y — 1) in
Aut (P) if and only if (1) G acts trivially on 2°(P); and (2) G com-
mutes with an automorphism of P trivial on 2°(P) and having no
fixed points modulo Z°(P).

Applying these facts to our situation, we see immediately that
there is a representation V() of H,/H; X, 57, of dimension
(%; /}‘g’ )/* = p* lying above + on 4 V(+) is completely determined
by requiring that its restriction to H,/H; be the pullback of the
extension of Y(4) to Sp (p, 2a) via the homomorphism Ad: H/H; —
Aut (%;). In particular V(y) will be trivial on H,/H;, Now con-
sider the representation V(¢") = ¢"” ® V(+), where " here denotes
the character of H/H; X, 57 which is trivial on 57 and factors to
@" on H,/H;. Tracing back through the above constructions shows
that V(®”) actually factors to a representation of H,- Ki/ker @,
which then of course lifts to a representation of H,- K;.. We denote
this representation by V($") also.

Now we may describe the correspondence between W and W'.
Given a representation W" of H, lying over «, consider the repre-
sentations W” @ ¢”*. This is trivial on H;_,. Hence it may be
extended to a representation of H,- K; (denoted by the same symbol).
Now form the representation V(") ® (W”' ® ¢"™*) of H,-K: and
induce up to K’'. The resulting representation is W.

The proof that this correspondence sends irreducible W’ to irre-
ducible W and is bijective is similar in essence to the proof for j
even, but is again more complicated. It involves the same facts
about Heisenberg groups used in the construction of V(¢”). We
omit the rather tedious details.

With Theorem 1 proved, we can begin the construction of super-
cuspidal representations of GI,(F'). Since these will be induced from
the groups F'*-K’, we first construct the representations of these
groups, from which we will be inducing.

Now let « be a character of F'*. Recall that U'=U; =1+
7#’'R. For all 1+ =1, put U; =1+ n""R’. The conductor of + is the
largest of the U; contained in ker 4.

We can set up in a consistent way on F’ the same structures
we set up on M,(F) for passing from the multiplicative to the
additive situation. Thus when F' is regarded as a subalgebra of
M, (F), tr(M,(F)/F) coincides with tr (F’/F). Thus there is no
ambiguity if we write <{z, y> = tr (F'/F)(xy) for =, ye F'. Using %,
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we get an isomorphism 6': F'— F" given by 0'(x)(y) = x(Kz, y)). ¢
is just the composition of § and the projection of m’) onto F".
Since the conductor of ¥ is R, it is a simple computation to show
0/—1(RIJ.) — RI* — nll—eRl.

Put, as with A4’, A, X, R'(t) = n"*R’, and retain the notation
Mi)= —2—e+ 1. If 2¢ = j, we again have the isomorphism »':
R'()/R'(j)— U;/U;. V' is just the restriction of v defined previously.
We also get ¢¢: T/ U} — ROVG)/R'OGE). If i = j — 1, we can choose
a unique c€C’ to represent a nontrivial character +;_, of U;_,/Uj,
and this ¢ will be called the standard representative ;_,.

LeEmMA 11. Let Uj be the conductor of +, and let +;_, be the
restriction of + to U;_,. Let ¢ be the standard representative of
Pi_. Let F" be the field generated by ¢ over F. Then

(1) o = 4o where 4, = "« NE'JF"), with " ¢ F"%, and
¥, 18 trivial on Uj_,.

(il) If + ts of the form + = """ o N(F'/F'") for some subexten-
ston F'", then F" < F'".

(iii) + s admaissible ©f and only if +, is admissible when F’
is considered as an extension of F”.

Proof. Clearly (i) and (ii) imply (iii). On the other hand, (i) is
a consequence of Lemma 9 because of the consistency of the identi-
fications v and V', ¢ and ¢, 6 and #’. It remains to prove (ii).

Suppose +r = """ o N(F'[F""). Let € be the degree of ramifica-
tion of F' over F'”. Then N(F'/F'') maps U;... onto U;’, and
maps Ui, into U}/,. Thus if the conductor of ' is U;”, the con-
ductor of 4 is Uy;_yy,rr 1y, that is, j—1=(—1)¢"’. Now ord;(c)=—j—
e+1=—¢—(j—1), so ordy (¢) is a multiple of ¢".

