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THE FOURIER TRANSFORM FOR NILPOTENT
LOCALLY COMPACT GROUPS: I

ROGER E. HOWE

In his work on nilpotent lie groups, A. A. Kirillov intro-
duced the idea of classifying the representations of such
groups by matching them with orbits in the dual of the lie
algebra under the coadjoint action. His methods have proved
extremely fruitful, and subsequent authors have refined and
extended them to the point where they provide highly satisfac-
tory explanations of many aspects of the harmonic analysis
of various lie groups. Meanwhile, it appears that nonlie
groups are also amenable to such an approach. In this paper,
we seek to indicate that, indeed, a very large class of
separable, locally compact, nilpotent groups have a Kirillov-
type theory.

On the other hand, elementary examples show that not all such
groups can have a perfect Kirillov theory. The precise boundary
between good and bad groups is not well defined, and varies with
the amount of technical complication you can tolerate. At this stage,
the delineation of the boundary is the less rewarding part of the
theory, and will be deferred to a future publication. In the present
paper, we lay some groundwork, and then discuss a particularly
nice special case, which also has significance in the general picture.

Since Kirillov's approach hinges on the use of the lie algebra
and its dual, the first concern in imitating his theory is to find a
lie algebra. In §1, we consider the generalities of the algebraic
aspects of this problem. We rely very heavily on Serre [10].
Indeed, the beginning of §1 is a summary of the fourth chapter of
[10], with differences in emphasis to fit the present need. The major
tool is the Campbell-Hausdorff formula, which we use to prove some
elementary facts on nilpotent groups, as well as to construct lie
algebras.

In § II, we discuss the structure theory of locally compact nilpotent
groups. We should emphasize here that we are dealing with groups
which are genuinely nilpotent in the algebraic sense, and which have
a topology. We do not consider groups which are nilpotent only in
some topological sense. Specifically, G is fc-step nilpotent if the
ascending central series ^{G\ %T{2)(G) , satisfies %'{k){G) = G.
Alternatively, if x, y e (?, define the commutator (x, y) of x and y by
(x, y) = x~ιy~ιxy. Define the order of a commutator inductively: all
x e G have order one; the commutator of commutators of orders %
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and j has order i + j . G{ί) is the closed subgroup generated by all
ith order commutators. G is ft-step nilpotent if G(fe+1) = {e}, the trivial
subgroup.

Let us say a locally compact group G is a quasi-torsion group
if every xeG generates a subgroup whose closure is compact and
pro-finite. G is a quasi-p group, if every xeG generates a pro-p
group. We will show that a locally compact nilpotent group G is
built in a fairly well defined way out of its identity component, a
discrete group, and a quasi-torsion group. Since the identity com-
ponent is very much like a lie group, and since at least finitely
generated discrete groups have been analyzed in [5], we shall focus
our attention in this paper on the harmonic analysis of quasi-torsion
groups. Since we can show that a quasi-torsion nilpotent group is
the restricted direct product of quasi-p groups, in direct generalization
of the classical Sylow decomposition of finite nilpotent groups, we
need actually consider only quasi-p groups. For these groups, we
establish, at the end of §11,

THEOREM I. Let & be a k-step nilpotent separable locally compact
quasi-p group, with p > k. Then there is a locally compact abelian
quasi-p group P, equipped with a bilinear operation [ , ]: P x P—*P,
making into a k-step nilpotent locally compact lie algebra; and there
is a homeomorphism exp:P—»^, with inverse denoted by log, which
sends Haar measure to Haar measure, and establishes a bisection
between closed subgroups of & and closed subalgebras of P, and
satisfies the Campbell-Hausdorff formula. Moreover, inner auto-
morphisms of & pull back via exp to define an action Ad of &
on P by measure-preserving automorphisms. P and exp are unique
up to isomorphism.

This theorem forms the basis of our analysis of the representations
of &>, carried out in § III. For any locally compact group G, we let
C*(G) be the enveloping C*-algebra of LX(G), and M{G) the primitive
ideal space of C*(G). Let C(G) (with no star) be the continuous
functions, C0(G) those with compact support. If G is totally discon-
nected, we let Jzf(G) stand for the space of locally constant functions
of compact support—the Schwartz-Bruhat space. If H £ G is a
closed subgroup, V a representation of H, then UV>H, or Uv, (or U+ H

f

or U* if V is finite dimensional with character ψ) denotes the repre-
sentation of G induced from V on H. Recall that a representation
U of G is CCR if UiL^G)) consists of compact operators.

Returning now to ^, if ^ C ^ is a subgroup, then iϋ = l o g ^
will denote its inverse image in P. Similarly, if R Q P is a subalgebra,
then & — exp R will be the corresponding subgroup of &. Con-
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jugation in & will induce actions on various objects, and one of
these actions will be denoted by Ad or Ad*, depending on whether
it seems like a direct action or a dual action. In particular, we have
an action Ad* on P, the Pontryagin dual of P, and we will denote
the quasiorbit space, that is the space of orbit closures, of the action,
by Q(P). It has, of course, the quotient topology.

We will, whenever convenient, identify functions on & and P
by means of exp and log. In particular, we take j*%^*) into J^(P),
and then by means of the Fourier transform, to J%f(P). This will
be referred to as the Fourier transform for 0>.

Finally, if R £ P is a subgroup, and ψeP, we will say R is
subordinate to ψ if ψ([R, R]) = 1, or equivalently (in our case of
p>k) if ψ defines a one-dimensional character of ^?, if R is a sub-
algebra.

The main result of the paper summarizes for & the facts of
harmonic analysis we have come to expect for nilpotent groups.

THEOREM II. There is a canonical homeomorphism a;Q(P)—>
M(^). Given an Ad* & quasiorbit Θ £ P, and ψ e Θ, then there are
subalgebras R £ P, subordinate to ψ, such that U^^ is irreducible,
with kernel a{θ). Such a representation is CCR if θ is actually
an orbit; in which case the induced representation is of course
independent of ψ and R; and J ^ ( ^ ) is sent to operators of trace
class. The Fourier transform for & defines a bisection between
Ad 0*-invariant positive definite functionals on Jϊf(έ^) and Ad* &-
invariant positive measures on P. For quasiorbits θ which are
actually orbits, (and so homogeneous spaces), the unique Ad* &*-
invariant measure supported by θ defines (a multiple of) the canonical
trace. The Plancherel measure for £P corresponds to Haar measure
on P.

We establish Theorem II as a sequence of propositions, rather
than in one piece.

L Nilpotent groups and lie algebras* Nilpotent groups are
relatively easy to analyze because they form a fairly neat category,
with manageable universal objects and close connections with abelian
groups. Here we systematically expose the consequences of these
facts, largely following [10].

