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ELLIPTIC CURVES OVER COMPLEX QUADRATIC FIELDS

BENNETT SETZER

This paper concerns elliptic curves defined over complex
quadratic fields and having good reduction at all primes.
Those fields are characterized which support such curves
having a 2-division point defined over the field. The number
of isomorphism classes, over the ground field, of these curves
is also determined. For curves without a 2-divison point
defined over the field, the possible Galois groups of the 2-
division field over the rationale are determined. Using class
field theory, it is shown that certain complex quadratic fields
support no elliptic curves with good reduction everywhere.

1* WeiPs conjecture concerning elliptic curves defined over the
rational field, Q, has inspired much work concerned with determining
such curves with bad reduction only at specified primes. For example,
Ogg [7] and Coghlan [2] determined all elliptic curves over Q with
bad reduction only at 2 and 3. In [8], a certain class of curves is
treated having bad reduction only at one prime. In this article, we
take up the analogous problem over complex quadratic fields. Through-
out, we will let k = Q[i/—m] where m is a positive, square-free
integer. The specific question we are concerned with is whether
there is an elliptic curve defined over k having good reduction every-
where. Tate has given some examples of fields k for which there
is such an elliptic curve (unpublished). Stroeker [9], has shown that
there are no such curves over the nine fields with class number 1.
In the last section, we compare our results with Stroeker's.

The program followed in this paper is to consider separately the
case in which the desired curve does or does not have a 2-division
point rational over k. We have completely determined those fields
k over which there are such curves with a rational 2-division point
(Theorem 3). Also, we can specify how many isomorphism classes
(over k) of such curves there are. In particular, there are infinitely
many suitable fields k. It is of interest that these curves have
i-invariant 173 or 2573.

For curves without a 2-division point rational over k, we have
determined the possible Galois structures of the normal closure over
Q of the 2-division field (Theorem 2). Theorems 2 and 3 together
make it possible to determine all the elliptic curve with good reduction
everywhere over certain fields k (Theorem 4). In particular, over
Q[τ/— 65], there are precisely 8 such curves, up to isomorphism.

For general results on elliptic curves, in particular the isomor-
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phism formulae, see Appendix I in [5]. For a discussion of reduction
types and integral models, see Tate's article in [10].

We would like to thank the referee for his comments, particularly
concerning the revisions of proof of Theorem 2.

2* The form of the discriminant* We assume that E is an
elliptic curve defined over a number field K. Let 31 be the greatest
common divisor of the discriminants of all integral models of K.
Any integral model of E then has discriminant 5ΪS312 for some integral
ideal S3. More precisely:

THEOREM 1. Let E and Sί be as described. Then, there is an
ideal class <£ such that for every integral ideal S3e£ there is an
integral model of E with discriminant SΪS312. Conversely, any integral
model of E has discriminant SIS312 for some S3 e (£.

Proof. The final statement of the theorem reflects that the
discriminant is homogeneous of weight 12. Now, suppose B has a
model with discriminant δIS312 and that §3' is an integral ideal equi-
valent to S3, say S3 = wS3', u e K, u Φ 0. We will show the existence
of integers r, s, t (determined up to congruences) such that transform-
ing the given model by

(1) x = u2xf + r y = v?y' + u2sxf + t

yields an integral model with discriminant 8ί(S3')12. Since r, s, t will
be integral, inspection of the transformation equations shows that
it will be sufficient to insure the integrality of the new coefficients
locally for each prime dividing u to a positive power.

Suppose, then, that φ is a prime such that ψ exactly divides
u where e > 0. Since S3' is integral, $βe divides S3 and so ^312e divides
the discriminant. Now, by the definition of % there are uίf rlf s19 tλ e
if, ux Φ 0 such that the transformation

x = u\xf + n y = u\yf + sjilx' + n

yields an integral model of E with discriminant 2Ϊ(S3")12 where 3̂ does
not divide S3". So Sβd divides uγ where d ^ e. Now, examining the
transformation equations for the coefficients of these models discloses
that rl9 slf tγ are Sβ-integral and may be varied mod ψd arbitrarily
without disturbing the integrality of the new model at Sβ. This
implies that restricting r, s, t to certain residue classes mod Sβ6e will
insure integrality at β̂ after the transformation (1).