Let ¢” be the smallest integer such that e¢” ord;. (¢) is a multiple
of e, the ramified degree of F”’ over F. Then ¢’ = n*b’ for some
integer @ and b’ € B’. Hence we see ¢” is the ramified degree of
F" over F. If ¢ is the ramified degree of F” over F", then ¢ = ¢'¢”.
Thus, from the previous paragraph we see that ¢’ divides ¢'.

Now let F' be the compositum of F” and F'’. Define * =
P o N(F'®/F""). Then « = 4® o N(F'/F*®). Thus it suffices to prove
(ii) when F'*® = F’. But by the previous paragraph, F'*“ is un-
ramified over F'’. So we may assume F” is unramified over F"".
Then F' is a cyclic galois extension of F"’, and + = +'" o N(F"/F"")
if and only if + is invariant by Gal (F’/F""’) by Hilbert’s Theorem
90. In particular, ;_, on Uj;_, must be invariant by Gal (F'/F"").
If oeGal(F'/F""), then since either o(c) = ¢ or |o(c) — ¢|z = |¢|s,
we see that ¢ must be invariant by Gal (F’/F""), since our mappings
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Y,v, 0" are all galois-equivariant for galois extensions. Thus we
see ce F"”’, and so F"" & F'”, since ¢ generates F.

COROLLARY. Given € F’, there 1s a well-defined sequence of
integers J, > J, >+-> J., and subfields F,c F,c---CF,, such that
W= ey oo o A, Where the comductor of A+ is j,= (I, — le, +1
where e; 18 the degree of ramification of F' over F, and ap ary+ <, =
v Do N(F'[F;) and * is nondegenerate on (U,);,_,.

Proof. We may induce on the conductor of . Then (i) of
Lemma 11 gives + = 4n(¢;7'4), With +r, having the desired properties
(the relation between conductors being given in the proof of (ii)) and
' having conductor containing strictly the conductor of 4. Then
(ii) allows us to continue the induction, with F’ now being regarded
as an extension of F"' = F.,.

We now show how to obtain the representations of K’ from
which we will be inducing.

LEMMA 12. Let +f' be an admissible character of F'*, with con-
ductor Uj;. Let ¢ be the standard representative of +' on Uj_,. Let
+ be the character of K;_,/K, represented by c. Then there is an
irreducible representation W(y') of K’, with conductor K,, and
lying over Ad* K'(y) on K;_,, corresponding to . W(') in fact
depends only on the restriction of ' to R'.

Proof. Let F” Dbe the field generated over F' by ¢. Let ' =
1 -4, be the decomposition given by (i) of Lemma 11. By induction,
and (iii) of Lemma 11, we may assume we have constructed W’ ().
W'"(yy) will then be trivial on H;_,. Now let " be the character
of GI,(F") defined by "'(T)=+"(NM,(F")/F")T) (N in this case being
determinant). Then ' agrees with +, on F”, is trivial on H;, and
has standard representative ¢ on H;_,. Now simply let W(y') be
the representation of K’ corresponding to W’ (41 @ +'" by Theorem
1. W(') clearly has the properties required of it.

Finally, we must deal with the case when ' is trivial on U’.
When this happens, if 4 is to be admissible, F’ must be unramified
over F, and K’ = K = Gl,(R). Moreover, the image F’ of R’ in
Gl,(F) = K/K,, is the multiplicative group of the extension field of
F of degree m — in other words, is a “minisotropic” Cartan sub-
group of GI,(F). Also « factors to a nondegenerate character +
of F'. Now it is known (see [1]) that to each nondegenerate char-
acter of F, there is associated a cuspidal representation W() of
Gl (F). We associate to + the lift of W(¥) to GI,(R). This finishes
Lemma 12,
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To construet our representations, we need to recall some basic
facts ([7]) about induced representations. Let G be a separable
locally compact group, I & G an open compact subgroup. Let V,, V,
be two finite dimensional representations of I, and write V, =
S miW,, where the mi’s are the multiplicities of the irreducible
representations W, occurring in V,. Then the intertwining number
of V, and V,, which is the dimension of the space of intertwining
operators (or I[-morphisms) from V, to V, is 3, mim?.