Let N be a &-step nilpotent group, with some set X = {XJ of
generators. Let F(X) be the free group on X. Then there is a
natural homomorphism a: F(X) —* N. Since N is Λ-step nilpotent, a
is trivial on F ( fc+1), and so factors to a map on F/F^k+1) = Nk(X),
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which we may refer to as the free fc-step nilpotent group on X,
since it clearly has the universal property suggested by that name.

There are natural surjective homomorphisms πk: Nk(X) —> Nk^(X).
The kernel of πk is βf(Nk) = NΐK (In general %r*(Nk) = Nίk+i~j).)
%*(Nk) is known to be a free abelian group, and its rank is finite
and known if *(X), the cardinality of X, is finite. In particular Nk(X)
is torsion free.

Now, given a set X, and a commutative, associative ring with
unit A, one may construct the free A-lie algebra over X as follows.
Take M(X), the set of all nonassociative words in the elements of
X, that is, the smallest set containing X and containing all ordered
pairs formable from elements of itself. (M(X) is also known as the
free magma on X.) M(X) has a natural law of composition, i.e.,
taking ordered pairs. The free A-module on M(X), with multiplication
extended A-linearly, is the free A~algebra over X. It is not associa-
tive. Dividing out by the ideal generated by all elements of the
forms aa and (α(δc)) + (c(αδ)) + (δ(cα)) yields J*f(X, A), the free A-lie
algebra on X. It has the appropriate universal property. It also
has a natural graded structure, £f = φΓ=i Ltf derived from word
length in M(X). ^f{j), the jth group in the descending central series
of £f, is (BT=sLi. Thus one may consider ^ = ^f/^fik+1)( = φJULi

as A-modules) to be the free A -step nilpotent A-lie algebra on X,
again with evident universal property.

We may also construct from X, the tensor algebra T(X, A) over
A(X), the free A-module over X. T(X, A) is also the free associative
algebra over X. The lie subalgebra of T(X, A) generated by X is
isomorphic to £f(X, A), and T(X, A) is isomorphic to the universal
enveloping algebra of J*f(X, A). T is of course graded, and the
gradings of J2f and T are consistent, i.e., L< = Sf Π Tt. If we
consider Γ/φΓ=fc+i Tt = S\, then ^7~k is an appropriately nilpotent
enveloping algebra for Sfk.

Returning to F(X), we consider grF(X) = 0Γ=i F{i)/F«+1). The
commutator operation 0,2/) factors to a bilinear map on grF(X),
making this into a lie algebra, and with this structure grF is iso-
morphic to £f(X, Z). At this point, it is appropriate to remark that
for any A, £f(X, A) = £f(X, Z) ® z A; and similarly for the various
other universal objects we have mentioned.

Now suppose division by k\ is permissible in A. Then we may
define exp:^^—>^l and its inverse, log, by the truncations of the
usual formulas. ^Vk{X9 A), the image of £fk(X, A) under exp, is a
multiplicative group. If A is torsion free, then {exp X{: Xt e X]
generates a group isomorphic to Nk(X), and the natural filtration of
Nk is consistent with the filtration given by the e x p ^ ( 3 ) . Since

9 A) is a group, given ylf - ,yne £fky Π?=i exp yt = exp z for
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some ze£fk. The specific functional relation between the yt and
z is the Campbell-Hausdorff formula, which we will refer to as
C. H.

Before giving C. H. in an explicit form, we introduce some
numbers, useful in using it. a(j) is defined as follows: let p be a
prime, and let j = ΣctP*, with 0 <; ct < p; put rp(j) — Σcif and a(p, j) =
[logprp(j)]f where [x] here denotes the greatest integer less than x,
and logp means logarithm to base p; then a(j) = ΐ[pp

a{Ptiκβ(j) will
be the least common multiple of the numbers no greater than j . 7(j)
is the product of primes no greater than j , and δ(j) = 7(j)7([i/2])"1.
We note that δ(j) divides y(j) divides β(j) divides j \ , and a(j) divides
β(j) divides j \ Also note β(j) divides β(j + 1), and similarly for 7,
but not for δ or a.

C. H. may now be written in the form z = log (Π?=i e χ P Vt) —
ΣJ=iO"! aU — l ))" 1 ^, where S$ is an integral sum of commutators
in the #/s, with S1 = Σ?=i 2/< C. H. is the main tool in linearizing
the properties of nilpotent groups, that is, relating structure in
ΛΊ(X, A) to structure in £fk(X, A). Let G be a subgroup of Λ%(X, A),
and L = logG its inverse image in JZfk(X, A). Let L be the additive
subgroup generated by L. By the method outlined in [5], for the
proof of Proposition 0, it may be shown that k\ a(k — 1)L £ L, and
in fact, as k increases this estimate gets worse. A much simpler
calculation shows that if y 6 Jίfh, and exp y normalizes G, then [y, L] £
/3(& — 1)-1L. These facts allow one to use C. H. effectively in estab-
lishing properties of nilpotent groups. Here are some typical appli-
cations, which will be useful later.

LEMMA 1. Let N be a k-step nilpotent group, generated by a
subset X Q N, consisting of torsion elements, whose orders are all
bounded by n. Then N consists of torsion elements, of uniformly
bounded order, depending only on k and n. Also if #(X) (the
cardinality of X) is finite, so is %(N).

Proof. In ^Vl{X, Q), consider G, the group generated by
{expX>. xeX}. v As we have said, G = Nk(X). Let L = logG, and
let L be the additive subgroup of β2

sJ generated by L. Let G' be
the group generated by {expwlXJ, and let Ώ, U be analogous to
L,L.

It follows easily from the two facts stated above that any
commutator in the Xt is contained in n\~~kβ(k — l)~kU. From this,
it follows that for zeG, n\kβ(k - lfkl2a(k - I)2 is a bound on the
order of the elements of G/G' and hence of H, since H is a homo-
morphic image of G/G'. Since, if X is finite, Jtfk(X, Q) is finite
dimensional over Q, G/G' is finite in this case.
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COROLLARY. In any nilpotent group, the torsion elements form
a characteristic subgroup.

LEMMA 2. In a nilpotent group, any torsion element commutes
with any divisible element.

Proof. Consider, in Nh{x, y) £ ^Vh{x9 y, Q), the normal subgroup
G generated by exp y, and G', the normal subgroup generated by
exp ny for some n, and let L, L, U, U be as usual. Since exp x
normalizes G, it follows that if z = nkβ{k — ϊ)k+1k\2a(k — lfx, then
[z, L] £ k\ a(k — 1)1/ £ Lr. Hence in Nk(x, y)/G', exp z centralizes y.
Since the general situation is again a homomorphic image of this
one, the lemma follows.