Arguing similarly for each prime dividing u to a positive power
and finally applying the Chinese Remainder Theorem proves the
theorem.
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In our particular case of interest, we have the

COROLLARY. Let E be an elliptic curve, defined over a number
field K, having good reduction everywhere. Then there is an ideal
class & of K such that the set discriminants of integral models of
E is precisely the set of ideals 3312 where 95 is an integral ideal in (£.

We mention in passing that since 3512 must be principal, we have
the further

COROLLARY. E, K as in the previous corollary. If the class
number of K is prime to 6 then E has a global minimal model.

Indeed, 95 must be principal so the unit ideal is a discriminant
of E.

3* In this section, we investigate the normal closure, over the
rational field Q, of the 2-division field of an elliptic curve. The curves
discussed are defined over the field k — Q[\/—m] where m is a positive,
square-free integer.

THEOREM 2. Let E be an elliptic curve defined over k having
good reduction everywhere, and having no 2-division point defined
over k. Let K be the normal closure, over Q, of the 2-division field
of E. Let G - Gal (K/Q). Then

(a) If L is any cubic extension of Q, contained in K, then L
is not Galois over Q. The only primes which can ramify in L/Q
are those dividing 2m. The only prime which can triply ramify
in LfQ is 2.

(b) G is isomorphic to one of these three groups: (i) S3; (ii)
S3 x Z/2Z; (iii) S3 x S3.

(c) In case (ii), there is a unique sub field of Q with Galois
group S3 over Q. This field is totally real. In case (iii), there are
exactly two Sz extensions of Q contained in K. One of these is
totally real, the other, totally complex.

REMARK. Any SB extension of Q contains a unique quadratic
extension of Q. This quadratic field will be called the discriminant
quadratic. In the proof of Theorem 2, it will be seen that, given
a field K with Galois group G isomorphic to one of those given in
(b), the field k may be recovered as follows. If G~>S3, then k is
the discriminant quadratic of K. If G ~> S3 x Z/2Z, then k is fixed
by the S3 factor of G. If G ~> S3 x So, then k is the third quadratic
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subfield contained in the composite of the two discriminant quadratics
of the two &j extensions of Q contained in K.

Proof of Theorem 2. We first introduce some notation: g will
denote an element of G which is the restriction to K of some complex
conjugation in Gal (Q/Q). g may depend on the choice of conjugation.

Bo = 2-division field of E over k .

ft = conjugate of Bo by g .

H, = Gal (if/ft) Ho = Gal (K/BQ) H = Gal (K/K).

if is a normal subgroup of G of index 2. g is not in H, so G is
generated by H and g. Since J?oft = i£, the subgroups Ho and ft
have trivial intersection. We also have Hx = gHog~\ The following
diagram of fields and groups will be useful:

Bo

\

Here, e and / denote the field extension degrees.
Bo is generated over k by the roots of a cubic #3 + a2x

2 + a4x + α6

where y2 = α;3 + α2x
2 + α4α; + α6 is a model of i? with α< 6 k. The 2-

division points are, in this model, the points (x, 0) on the curve.
Since we assume no 2-division point is defined over k, the cubic xs +
a2x

2 + a^x + a6 is irreducible over k. Thus, Bo is Galois over fc and
has Galois group H/Ho isomorphic to S3 or ZjZZ. Considering the
operation of g on H, we see that Hx is also normal in H and that
H\ΐlγ x H/HQ. This implies that ϋfoi?! is a normal subgroup of H.