Now let W, and W, be two irreducible representations of sub-
groups I, I,. For ge @G, put Ad(g9)l, = gL,g7, and let Ad* g(W,) be
the representation on Ad (¢)(I,) defined by Ad* g(W,)(x) = W9 'x9),
for xe Ad (¢9)(I,). We say ¢ intertwines W, and W, ¢ times if the
intertwining number of the restrictions of W, and Ad* (¢)(W, to
I,NAd(Q)I, is 7. If 7> 0, we say g intertwines W, and W,. The
number of times ¢ intertwines W, and W, depends only on the
(I,, I,) double coset of g and is symmetric in W, and W,. It is known
that if only a finite number of (I, I,) double cosets of G contain
elements which intertwine W, with itself, then the representation
of G induced from W, on I, decomposes into finitely many irreducible
components; and in particular, if only g¢gel, intertwine W, with
itself, then the induced representation is irreducible. It is also
known that if W, and W, both induce irreducible representations,
then these representations are inequivalent if and only if no ge@G
intertwines W, and W,. All these remarks also apply if I, I, are
compact modulo the center of G.

Now let F” and F” be two tamely ramified extensions of F of
degree n. Let K’ and K’ be the corresponding compact subgroups.
Let +,{ be nontrivial characters of Kj ,/K; and K% ,/K% which
have standard representatives ¢, ¢ in F”, F” respectively. Let F”, F”
be the subfields of F’, F” generated by ¢ and & over F. Take i, 1
satisfying 2¢ = 4, 27 = 7. Let @, & be characters of K;/K; and
K:/K~, respectively, which have representatives T and T belonging
to M,(F") and M+(F") respectively.

Lemma 13. If g€ Gl (F) intertwines ¢ and P, then g belongs
to a double coset K; ,0,K% ; with Adg,(c) = ¢. In particular, if g
intertwines @ with itself, then g ¢ K;_,GL(F")K;_,.

Proof. For 1+ zeK;, we have o(1 + x) = x({T, x)). Similarly,
for 1 + ye K~, we have (1 + 9) = y(T, »)). Also Ad(9)1 + y) =
1+ Adg(y). Recalling that K; =1+ A'(:) and K> =1 + A7), we
see @ and Ad* g(@) agree on K, Ad gK%- if and only if 6(T) and
6(Ad (¢)(T)) agree on A’(i) N gA’(7)g~*. This means T — Adg(T) is
in (A'G) N gA'(Dg™)* = A'())* + gA'(D)*g~*. Thus, we can find Se
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A'())*, Se A'(?)*, such that T + S = Ad g(T + S).

Now, since ¢ lies over «, Tec+ A(NJ) + 1), and ¢'TeH,.
Therefore adc —ad T(X) E 7'X, and Lemmas 4 and 6 are true for T
as well as for ¢. That is, T+ S = Adk(T'") for some T'eT +
Al(\@), and ke K,_,. Similarly T+ 8= Ad B(T") for T'e T+ A[(\1))
and ke K> ;. Thus we have T’ = Ad (k"'gk)(T"). Put g, =k 'gk.
Since T'ec + A(M3) + 1) and T'e & + A7) + 1), a slight modifi-
cation of the reasoning in Lemma 8 shows Ad (g,)(¢) = ¢, and the
lemma is proved.

Now, notations as above, we again consider « on K, ,/K;, or
on H; ,/H;. Let W"” be a representation of H, lying above + and
let W be the representation of K’ corresponding to it by Theorem 1.

If 5 is even, put ¢+ = j/2. If j is odd, put ¢ = (§ — 1)/2. Then
we know W is induced from a representation, which we shall denote
by Y, of H,-K;. Moreover, recalling X(7) = n"*X, where X is as
in Lemma 4, we may see from Lemma 5 that the set 1 + X(¢) is a
set of (right or left) coset representatives for H, in H,- K;. Thus
H,-K;=H,-(1+ X%) =1+ X@)-H, If jis even, then 1+ X(7)
is contained in the kernel of Y; however, for odd j this is (unfor-
tunately) not true.

LEmMMA 14. (i) If ge Gl (F) intertwines W with itself, then
ge K'g,K' with g,€GlL(F").

(i1) If j is even, thenm there is a one-to-ome correspondence be-
tween intertwining operators for W and for W”. Specifically, if
9, € GL(F") intertwines W' on H, ¥ times, then it intertwines W"
on K' v times.