LEMMA 3. In a nilpotent group, the divisible elements form a
characteristic subgroup.

Proof. If they form a subgroup, it is certainly characteristic.
Put now G = Nk(x, y) £ Λϊ(xf y, Q) with G' generated by exp nx,
expny. The Z/s as before. By reversing the estimate of Lemma
one, we see that Ώ £ nkβ(k — T)~kk\~~2a(k — 1)~2L, and from this it
is easy to see that the product of divisible elements is divisible. In
fact, the set of elements divisible by any given set of primes forms
a characteristic subgroup.

We now wish to investigate the existence of lie algebras for
groups G £ ΛΊ(X, A). Let L £ -Sf̂ ί-X, A) be any additive subgroup,
and let L( i) be the additive subgroup generated by all ith order
brackets of elements in L. The form of C. H. shows that in order
that expL be a subgroup of ^Ϋl{X, A), it suffices that LU) £
i ! a(j — 1)L. A single condition which guarantees this is L(2) £
2Ύ(k)L. This condition is convenient to work with, so we focus
attention on it. An L with this property, and also the group expL,
will be called e.e., short for elementarily exponentiable. If G is a
general subgroup of <yK*k(X, A), with L, L as usual, then L(2) £
β(k - I)"1!/. It follows by simple calculation, using k\a(k - 1)L £ L,
that there are Lx and L2, both e.e., such that (2n{k)β(k — l))kL2 £ L,
and Lγ — k\ a(k — ϊ)δ(k)L. Since Lγ £ L, we note that the general
subgroup G of Λ&X, A) contains a normal e.e. subgroup such that
the quotient is a torsion group, with elements of uniformly bounded
order, the bound depending only on k.

Now, if L £ Sfh is e.e., then exp L = G can be considered to
have a lie algebra, namely L. Then exp: L —> G is a bisection, with
log as inverse, satisfying the Campbell-Hausdorίf formula, in the
sense that log (exp x exp y) is given as the appropriate sum of com-
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mutators in x and y, as indicated by C. H. This is in fact a situation
with intrinsic meaning, verifiable in an abstract setting, as we now
show. Let L be any abelian group equipped with a bracket operation
which is anti-symmetric and satisfies the Jacobi identity, and which,
therefore, may be considered a lie algebra. Suppose L is λ -step
nilpotent, i.e., every (k +1) st order commutator vanishes. If [L, L] 2
2Ύ(k)L, and if L has no p-torsion for primes p less than k + 1, then
we will say L is e.e.

PROPOSITION 1. // L is an e.e. k-step nilpotent lie algebra, then
there is a k-step nilpotent group G, and a bisection exp: L —> G,
with inverse log, satisfying the Campbell-Hausdorff formula. G and
exp are unique up to isomorphism.

Proof. Since C. H. determines the group law, uniqueness is clear.
Let AQ be the smallest subring of Q which contains Z, and in which
division by k\ is permissible. Consider L as a Z-module, and form
U = L ® z Ao. By our assumption on the torsion properties of L,
the natural map L—>U is monomorphic, so we may consider L as
a subalgebra of U. For an appropriate X, there is a surjection
σ: £fk(X, Ao) —*U. Consider σ~\L). If a, beσ~\L), then since L is
e.e., there is c in σ~\L) such that [a, b]-2y(k)c = d e kerσ. Since
ker σ is an A0-module, df = 2l{kyid e ker σ, so [a, b] — 2τ(ft)(c + d')9

so σ~\L) is an e.e. subalgebra of =S (̂X, Ao), and ker σ £ o~\L) is an
ideal, and, since ker σ is an A0-module, it is trivial that [σ~\L)f kerσ] Q
2Ύ(k) ker σ. Put now Gι = exp σ~\L). G2 = exp ker <7. Then Gly G2

are subgroups of ^Vk{X, Ao), G2 is normal in Glf and moreover the
relation just above shows log (gG2) = log g + log Gi9 for any g e G^
It follows that exp factors to a map from L = σ~\L)[keτ σ to GJGi9

and this obviously satisfies C. H. This establishes existence.
The above proof suggests a more general situation. If L is an

e.e. subalgebra of Jίfk(X9 A), and U £ L is a sublattice, such that
[L, L'] £ 2r(k)L'9 we will say 1/ is e.e.-embedded in L. U is then α
fortiori e.e., and (?' = exp U is a normal subgroup of Gx and also
log (gGr) = log gr + log G\ so that exp factors to a well defined bisection
exp: L/L'~>G/G'. If L/I/ has no p-torsion for primes p < k + 1, then
we are in fact in the situation of Proposition one, and may say exp
satisfies C. H. and is essentially unique. However, if there is p-
torsion for p <*k, it no longer makes sense to say exp satisfies C. H.
It has certain nice properties: for example, it is a homomorphism
from abelian subalgebras of LjU to abelian subgroups of (?/(?'; and
any e.e. subalgebra of L factors to a subalgebra whose image under
exp is a subgroup of G/G'; but its uniqueness, the extent to which
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it is canonical, is unclear. Nevertheless, it is desirable to have even
a noncanonical lie algebra for a group. In this connection we have

PROPOSITION 2. Let N be a k-step nilpotent group. Then there
is a torsion-free k-step nilpotent group G, and a surjective homo-
morphism h:G-+N, with the property that there are two normal, e.e.
subgroups M19 M2 of G, with G 2 Λfi 2 Λf2 2 (ker h) Π Λfi, and with
M2 e.e.-embedded in M19 and such that G/M19 and MJkev h Γ\Mγ

are torsion groups, all elements of which have order dividing
k\a(k~ l)δ(fc).

REMARK. Thus long thin relatively commutative groups can be
linearized fairly successfully, while short, fat, relatively noncommu-
tative groups cannot.

Proof For a suitably large set X, consider ^V*k{X9 Q)9 and choose
a subgroup G isomorphic to Nk(X)9 and let h: G —> JV be any surjective
homomorphism. Let L, L be related to G as usual, and put L1 —
k\ a(k — l)δφ)L. Let V be the lattice generated by log ker h, and
put L2 — U Π Lj. Let Mx = exp L19 and M2 = exp L2. As we remarked
above, Lt is e.e.; it is clearly invariant under conjugation by G. Also
[L, I/] £ β(k - I ) " 1 ! / . Hence [L19 L2] S 2τ(fc)L2, for the same reason
that Lx is e.e. So M2 is a group, normal and e.e.-embedded in Mίm

The rest is clear.
We thus have the following corollary essentially established in

[5].