To determine the structure of the group G, it is helpful to
consider the action of G on X = E(Q) x E(Q)β, where .E(Q) is the
set of algebraic points on E. (We take g here to mean complex
conjugation on the field of algebraic numbers Q). X has the structure
of an abelian variety defined over Q, so Gal (Q/Q) acts naturally on
X as a group of homomorphisms. Consider the restriction of this
action to X2f the group of 2-division points of X. X2 is fixed by
Gal (Q/ίΓ) since K contains the co-ordinates of these points. Thus,
there results an action of G on X2 The action of G may be described
as follows. If heH, then there is a natural action on each factor
E2(Q) and E2(Q)9 since E and E9 are defined over k. Complex con-
jugation acts by (Plf Pξ)a = (P2, P?) where Pί9 P2eE2(Q). X2 has the
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structure of a vector space of dimension 4 over F29 the field with
two elements. For convenience, we will denote the subspaces E2(Q)
and E2{Q)g by UQ and U1 respectively. G acts as a group of nonsingular
linear transformations on X2. H leaves each subspace Uo and Ux-
invariant. We will choose a basis of X2 by taking the union of bases
for Uo and Ux. G then maps homomorphically onto a subgroup of
Gl (4, F2) the group of 4 x 4 nonsingular matrices with entries in F2.
The image of each element of H is of the form

« * W) - (ί w,
where R, TΓβGl(2, F2). By appropriate choice of basis, we may
assume that g has the image

ί°
U

where I is the 2 x 2 identity matrix.
Now, H acts faithfully on X2 since K is generated over k by

the co-ordinates of these points. But, the image of H is a proper
subgroup of the image of G since g $ Im (JET). Thus, G also acts
faithful on X2. We will henceforth identify G with its matrix
representation. Since Bo is generated over k by the co-ordinates of
points in Uo, HQ is the subgroup of elements of H of the form
M(Iy W). Similarly, Hx is the subgroup of elements of the form
M(R, I).

We turn to the proof of (a). The only primes which may ramify
in BJk, and so also in BJk, are those dividing 2. This follows im-
mediately from the fact that the ^-division field of an elliptic curve
is ramified at most at primes which divide n or the conductor (see
[6] p. 673). This implies that for any odd rational prime, the rami-
fication index in K/Q equals the ramification index in k/Q and so is 1
or 2. So, any prime ramifying in K/Q must divide 2m. Let L/Q
be a cubic extension contained in K. The preceeding argument
establishes all the assertion of part (a) except that L/Q is not
Galois. But, if L/Q where Galois, any prime ramified in L/Q would
have ramification index 3. By our previous remarks, no odd prime
could ramify in L/Q, else 3 would divide the ramification index in
K/Q which must be 1 or 2. Thus, the only prime ramifying in L/Q
is 2, if L/Q is Galois. There are no such extensions of Q. For
example, such an extension would have to be contained in a 2-power
cyclotomic field. But, the degree of a 2-power cyclotomic field over
Q is a power of 2. Now a normal subgroup G of index 3 would
correspond to a cubic cyclic extension of Q contained in K. We thus
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see that G cannot contain a normal subgroup of index 3. We have
also proved part (a).

Next, we note that the order of G cannot be greater than 36.
In the notation of the subgroup diagram, since H/Ho is isomorphic
to S3 or ZβZ, we must have ef = 3 or 6. Now, the order of G is
twice the order of H which is ef2. The order of G is greater than
36 only if / - 6 and e = l, and so HϋHi = H. But, this implies that
Bo Π B1 = k and BJk and BJk are S3 extensions. Thus, each field Bt

contains a quadratic extension of k, say Ft. Now, Fo = k(ζ) and
Fλ = k(ζ9) where ζ2 = Δ e k and Δ is the discriminant of a model of
E. But, by Theorem 1, Δ generates an ideal which is a 12th power.
So, AΔ9 = Nk/Q(Δ) = n12 for some neZ. Thus ζζ9 = n*ek so Fo = Fx

and so k = 2?0 Π #1 "D Fo. This contradiction establishes the second
observation.