(iii) Let j be odd. Suppose g,€ GL(F") is such that we may
write M(F'"): =S, DS, D S, where S; is an invariant subspace for
Ad g,, X(2) = (S,N X)) D (S.N X)) D (S;N X(2)), and Ad g,(S,N X(4)) =
X +1), Ad g(S.NX(%) = S;N X(4), and Ad g,(S; N (X(%) — X(& + )N
X(#) = ¢. (That is, Ad g, shrinks S,, is isometric on S,, and stretches
S..) Then if g, intertwines W' on H, ¥ times, it intertwines W
on K' v times.

Proof. Statements (i) and (ii) are quite easy. We observe that
since W is induced from Y, in order to compute intertwining operators
for W, it suffices to compute them for Y. But since Y lies over
& on K;_,, it is easily seen from Lemma 13 that if g intertwines
Y with itself, then ge(H,- K))g,(H,- K;)where g,c GIl,(F"). State-
ment (i) follows a fortiori.

If 7 is even, Y is simply the extension of W” from H, to
H,-K;= H,- E(, j) which is trivial on E(z, 7). If g,e GI,(F"), and
2=hx, with he H, x€l + X(7), then it is easy to see g,29;' € H,- K.
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if and only if g,hg;* € H, and g,xg;* €1 + X(4). That is B= (H,-K))N
9y(H, - K)gi* = (H, N goH,9:7) - (1 + (X() N 9, X(?)g5"). Thus we see
that the representations Y and Ad* g(Y) of B are determined
completely by their restrictions to H,N ¢g.H,g;*. Thus g, intertwines
Y with itself v times if and only if it intertwines W’ with itself
v times. This establishes the first part of (ii). For the second part,
all we need verify is that if g,eGI,(F"), then K'g,K' N GL(F") =
H,g,H,, This follows fairly easily from the work of Iwahori-
Matsumoto ([4]). Since the precise statement of (ii) is not needed
for the rest of this paper, we leave the indicated verification to the
reader.

Now we turn to (iii). Take g,€ Gl (F"), and let S, P S,PBS, =
M/(F")* be the posited decomposition of M,(F")*. Put S;(7) = S;N
X(2), so X(z) = S.(¢) D S,(¢) @ Sy(#). I claim first that 1 + S,(¢) and
1 + S,(¢) are isotropic with respect to the form a(,) of Lemma 10,
and that both are orthogonal to 1 + S,(¢). For if s; €.S;(3), then we
have, as calculated in Lemma 10, a(l + s;, 1 + s,) = x(<e, [8;, s:])) =
X(CAd g7 (o), [85, 8:])) = x(Le, [Ad go(s5), Ad go(s)])). If mow j =1 and
E=1 or 2, then Adg,s;)e X(t + 1), so Ad(g,)(1 + s;) € K;,,, and
similarly Ad g1 + s,) € K;,. Hence a(l +s;,1+s,) =1 by Lemma
10. Replacing g, by g;* gives the result for 7 =2,8, k =3. (We
note that by similar but more complicated arguments, we could
show S, and S, are isotropic with respect to {, >, and are orthogonal
to S,. We do not need this, however.)

As noted before, we have B = (H,- K;) N g,(H, - Ki)g:* = (H, N
9oH,g:") - (1+(X(2) N 9, X(9)g5 ™)), and X(9) N g, X(2)g5* = (8,(2) N 9sS(2)9: ") D
S:(2) @ Sy(7) € X(¢ + 1) + S,(¢) + Sy(¢). Moreover, g,'S,(4)g, < X(¢ + 1).
Recall that 57 is the Heisenberg group constructed in the proof of
Theorem 1 for j odd. Let I, I,, be the images in 5 of 1 + S(3),
1 + S,(¢), and let I, be the inverse image in 57 of the image of
1+ S,(¢) in &7/%. Then I, I, are abelian, and ,N 2 =L,N % =
{identity}, and 2" < I,, and I, and I, centralize I,, Moreover, the
inverse image in 57 of the image in 5#°/% of 1+ (X()Ng,X(%)g:")
is I,-I,. It is also clear that the restriction to I, of the represen-
tation Ad* g,(Y) is a multiple of the identity representation, since
1+ ¢97'Si(i)g, 1+ X(i + 1) S ker Y. Thus in computing the inter-
twining number between Y and Ad* g,(Y) on B, it suffices to com-
pute the intertwining number between Ad* ¢g,(Y) and the subrepre-
sentation Y, of Y on which 1 + S,(7), or the inverse image of I, in
E(i, 7 —1), acts trivially. Similarly, since 1+ Ad g,(S,(¢))Sker Y, we
need only compute the intertwining number between Y, and the sub-
representation of Ad* g,(Y) on which 1 + Ad ¢,(S,(7)) acts trivially.