COROLLARY. A p-group, for any prime p > k, has a uniquely
defined lie algebra.

Thus, by using e.e. lie algebras, we may satisfactorily linearize
a large number of nilpotent groups. This procedure, however, has
the disadvantage that it begins with lie algebras and constructs the
corresponding groups. It would be desirable to have an intrinsic
description of groups which are satisfactorily linearizable in the above
manner. The last corollary provides one answer to this problem.
Another, still crude, answer is contained in the following results.

PROPOSITION 3. Let G be a k-step nilpotent group, with no p-
torsion for primes p <Lk. Then in order for G to be e.e.t it is
sufficient that every commutator (x, y) in G be zm for some zeG,
where m = 27(fc)(l.c.m.{j! a(j — 1): j <; k}).

Proof. First suppose G £ ^Vi{X9 A) for some X and A, and let
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£, L be as usual. Using C. H., particularly the case of it noted in
the appendix of [5] regarding commutators, one may show that the
above assumption on commutators implies [L, L] Q L. Then, the
same process, by bootstrapping, implies [L, L] £ 2Ύ(k)L, so L is in
fact e.e. It follows that Lγ = k\ a(k — 1)L is e.e.-embedded in L.
Since G(2) £ L1 by assumption, a second bootstrap shows that in fact
[L, L] £ Li. We also have, of course, that Lt £ L. We now have
that log (xy) — log x + log y (modulo Lλ), and from this, it is immediate
that log x + log y e L, so L = L.

For general G, take ^Ϋ\{X, Ao) as in Proposition one, choose Go Q
sA\{X.y Ao), isomorphic to Nk(X), and let h: G0-—*G be a surjective
homomorphism. Let M be the Ao submodule of J*fh(X9 A) spanned
by logkerfe. Then it is easy to see that expikf is a subgroup of
ΛΊ(X, Ao), normalized by Go. Since y eM=>k\ny elogkerh, we see
that our restriction on the torsion properties of G imply expMnG0 =
ker h. Therefore, if GL is the subgroup generated by exp M and Go,
there is a unique extension hλ of h to Glf such that ker hx = exp ikf.
Now, our assumption on G implies, for x, y e Glf (x, y) is the 2k\ a(k —
l)7(&)th power of z9 modulo exp M. But since M is an A0-module, G1

actually satisfies the condition also. Finally, we see expikf is e.e.-
embedded in G19 so h1:G1—+G defines an e.e. linearization of G.

PROPOSITION 4. IfGQ *^V\PL, A) is any subgroup, with L, L as
usual, and if L1=^ k\ a(k — l)7(fc)Z#, then Gx = expLx is exactly the
subgroup G' ofG generated by the k\ a(k — l)τ(&)th powers of elements
ofG,.

Proof. Obviously Gt 2 G'. On the other hand log G' clearly
generates Lλ as additive group. Hence [Lί9 Lx] g=k\a(k — 1)LX Q
log G\ k\ a(k — 1)1^ being amply e.e.-embedded in L19 the same pro-
cedure as the final step of Proposition 3, in the case G £ <yVl(X, A),
shows logG' is actually closed under addition, and so equal to Lx.

II* Topological structure of nilpotent groups* A good place
to start, when analyzing a class of topological groups, is with the
connected ones. Recall ([4], Theorem 9.8) that a connected locally
compact abelian group is of the form Rn x C, where C is connected
and compact.

LEMMA 4. If N is a connected, nilpotent locally compact group,
and %*(N)=Rn x C, then N = N/C is a simply connected lie group.

Proof. Put Qo = βtT(N)/C, Qt = βtri+1(N)/%r%N) for i ^ 1. It
suffices to show that Q( is isomorphic to Rnt. This is true by
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definition for ί = 0. The situations being entirely parallel for
i :> 1, it suffices to consider Qιβ We must show that the compact
part of Qi is trivial. Let x e Qt generate a group A with compact
closure. If x is not the identity then (x, N) £ %Γ(N) is a nontrivial
subgroup. Choose any χ 6 JΓ, such that (x, N) g£ ker χ. Then, for
each neN, χn(y) = χ((#, n)) for ^ e i defines a character on A; and
the map n-+χn is a homomorphism from N to JL , which is nontrivial
by construction. But this is impossible, because N is connected and
A is discrete.

Then it is nice to know how the connected component of the
identity sits in a nonconnected group.

LEMMA 5. Let N be a locally compact nilpotent group, No the
identity component of N, and D the centralizer of NQ. Then N/D = M
is torsion-free, and NQ/3Γ(N0) = Mo is open in M.

Proof. Take any meM. Then m defines an automorphism m
of No. Let C be the compact part of %*(N0). Then Adm leaves C
stable. (In fact, C is "topologically characteristic" in No.) Let C\m)
be the subgroup of C centralized by m, and C\m) the subgroup of
elements left fixed modulo C\m). N being nilpotent, C\m) is nontrivial,
and if C\m) Φ C, SO is C2(m)/C\m). By inspection of the action of
Ad* m on C\m) (which is torsion-free since C is connected) we see
it is torsion-free if it is nontrivial. If it is trivial, then C\m) = C,
and Ad* m defines a unipotent automorphism of the lie algebra of
No/C, which again cannot be a torsion element.

To show MQ is open in M, it suffices to show M/MQ is discrete.
But since M/Mo is totally disconnected, if it is not discrete, it contains
a nontrivial compact subgroup ([4], p. 61). Let m$M0 be in the
inverse image of M of such a subgroup. Then C\m) = C. For
otherwise, let A be the closed group in M/Mo generated by m. Then

for aeA, and any χ 6 C\m), a —> χ(α), given by χ(α)(c) = χ((α, c)), for

ceC\m), defines a homomorphism A—>C\m), which must be trivial,

since A is compact, but C\m) is discrete and torsion-free. Therefore
C\m) = C\m) = C. Hence Ad m factors to a unipotent automorphism
of the lie algebra of No/C, which normalizes Ad Mo, and so generates
with Ad Mo a closed group of automorphisms of N, of which Ad MQ,
the identity component, is open. This is again inconsistent with the
hypothesis on m, so M/Mo must actually be discrete.

COROLLARY. If neN, and the image of n in N/No is a quasi-
torsion element, then there is nQeN0, such that Aάn and Aάn0

agree on No.
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Proof. The hypothesis on n implies, by Lemma 5, that the image
of n in M/Mo is the identity.

The next step is to analyze totally disconnected groups.

LEMMA 6. Let N be a totally disconnected, nilpotent, locally
compact group. Let Hlf H2 be any two compact subgroups. Then
H3, the subgroup generated by H^ and H2, is also compact.

Proof. Since N is totally disconnected, and H1 and H2 are compact,
by induction on the nilpotent length (see Lemma 8), there is a compact
open subgroup M normalized by Ht and H2. We may clearly assume
MQ Hi9 i = 1, 2. Then M will be a compact open normal subgroup of
H3 and HJM will be generated by HJM and HJM, which are finite
torsion groups. By Lemma one, HJM is also finite, so H3 is compact.

COROLLARY. The set of quasitorsion elements form an open
normal subgroup of N.

Proof. That they form an open set follows from the existence
of open compact subgroups. That they are a normal set is obvious.
That they are a subgroup follows from the lemma.

Denote by Nc the subgroup of quasitorsion elements of totally
disconnected nilpotent N.

COROLLARY. NC is expressible as an increasing union (inductive
limit) of open compact subgroups.

Of course, if Nc is separable, it is the union of a countable
increasing sequence of compact open subgroups.

If M S Nc is open and compact, then M is pro-finite, and as such
has Sylow p-subgroups M"p([ll]). The basic structural fact for finite
nilpotent groups ([3]) carries over in the protective limit to imply
that each Mp is unique and normal, and M is the direct product of
the Afp's. Define Nc(p) to be the union of the Mp'& as M ranges
over all open compact subgroups; then Nc(p) will be a closed normal
subgroup. The following is now clear.

LEMMA 7. If M Q Nc is any open compact subgroup, then Ne

is the restricted direct product of the Ne(p)'8 with respect to the Mp's.

Now we show that, although open compact subgroups of Nc are
not normal, they almost are.

LEMMA 8. Let M £ Nc be open and compact, let neN. Then
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some power of n normalizes M. Reciprocally, given a finite number
of elements n19 , nt of N, there are open compact subgroups Mxζ=
M Q M2, with Mi normalized by n3 .

Proof. We prove the second statement first. Certainly, there
are subgroups of ^(N), contained in and containing %*(M), which
are normalized by nl9 * 9nι. Assume that, given any compact neigh-
borhood U of the identity, there are compact, relatively open subgroups
M}9 Ml of %\N)9 contained in and containing U, and normalized by
n19 "',nt. Then suppose M\+1, Mt+1 are relatively open groups of
βtTi+ί(N), such that M}+1 Π %* = M). In order for Mγι to be nor-
malized by n19 , nk, it is necessary and sufficient that (nh, M]+1) Q
M) for 1 ̂  h ̂  I. But since taking commutators is continuous, we
clearly can choose Mf+1 small enough to accomplish this; and on the
other hand, if we choose Mi big enough, we may also make M£+1

very big. By induction then, we may find Mί9 M2 as desired.
For the first part, given M and n, we choose MtQ M Q M2, Mi

normalized by n. Then Aάn factors to an automorphism of MJMί9

some power of which must be trivial; this power will in particular
normalize M.

COROLLARY 1. A totally disconnected, separable, locally compact
nilpotent group N may be expressed as the union (inductive limit)
of an increasing sequence of open subgroups Ni9 such that each Nt

contains a compact subgroup Ku such that Kt is open in N, and
NJKi is discrete and torsion-free, and arbitrarily small neighborhoods
of the identity contain normal open subgroups.

Proof. Since N is separable, N/Nc is countable. Choose a sequence
{ni}T=1 which generate iNΓ-modulo Nc. Let Md be a compact open
subgroup of N, normalized by {wjf=1. Then in the group generated
by the {wjf=1, the subgroup contained in Nc is, modulo Mj9 a finitely
generated ([3], p. 153) torsion group.

Then choosing Kj large enough to contain Mΰ- and this subgroup
too, and to be normalized by {wj£=1, we get, provided we pick the
K/s big enough that they exhaust Nc, the desired sequence.

COROLLARY 2. All locally compact nilpotent groups are unimo-
dular.

Proof. This is immediate from Lemma 8 for totally disconnected
groups. But on the connected component Ad n, for neN, acts as
a unipotent, hence measure-preserving automorphism. The combination
of these facts quickly gives the corollary.
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We now give closer attention to the Sylow, quasi-p groups. The
next lemma is the analogue for quasi-p groups of Lemma 4.

LEMMA 9. Let Np be a nilpotent quasi-p group. An element
xe Np is divisible if and only if it is divisible by p. Let D be the
subgroup of divisible elements. Then if D is torsion-free, division
by p is continuous on D if and only if D is closed. In this case,
D is isomorphic to a unipotent algebraic group over Qp (the p-adic
numbers).

REMARK. By a unipotent algebraic group over Qp, we will always
understand the Q^-rational points of such a group with the locally
compact topology.

Proof. Any x e Np is contained in a compact subgroup K. If
Kf is an arbitrary small open normal subgroup of K, then KjK is
a p-group, so if n is prime to p, x —> xn induces a bijection on K/K'.
Hence x has an nth root modulo Kr. In the limit, it has an wth
root. Suppose now D is torsion-free, and division by p is continuous.
Without loss of generality, we may assume D is dense. In this
case, consider ^{Ό) = %*(N) Π D. This is then an abelian group,
and Lemma 2 shows it is preserved by division by p. Hence re-
striction of division by p to %{Jΰ) is continuous. Thus, given a
compact neighborhood V of the identity, there is a compact open
subgroup U such that all pth roots of elements of U Π 3?(D) are
in V. Now if x e WζD) (closure), then we may find y e 3Γ(D), such
that y — xe U. Let {Za} be a net in Γ̂(-D) Π U approaching y — x.
Then {ZJp} has a cluster point q in V, which, by continuity of
taking pth powers, must be pth root of y — x. Thus p((y/p) — q) = x,
so x is divisible by p. Similarly x is divisible by pn for any n.
Hence %φ) is a closed subgroup of %*(N). Now consider the pro-
jection π: N—*N/%'(D) = Nf. If D' is the group of divisible elements
of Nr, then it is easy to verify Όf — π(D). But now N' is of smaller
nilpotent length than JV so by induction, we may assume Όf = N'.
Then one quickly sees that D = N also.

On the other hand, suppose D is closed. It is then a divisible
torsion-free nilpotent quasi-p group. Now on any abelian subgroup
of Dx taking some power is a homomorphism. We see that in
particular %{ϋ) is a Z-module; and the topology is such that it is
in fact a (locally compact) Q^-module. It is well known ([12]) then
that %{J)) is isomorphic to Qp for some m. Dividing out by %{J)\
we may assume by induction that D/%*(D) is a unipotent algebraic
group over Qp. D being a central extension of D/%f(D) by Q™, it
clearly is such also. Division by p is then clearly continuous on D.
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COROLLARY. If N is a divisible locally compact nilpotent quasi-p
group, and T is the subgroup of torsion elements, then T Q %~(N),
and N/T is an algebraic unipotent group over Qp.