Since B is a group, we see that H,N g,H,g;', acting on 57
normalizes I, and I,- I,. Also I, is a Heisenberg group, with center



454 ROGER E. HOWE

2" (unless it reduces to 2°).

We must now recall the precise structure of Y. Let #” be an
extension of 4 to a linear character of H,. Since W" lies over 4,
W'" ® @"* is a representation of H, trivial on H;_,. We extend it
to a representation, also denoted W' ® ¢"7% of H,-K; trivial on
E@, 5 — 1). We then take the representation V(¢”) of H,- K;, lying
over 4 on K;_, and constructed from the Weil representation, using
@". Then Y = (W"Q @"")Q V(¥"). The restriction of Y to B is
thus the tensor product of the restrictions of W” &® ¢”*and V(&"),
and similarly for Ad* g(Y).

Let V, be the restriction to B of the subrepresentation of V(')
on which the inverse image in I, in E(i, 7 — 1) acts trivially. Then
the subrepresentation Y, of Y defined above is just (W ® &' H R V..
(Here we restrict W’ Q ¢”* to B.)

Now I,- I/I, = I, is a Heisenberg group, on which H,N gOH(,g0
acts, and 2 is the center of I, and the action preserves -y on %
Also V, is the lift of a representation from an extension to H, N
9. Hogi' X, I, (semidirect product), of the unique representation of I,
lying over «r on 2. Thus V, is (essentially) simply the Weil repre-
sentation of B deriving from the action of H,N g,H,g™* on I,.

Now from cur remarks above, it follows that the intertwining
number of ¥ and Ad* ¢g,(Y) on B is the same as the intertwining
number of (W' ® %" ®V,, and Ad* g(W" ® $")® V.. But now
it follows from standard theory (see for example, the discussion of
Proposition 2 of [3]) that this is the same as the intertwining num-
ber of W"” ® &' and Ad* g,(W"”" ® &™) on H,N g,H,9;*. But since
@" is simply the restriction to H, of a character of GI,(F"), this is
the same as the intertwining number of W’ and Ad* g,W” on
H,N g,H,9;*. This concludes the important part of (iii). To com-
pletely finish (iii), we should verify the same facts about double
cosets as for (ii). But since we are here mainly interested in non-
existence of intertwining operators, and since for the double cosets
in which we are particularly interested, the verification is especially
simple, we again omit this point. Lemma 14 is now concluded.

The purpose of this next lemma is to provide an important class
of g, which verify the conditions of (iii) in Lemma 14,

LEMMA 15, Let F" C F' be a subfield, and let .&7" Z GL(F")
be a Cartan subgroup, split over F", and such that .o, the maxi-
mal compact subgroup of ", is contained tn K'. Then A'(1) =
®D; (A7) N S;), where the S; are irreducible subspaces for Ad .o
acting on M,(F).

Proof. We prove the result in stages. First we take F" = F,
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then galois over F, then finally we reduce to the case of F” galois.

If F” = F, then %" = & is just a split Cartan, which we may
assume, by an analogue of Lemma 1, valid for all Cartan subgroups
of GIl.(F), that, up to conjugation by K’, .o~ is the diagonal matrices.
Then let E;, be the one-dimensional subspaces of M,(F') spanned by
the matrix units. It will certainly suffice to show A'(7) =
@D, (A'¢G)N Ey). If F is unramified over F, then A’ = M,(R), and
the desired conclusion is obvious. In general, A’'(?)= N, 7™ M, (R)x'~™.
We can find ¥ € K’ such that 7'y = x normalizes . Then A'(7) =
N, 2" M, (R)z™ = N 2™ (D, Mu(B) N Ej)e™™. But now o™ E;x "=
E;,, for some j', k', since x normalizes . Now if z€ A'(3), z =
x™tiz,x~™ for each m, with z, € M,(R). Also z = 3 e;,, with ¢;, € E;,,
and for each m, z, = >, %', with e{p’e E;, N M,(R). Since each of
the above decompositions is unique, z™"e{3'x™™ = e¢;,.. Therefore
e;n» € A'(1), and we have established the lemma when F" = F.