Recall a topological group is finitely generated if it has a finitely
generated dense subgroup.

LEMMA 10. Let M be a compact, torsion-free nilpotent quasi-p
group. Then M is isomorphic to an open subgroup of a unipotent
algebraic group over Qp if and only if (M)p is open in M if and
only if M is finitely generated.

Proof. The first condition clearly implies the second and third
conditions. On the other hand, from the work of Malcev ([1]), or
from §1, a finitely generated, torsion-free, nilpotent discrete group
Γ is canonically embeddable in a unipotent algebraic group NQ over
Q. Giving NQ the p-adic topology, and completing, Γp, the completion
of Γ becomes a compact group, and the natural inclusion Γ—*M extends
to a surjective homomorphism h: Γp —> M. Since M is torsion-free,
we see that H, the smallest divisible group of NQp (the p-adic com-
pletion of NQ) containing kerh, is normal in NQp, and also Hf] Γ—keτh,
so that M is naturally isomorphic to Γp/keγ h C NQJH. Finally, we
see that, if M is abelian, then taking pth powers is a homomorphism,
and if pM is open, then actually M is a finitely generated Zp (p-adic
integers)-module, and so is finitely generated. But clearly the cate-
gory of finitely generated pro-p groups permits group extensions.
Hence, by induction on nilpotent length, nilpotent pro-p groups M
such that Mp is open are finitely generated.

REMARK. Of course, unipotent algebraic groups over Qp are the
most interesting examples of nilpotent quasi-p groups. Their repre-
sentation theory is in fact already known ([8]). The above lemmas
indicate the role they play in the class of all quasi-p nilpotent groups.

At this point, we note that by a straightforward process of taking
a protective, then an inductive limit, Theorem I (stated in the intro-
duction) follows from Proposition one and the corollary to Proposition
two.

Harmonic analysis* We begin with a result which is in
fact independent of lie algebras, and holds for a general separable
locally compact nilpotent group. First we make some definitions.
If G is separable and locally compact, H QG a closed subgroup,
then we have certain maps r and i, from ideals in C*(G) to ideals
in C*(H), and vice versa. If I £ C*(G) is a closed two-sided *-ideal,



THE FOURIER TRANSFORM FOR NILPOTENT 321

let I1 Q G{G) be the cone of all continuous positive definite functions
which, considered as elements of the dual of C*(G), annihilate I. We
call I1 the dual ideal associated to /. Let r(I) be the ideal in C*(iϊ)
annihilated by the restrictions to H of all functions in I 1 . Then
r(I)L is the set of all / e C(H) which are unif orm-on-compacta limits
of restrictions of gel1. Reciprocally, starting with J, a closed,
two-sided *-ideal of C*(H), take J1 Q C(H), and identify / e J1 with
the measure fdh on G, where dh is Haar measure on H. Then
consider all positive definite functions in C{G) which are unif orm-on-
compacta limits of (positive) sums of functions in C{G) of the form
α*/ώ/&*α*, where aeC0(G), α*& indicates convolution, and α* is the
adjoint of a (as an element of C* ((?)). These functions make a cone,
which is I 1 for some two-sided closed *-ideal I of C*(G), and we
define I = i(J).

These maps are simply the extensions to general groups of the
r and i of [5]. They have the same properties. Specifically, if U
is a representation of G, with kernel / in C*(G), and if the restriction
of U to H has kernel J in C*(H), then J = r{I). Reciprocally, if V
is a representation of H, with kernel J in C*(H), and if the repre-
sentation of G induced by V has kernel I in C*(G), then / = i(J).
Also, i(r(/)) £ I if G is amenable, and r(i(J)) £ J. If i(r(I)) = /, we
say J is induced from, or may be reduced to, H.

Of particular importance is the case H when is normal, and I
is primitive. Then conjugation in G induces an action Ad* G/H of
G (H acts trivially) on M(H), the primitive ideal space of H. If
IeM(G), i.e., if I is primitive, then r(I) is an Ad* G/H quasiorbit
in M(H), so r defines a map r: M(G) —> M(iϊ; G), the quasiorbit space
of M(JBΓ) by Ad* G/H, which we call the relative primitive ideal
space of H in G, by virtue of this map r.r is surjective and con-
tinuous.

PROPOSITION 5. Let N be a separable, locally compact kstep
nilpotent group, and IeM(N). If I corresponds to a faithful
represention of N, of degree not one, then I can be reduced to a
(k — l)-step nilpotent normal subgroup. In any case, there is a
closed subgroup M, and a one-dimensional character χ of M such
that the representation U% of N is irreducible, with kernel I in
C*(N).

Proof. Let U be any representation of N with kernel / in C*(N).
Then U defines a character ψ on ^{N). ψ depends only on J, and
by our assumption on I, it is faithful. Consider the pairing
d: 3TW(N) x JV— T (the circle) given by d(z, n) = ψ((z, n)). d in
fact factors to a pairing d: βf{2)(N)/βtr(N) x N/Nw -+ T. Let A
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be a maximal closed abelian subgroup of ^Γ(2)(iV), and let N± be the
centralizer of A. Then Nί is normal in N, and if N is A -step nilpotent,
N, is (fc-l)-step nilpotent, because srw(N)ΠNί = AQ%β(N1). Now
d becomes a faithful pairing d: A/3Γ(N) x N/Nt —* 2\ and so defines

homomorphisms: dί:A/%'(N)-*'ί7/Nί and d2: N/N^A/^iN). d, and
c£2 are injective and have dense images.

Let π: JV—"JN/JVI be the quotient map. If / e l 1 , then a simple
calculation shows that, for α e i , Ad*α/(w) = /(ana'1) = f(n)d(a, π(n)) =

) (the bar here denotes complex conjugate). Thus the
adjoint action of A on I 1 is simply multiplication by characters of
-N/Ni. Since the image of dx is dense, it follows by taking uniform-
on-compacta limits, that if φ is any positive-definite function on N/N19

then φfel1 whenever fel1. Now let {φ3} be a positive definite,
positive-valued approximate identity in L^N/NJ. Then if dn is Haar
measure for N9 φ5dn converges, in the weak *topology on measures,
to a Haar measure dnγ on Nλ. Therefore, if beC0(N), b*φ3f*b*
converges to bxfcdn^b* uniformly on compacta, where /x = flNl. Thus
i(rIL)) = J 1, and I 1 may be reduced to JVΊ, which is the first state-
ment of the proposition.