Now take F"' galois over F. Then we may choose a set {6} =
Gl,(F) of representatives for the galois group Gal (F”/F), such
that each & is in K’, and normalizes .. Then the & are then
determined up to their .o, cosets, satisfy Gad e 'e.®; for any
ae. ..

We have the decomposition M,(F') = @secarrrr/m M (F"). Since
FM(F") x TM,(F") = 6TM,(F'), we see GM,(F") and ZM,(F") are
orthogonal with respect to (,) unless or =1. Thus M,F")* =
D.,.. 6 M,(F"). We know that A'(s) = (M(F") N A'(z)) B M,F")* N
A’(7)). Since 6 € K, we see that multiplying this decomposition by
¢ yields A'(r) = (GM,(F") N A'(3)) D (B, TM,(F")) N A'(3)) for each
o, which in turn implies A'(Z) = @, (GM,(F") N A’(z)). Now each
FM,(F") is left invariant by Ad.%””, and so is a sum of irreducible
spaces for Ad.>7"'. Moreover, if M,(F") = @;. Ey is the decom-
position of M,(F") into matrix units, then, taking .©” to be the
diagonal matrices of Gl (F"), Ej. is invariant by right and left
multiplication by .o7”". Therefore since & normalizes .&", G M,(F"') =
@;.FE}; is a decomposition of &M,(F") into Ad.2"-invariant, irre-
ducible subspaces. But now, again since ¢ € K', we have &(M,(F")N
A'(1)) = GM,(F") N A’(7). Since, by reduction to the case F” = F,
we have A'(i) N My(F") = @, (A'() N E}), we see A'(i)NFMF") =
@D, . (A@)NGE,) for all oeGal(F”/F), and so finally A'(s) =
D..;,. (A'(3) N FEZ).

Now we pass to the general case, when F" is any subextension
of F’. Since in any case F" is tamely ramified, its galois closure
F'" is unramified over it. Therefore, for a suitable unramified
extension F, of F, the algebra F"” @, F, breaks up into a direct
sum of subalgebras isomorphic to F"”.

We consider the matrix algebra M, (F,) = M,(F) @y F,, and in
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it A,(2) = A'(1) ® R,, where of course R, denotes the integers of
F,. " is just the multiplicative group of an abelian subalgebra
A" of rank n of M,(F'), and A" is isomorphic of F''. We let &7
be the multiplicative group of A’ @, F, = A'"”’". Then A" is a direct
sum of a certain number of copies of F"”.

It is clear that 4, = N, #'"M,(R,)7'~™ where #’ = ' P1 < M, (F,).
Thus we may find a field F, so that A, is the order associated to
it by the discussion preceding Lemma 1. In fact, we may choose
F’, so that it contains F"”’. (Let F', be any of the conjugate fields
which are the summands of F’ @, F,.) Suppose for a moment that
the maximal order of A"’ is contained in A,. Then, since F"" is
galois F,, we have A.(7) = @; (A.(¢) N S%, where S} are isotypic
subspaces for Ad.»"’. Now Gal (F,/F) acts on M, (F)® F, and on
A", and this action permutes the S¥. Let {T,} be the collection of
subspaces which are direct sums of S}’s-invariant by Gal (F,/F),
and minimal with respect to these properties. Then certainly
A,(3) =@, (A4.0)NT,). Moreover S,=T,NM,(F) will be an isotypic
component of Ad .o acting on M, (F). Now if ze A'(z) = A,(#) N
M,(F), we have z = >, t,. This decomposition is unique, and since
z is Gal (F,/F)-invariant, and the T, are, each ¢, must be, so ¢,€
S, N A.(%), and so A'(z) = @, (4A'(7) N S,).

The above reasoning was carried out under the assumption that
the maximal order of A"’ was contained in A,. This will be a con-
sequence of the next lemma, which will then complete the proof of
Lemma 15.

LemmA 16. If F, is any extenston of F, and F, is an unrami-
fied extemsion of F, then the maximal order of F,@;F, is the
mage of R, Q R,.

Proof. Let F, < F, be the maximal unramified subfield over F'.
Then we may write F. @, F, = F, @, (F, @, F.). Now F,Q;F,
will be a direct sum of unramified extensions of F,. Therefore, we
may reduce the lemma to the two extreme cases when F is either
unramified or totally ramified over F.