We prove the second statement by induction on the nilpotent
length of N. By dividing out by an appropriate subgroup, we
may immediately reduce to the case of the first part of the propo-
sition. Use the notation developed there. Then r(I) is an Ad* N/Nt

quasiorbit in MίNJ. Let JeM(Ni) be such that the closure of this
orbit is r(I). Then we have i(J) — I. By induction, there is a
closed subgroup M of Nίf and a character χ of M, such that the
representation V%'M of N± is irreducible, with kernel J. Consider the
induced representation U%iM = UvX'Nl of N. A simple calculation here
shows that, under U%, A is mapped to multiplication operators on
N/Nlf exactly as described above. It follows immediately that U%

is irreducible. As our previous comments show Uχ has kernel I in
C*(N)f this completes the proposition.

From now on, we restrict our attention to a &-step nilpotent
quasi-p group ^ , with p > k. We notice first that, for & compact,
the main theorem plus explicit multiplicity formulae for tensor
products and induced representations follows simply by taking the
projective limit of Theorem 3 of [5]. Hence our main task is to
cope with the inductive limit necessary to realize a noncompact &.
We deal first with the question of attaching ideals to orbits.

Let P be the lie algebra of &. If R is a closed subalgebra of
P, then we write & for the subgroup exp R of ^ , and vice versa.
We use the rest of the notation of the introduction also. Take ψeP.
We will say R is a polarizing subalgebra for ψ if R is subordinate to
ψ and is a maximal subgroup of P with respect to this property.
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LEMMA 11. For any f eP, there exist polarizing subalgebras
R for ψ. Moreover, R aan be chosen so that it contains a specified
maximal abelian subalgebra of JΓ(2)(P), and such that Ad* &(φ) =
Ad* ^{f)(\ψ + RL, this set being dense in ψ + R1 (here R1 denotes
the annihilator of R in P), and such that U^^ is an irreducible
representation of &. (Note & automatically contains the isotropy
group of φ.)

Proof. As usual, we induce on the nilpotent length, and reduce
immediately to the case when ψ is faithful on %*(P). We recall
Proposition five, and use the d, A, and ^5

1( = JVi) introduced there.
If P1 = log &[, then we can assume by induction that there is i? S Pi
which polarizes ψ\Pr We observe that log A £ ^"(PJ, so R 2 log A.
We may assume log A is the specified subalgebra of JΓ(2)(P). We
see if x e P, and ψ([x, R]) = 1, then x e Pίf since log AQR, and hence
x e R. Similarly if Ad* y(ψ) e ψ + R1 for ye^, then y e ̂  since
log AQR. But then Ad* (y)(f)\Pl £ ψ{Pl + R{PI9 SO by induction, and
since & contains the isotropy subgroup of ψ[Pι; y e &. Now
Ad* A(f) Qψ + Ptt and is dense there; combining this with the
parallel fact for & and ψ{Pl, we see Ad* &(φ) is also dense in
ψ + R1. Finally, if ψ restricted to & induces an irreducible repre-
sentation of ^ , the calculation of Proposition five shows it also
induces an irreducible representation of ̂ *.

The above lemma establishes a surjective relation a from Ad* &
quasiorbits in P to M{0*). Using the theorem already established
for compact groups, we can show the relation a is actually a function,
and in fact, bijective and a homeomorphism. In working with the
topology of M(&*)f we use the results of [2], which in our case we
may state in the following simple way. Two ideals Ilf I2 of C*(&)
are identical if and only if for every open compact subgroup M of
&, r{Iύ and r(I2) are the same. Even more directly, I1912 are the
same if and only if, given Uif with kernels Ii9 then UilM contain
the same irreducible components, for any M.

LEMMA 12. If M Q ^ is open and compact, let C £ P be its
lie algebra, and let π: P—+C be the natural map. Let V be an
irreducible representation of M corresponding to an Ad* M orbit
0. Take ψ e P, and let Rbe a polarizing subalgebra for ψ, satisfying
the conditions of Lemma 11. Let θ be the Ad* & quasiorbit of ψ.
Then U$* contains V if and only ifθn π~\Q) Φ 0 .

Proof. M being open and compact, the classical criterion [7] for
finite groups is valid here also, so Z7|ϊ"* contains V if and only if,
for some xe^, V contains Ad* x(ψ) restricted to x^x'1 Π M. This
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is the same as to say Ad* x(ψ + R1) Π π"\0) Φ 0 . But π~\0) is
clopen, and Ad* (α ̂ aΓ'XAd* x(ψ)) is dense in Ad* x(f + RL), by-
choice of ^?, so the desired statement follows.

PROPOSITION 6. Let Θ be an Ad* & quasiorbit in P. Take feθ,
let R polarize ψ, and satisfy Lemma 11. Then the correspondence
which assigns to θ the kernel I of TJΨ>m in C*(^) defines a natural
homeomorphism a between the quasiorbit space Q(P) and

Proof. The relation is clearly natural, and we have already seen
it is surjective. The remarks preceding Lemma 12 show that lemma
characterizes a(θ) solely in terms of θ, so a is in fact a function.
Let S be any set in Q(P), and θ e Q(P). lίθ^S, there is ψeθ, ψgS
(regarding θ, S, as subsets of P). Choosing a sufficiently large compact
open M, we will have π~ι(π(ψ)) f] S = 0. Since S is Ad* ̂ -invariant,
this will imply π~\0) Π S = 0 , where 0 is the Ad* M robit of π(ψ)
in logikf (π of course is the map P—>logikf). This establishes
immediately that a is one-one and a homeomorphism.

The correspondence being established on the level of point sets,
we now examine it in terms of harmonic analysis proper. We have
the following generalization of the Bochner theorem on the Fourier
transforms of positive definite functions on Lx{G)y G abelian.

PROPOSITION 7. Via Fourier transform, positive definite Ad* ̂
invariant functionals on Jzf(έ^) are identified bijectively with
Ad* ^-invariant, locally finite, positive measures on P. The
Plancherel measure for & transforms into Haar measure on P.

REMARK. A similar theorem has been proven by G. Schiffman
[9] for lie groups.