If F, is totally ramified over F, then F,®; F, is still a field,
since F', and F, are linearly disjoint over F' (see Serre [8]). We see
R, ® R, will contain all roots of unity of F,® F, of order prime
to p, and will contain a prime element of F, X F,. Hence it must
equal the entire maximal order.

In the second case, F, X F, is a direct sum of fields unramified
over F. Therefore, the maximal order of F,® F, is its own dual
lattice with respect to the bilinear form induced by the trace on
F,® F,. On the other hand, this bilinear form is just the tensor
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product of the bilinear forms tr (F,/F)(zy) and tr (F,/F)(xy) on F,
and F,, and R, and R, are their own dual lattices with respect to
these forms. Therefore R,Q R, S F, X F, is its own dual lattice.
Since it is contained in the maximal order, it must be equal to it.
This finishes Lemma 16.

We want to make note of the following result, which is im-
mediate from Lemmas 14 and 15. Notations are as in those lemmas.

COROLLARY. Suppose F S F'" S F'" S F', and g,eGlL(F") <
GlL,(F") is in a split Cartan subgroup of Gl.(F'"'"), whose compact
subgroup is contained in K'. Then g, intertwines W" if and only
of g, intertwines Y (if and onmly if g, intertwines W, providing
K,goK’ N Gll(F") = HogoHo)-

Now we are ready to construct our supercuspidal representations.

THEOREM 2. For every admissible character 4" of F'*, for every
tamely ramified extension F' of F of degree n, there exists a super-
cuspidal representation V(') of GL.(F'), induced from a representa-
tion of F'*-K', agreeing with W(') on K'. V(i) and V(y:) are
equivalent if and only if 4, and ; are equivalent.

Proof. To begin, let us note that F’*- H, = H, is actually the
semidirect product of H, and the cyclic group generated by z’.
Similarly for F”*- K’ = K’. Thus it is easy to see that Theorem 1
and Lemmas 12 and 14 apply equally well to these groups as to H,
and K’. Therefore, we may assume we have defined representations
W(y') on K’ in the manner of Lemma 12. Of course, the restriction
of W(y') to K’ is just W(y'). We will show the representations
V(') induced from W(y') have the desired properties.

To prove the theorem, we merely examine which g can possibly
intertwine W(y') with itself, or W(y)) with W(y)).

Put K, = K. Let U, be the conductor of 4. We know W(4')
is induced from a representation, lying above 4 (4 is the extension
to K,_, of the restriction to U,_,) of 4’ of the subgroup H,- K, where
2t =7 if j is even, or 2¢ + 1 = j if j is odd. We call this inducing
representation Y(+').

It is clear from the constructions of Theorem 1 and Lemma 12
that the restriction of Y(¢') to H, is just a multiple of W”(y’) re-
stricted to H,. Also, Y(4') lies above ++ on K;_,. Therefore, Lemma
13 shows that the only double cosets which can support nontrivial
intertwining operators for Y(y) are those of the form (H,- K’)g,(H, K2
where g,e Gl,(F"). Moreover, since, as we mentioned Y(v') on H,
is a multiple of W"(y') on H,, g, cannot intertwine Y(+') unless it
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intertwines W on H,.

Now let F"” < F” be the subfield of F’, such that the restric-
tion of ' to U, is of the form «"o N(F'/F''), where 4" is non-
degenerate on U;”. Then F” Z F'’, and F' is unramified over F'”
by the definition of admissibility. By induction, we may assume
that ¢, cannot intertwine W"(y') on H, with itself unless g, is in a
double coset H,g,H,, with g, € GI,(F""), the centralizer of F’”. There-
fore, the only double cosets which can support intertwining operators
for Y(¥') are of the form (H,- K})g.(H,- K;) with g, e Gl (F"").

Now since F” is unramified over F"’, K' N Gl (F"") = GL(R"") is
a maximal compact subgroup of GI,(F"’). It is well known (see [4])
that in this case, one may choose, as a set of double coset repre-
sentatives for K'N Gl (F"") in Gl (F"), elements from an F"’-split
Cartan subgroup .&"" in GIl,(F""), whose maximal compact subgroup
is contained in K’. Therefore, applying Lemma 15, (ii) or (iii) ac-
cording as j is even or odd, we may conclude that a¢c.%’’ can
intertwine Y(y') with itself if and only if it intertwines W”(y) on
H, with itself. Then by induction we may assume this can only
happen if a intertwines W'(y'), the representation of K’ N Gl.(F")
associated to 4, with itself. Therefore, we are reduced to the case
when F” is unramified over F.

If F” is unramified over F, then K’ = K = F*-Gl,(R), and W(y)
is a character on F* times the pullback to GI,(R) of a cuspidal
representation of GI,(F). A set of double coset representatives for
K consists of diagonal matrices with entries (1, 7%, 7%, - .., %) with
Oéazéasé e éan-

Let N, be the intersection of GI,(R) with the group N of upper
triangular unipotent matrices. Then, if ¢ is one of the above double
coset representatives N, S KN gKg™. Moreover, if g1, then
there is some parabolic subgroup P, containing N, such that N,(P),
the intersection of the unipotent radical of P with N, satisfies
g'N,(P)g S K,. Therefore, since W(y) is trivial on K,NN,, Ny(P)<
ker Ad* g(W(«')). On the other hand, the fact that W(y') on GI,(R)
is the pullback of a cuspidal representation of GI,(F) means that the
restriction of W(y') to N,(P) for any P does not contain the trivial
representation. Therefore, if g =1, g does not intertwine W(")
with itself. This shows V(¢) is irreducible and completes the con-

struction of the V(¥').
It remains to establish the facts on the equivalence and non-

equivalence of V(v'). Let F'' and F’® be two fields, of degree m,
and tamely ramified over F. Let K’" and K’® be the corresponding
compact groups. Let '™ and 4'® be admissible characters of F'®"*
and F'®*, Let U}” be the conductors of the ', and let ¢ be
the standard representatives for the ' on U}?,. Let F"* be the
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subfields generated by the c¢*. Let H = Ki N Gl (F"®). Let
Y(4') be the representations from which the W(y'*?) are induced.

By Lemma 13, if g, intertwines the Y(4'*?), we can take g, so
that Ad gy (c’) = ¢®. If this is so, then by the same reasoning as in
the construction of the V(¢'), g, must intertwine the restrictions of
the Y(y'*") to the H;". From this, by induction, we conclude that
if g, is to intertwine the V(y') then necessarily Ad g,(F""®) = F'"'®,
where F"'% is the subfield of F'® such that, on U;?, ' =
o N(F' O [F""), and 4" is nondegenerate on U;'". But then
we see F'® and F'® must be conjugate, since they are determined
by F''™ and F'”® respectively. Also, we see we may as well take
K'v = K'®» = K’, and then we can choose by Lemma 1, g, € K’ such
that Ad g,(F"™") = F'®, Then we are reduced to showing that two
nonconjugate characters of F' = F” do not yield the same repre-
sentation, and this proceeds precisely as for the construction of the
V(+4¢"). This finishes Theorem 2.

(Strictly speaking, we should verify that the V(y’), which are
obviously representations with compactly supported matrix coeffi-
cients, are in fact cuspidal. This could be done. (In fact, the W(y)
are already cuspidal on K’.) However, we prefer to cite a result
of Jacquet ([5]), which says an irreducible representation of GI, with
compactly supported matrix coefficients is automatically cuspidal.
(This has been generalized by Harish-Chandra (see [2]) to general
p-adic groups.)

CONCLUDING REMARKS. (a) The case of the basic inductive step
of Theorem 2 when j is even contrasts sharply with the intricacy
of our arguments to accomplish the same step when j is odd. Thus
one may hope that Theorem 2 has a proof considerably simpler than
the one we give.

(b) It seems likely that much of the construction given here
for Gl, can be carried over to other p-adic groups of classical or
Chevalley type. This would require either a case-by-case analysis,
or some general structure theorems involving considerably more
detail then those now in the literature. The complete construction
for GIl,, however, hinges on the knowledge of the cuspidal repre-
sentations of Gl, over a finite field. Thus until the representation
theory of other finite algebraic groups is better known, the full
construction given here is limited to GI,.

(¢) It follows from remarks of R.P. Langlands that Theorem 2
allows one to attach a supercuspidal representation of GI, to each
irreducible representation of degree » of the Weil group of F, (for
n prime to p). It should of course be checked that this correspond-
ence has the proper L-function theoretic properties.
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