Proof. We know this already for compact groups. The non-
compact case is a purely formal matter of taking the inductive limit.
We have Szf (&) as the inductive limit over SzfiM.) as Mruns through
the open compact subgroups of &. The injection J*f(M) —> J^f {0*)
is given by extending / 6 s*f(M) to be zero outside of M. We have
also the restriction maps backward. Similarly, if C g P i s open and
compact, then Jχ?(P) is the inductive limit of the subspaces consisting
of functions constant on the cosets of C. Running through these
limits gives the result, since the Fourier transform is natural with
respect to the various injections. Since exp preserves Haar measures,
and Ad* & is a measure-preserving group of automorphisms, the
statement about the Plancherel measure follows from the classical
Plancherel theorem for abelian groups.
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The above, then, is the broad outline of representation theory
for the groups in question. One would, however, like to know some
of the details. For example, it seems plausible, after the p-adic
and compact examples, that there should be exactly one Ad*^-
invariant measure carried on each Ad* & quasiorbit. This is closely
related to the question of whether Q(P) is T19 which, by virtue of
a, is equivalent to all primitive ideals of C*(&) being maximal. The
traditional proof, for the real or p-adic cases, that the orbits are
actually closed does not generalize, and I cannot patch it at present.
When & is actually a discrete torsion group, then P is compact,
and the distality of Ad* ^ , which is readily verifiable, then assures
the result; but in this case invariant measures are readily constructible
without reference to any such deep theorem. We may also remark
that for 2-step groups, it is quite easy to see that Q(P) is 2\; and
it is perhaps worth remarking that Haar measure on the cosets of
various subgroups invariant by Ad* & give examples of positive
Ad* ^-invariant measures on P.

This being the general situation, we now restrict ourselves to
some nicer special cases.

PROPOSITION 8. Take θ e Q(P), and suppose any Ad* & orbit in
θ is dense. Then θ supports an Ad* ^-invariant measure.

Proof. Fix U, a compact, clopen subset of θ. Given a compact
open subgroup M Q &r let U{M) be the union of the translates of
U by M, and let μ(M) be any Ad* M-invariant positive measure on
U(M), such that μ{M)(JJ) = 1. Let F be any compact subset of θ.
Given xeF, we can, by our assumption on 0, find ge^ such that
Ad* g(x)e U. Then Ad* g~~\U) will be a compact neighborhood of x.
F being compact we may find glf , gn such that FS= U?=i Ad* gi\U).
Then, for any M containing the gi9 we will have F ςzU(M), and
μ(M)(F) ^ n. Thus as M increases to fill ^ , we may take a <*>*-limit
of the μ(M)'s, which will be an Ad* ^-invariant measure on θ.

For closed orbits, we can say more. Not only does an invariant
measure exist, but it may be identified with (some multiple of) the
canonical trace on the representation space, because the representation
with the appropriate kernel is OCR, and J ^ ( ^ ) is mapped to trace
class operators.

Before stating the final proposition, we remark that, in direct
analogy with Lemma 12, if & Q & is a closed subgroup, and ψeP
defines a one-dimensional character on ^?, then U^'^ has as kernel
in C*(^) the primitive ideal a(θ), θ e Q(P), if and only if ψ + RL Q θ.

PROPOSITION 9. If θ is a closed Ad* & orbit in P, then an
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irreducible representation with kernel a{Θ) is CCR. In particular,
there is only one class of irreducible representation with kernel a(θ).

Proof. Take ψeθ, and suppose R is a polarizing subalgebra for
ψ, as in Lemma 11. Then keτU+>* = a(θ). To verify U+** is CCR
it suffices to check that for any representation V of any compact
open subgroup M of ^* the multiplicity of V in U^^]M is finite.
This multiplicity is equal to the sum over double cosets &xM of
the multiplicities with which Ad* x(ψ) restricted to x~λ^?x Π M is
contained in V similarly restricted. Let J*Z be the isotropy group
of ψ. Since θ is closed, it is homeomorphic to ^jjzf. Since & 2
jxf, we may consider the natural map m: θ —• ^ / J ^ —• &\&.

Let 0 S logikf be the Ad* ilf orbit of V. If TΓ: P-^loglf, then
π~\0) is compact, and so, therefore, is its image under m in ^ / ^ ? .
Since M is open in ^* m(τr~1(0)) can consist of only finitely many
M orbits. But these orbits correspond to the double cosets &xM
for which the above indicated multiplicity can be nonzero (this is a
direct extension of Lemma 12. See also [5]), so the total multiplicity
of V in U+*** is indeed finite.

To conclude, we would like to remark that the methods developed
above may be used to extend the results of [8] to the case of a
function field over a finite field. Specifically, let F be such a field,
of characteristic p, and for k < p let y^ be any λ -step nilpotent,
unipotent algebraic group over F, with lie algebra N. Then all
localizations of Λ^ are CCR, and the usual orbit picture holds. Sup-
pose N is a vector space over F. Let ~/ΓA be the adele group of
^V\ and let χ be a basic character of FA in the sense of [12]. Using
χ we identify NA with N*9 the algebraic dual. Then the represen-
tations of ^V\ occurring in the natural representation on L\^4rJ^4r)
(which is just Uu^) are exactly those which correspond to orbits
in N* containing points of JSP. Each representation occurs with
multiplicity one. Also, if C s ^ ^ is a compact-open subgroup, such
that there is a compact open C, normalizing C, and such that
C^V— ^KΆy then the multiplicity with which the identity represen-
tation of C occurs in the restriction of U1"^ to C, may be computed
using the Riemann-Roch theorem of [12].

REFERENCES

1. L. Auslander et al, Flows on homogeneous spaces, Ann. of Math. Studies, no. 53,
Princeton Univ. Press, 1963.
2. J. M. G. Fell, The dual spaces of C*-algebras, T. A. M.S., 94 (1960), 365-403.
3. M. Hall, The Theory of Groups, The Macmillan Co., 1959.
4. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Springer-Verlag, 1963.
5. R. Howe, On representations of discrete, finitely generated, torsion-free, nilpotent



THE FOURIER TRANSFORM FOR NILPOTENT 327

groups, Pacific J. Math., 73 (1977), 281-305.
6. A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi. Matem.
Nauk., 106 (1962), 57-110.
7. G. W. Mackey, Theory of group representations, University of Chicago, mimeo-
graphed notes, 1955.
8. C. C. Moore, Decomposition of unitary representations defined by discrete subgroups
of nilpotent groups, Ann. of Math., 82 (1965), 146-182.
9. G. Schiffmann, Distributions centrales de type positif sur un groupe de Lie nilpotent,
Bull. Soc. Math, de France, 96 (1968), 347-355.
10. J. P. Serre, Lie Algebras and Lie Groups, W. A. Benjamin, Inc., 1965.
11. 1 Cohomologie galoisienne, Lecture Notes in Math., 5, Springer-Verlag, 1965.
12. A. Weil, Basic Number Theory, Springer-Verlag, New York, 1967.

Received May 21, 1977.

YALE UNIVERSITY

NEW HAVEN, CT 06520