The proof of part (b) will be completed by determining the
subgroups H of Gl (4, F2) satisfying the following properties: H
consists of matrices of the form M(R, W); H is invariant under con-
jugation by g; H acts as S3 or ZβZ on Z70; the group G generated
by g and H is of order less than or equal to 36 and has no normal
subgroup of index 3. In the following discussion, we use the notation

which are elements of Gl (2, F2) and generate that group.
Consider first the case that H/H0~>Z/ZZ. In the notation of

the subgroup diagram, ef = 3, so / = 1 or 3. If / = 3, then Ho must
contain M(I, T) and Hx must contain M(T, I) and these matrices
generate the respective subgroups. Since e = 1, we have H = HJS^
which is thus generated by both M(I, T) and M(T, I). Finally, G is
of order 18 generated by g and M(It T). However, M(T, T) and g
generate a normal subgroup of G of order 6, so of index 3. This
contradicts the first observation. If / = 1, then H is 3 and must
be generated either by M(T, T) or M(T, T2) since gHg = H. In the
former case, G is abelian of order 6, so has a normal subgroup of
index 3. In the latter case, G is isomorphic to S3 and generated by
g and M(T9 T

2). This is case (i). The claim made in the remark
about this case is evident.

Suppose now that H/H0~>S3. Since H^ is a normal subgroup
of H, then HQHJH0 is a normal subgroup of H/HQf so of order 1, 3
or 6. That is, / = 1, 3 or 6. If / = 6, then H has order 36, so G
has order 72, which contradicts the above observation.

If / — 3, then H has order 18. Further, HQ must be generated
by Λf(J, T) and Hx by M(T, I). But, since H/H0~>S3, some matrix
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Λf(S, W) must be in H. If W = I, T or T\ then M(S,I)eH and
H1 would actually be of order 6. This implies that W = S, TS or
T2S so M{S, S) 6 H. The matrices M{I, T), M(T, f) and Af(S, S) generate
a group of order 18, which must be H. Thus, G is order 36 and
generated by M(I, T), M(S, S) and g. Consider the subgroup ίf2 of
G generated by Af(Γ, T) and #.M(S, S) and also the subgroup fΓ8

generated by M(T, T2) and g. These are normal subgroups of G
with trivial intersection which commute with each other. Each
subgroup is isomorphic to S3, so G ~> S3 x Ss. This is case (iίi). It
is easily checked that H2 and Hz are the only normal subgroups of
G of index 6. Thus, the fields fixed by H2 and HB are the only S3

extensions of Q contained in K. k is not the discriminant quadratic
of either of these fields since H2 and H3 are not contained in H.
However, the discriminant quadratics are fixed by the subgroup
generated by Af(Γ, T), gM(S, S) and M(T, T2) and by the subgroup
generated by Λf(Γ, T), g and M(T, T2). The composite of the discri-
minant quadratics is fixed by the subgroup generated by M(T, T2)
and M(T, Γ). This is a subgroup of Ή, so k is the third quadratic
contained in the composite of the two discriminant quadratics. Finally,
since g e H3, the fixed field is totally real. Conversely, since g $ H2,
the fixed field is totally complex. This is the assertion of part (c)
concerning (iii).

The last case to consider is / = 1. Since Ho has order 1, any
M(R, W) in H must have R and W the same order. Of the nine
such matrices, H must contain at least one of order 2 and one of
order 3. If M(S9 TS)eH then M(T\ T) = M(β, TS)M(S, TS)eH
already. Similarly, if M(S, T2S)eH then M(T\T)eH. But, if
M(T\ T)eH, then M(T, I K if else, M(T, I)eH and H, would not
be order 1. By multiplying a matrix in H of order 2 by one of
order 3, we see that H must always contain a matrix M(S9 W). It
is now evident that H must contain one of these pairs of matrices:
{Jf(Γ, T)\ M(S, S)}f {M(T, T), M(S, TS)}, {M(T, T2), M(S, T2S)} or
{M(T, T)f M(S9 S)}. Each pair generates a group of order 6, which
must be H. G then has order 12. These four possibilities for G
are actually all conjugate to each other by matrices of the form
M(R, W). This corresponds to a different choice of basis in Uo

and Ut and, perhaps, a new choice of the field automorphism with
matrix g. We need, then, examine only the case in which G is
generated by M(T, T), M(S, S) and g. H evidently commutes with
g and H ^ S3, so G a S3 x Z/2Z. This is case (ii). Now, g generates
the unique normal subgroup of G of index 6, so there is only one Sz

extension of Q contained in K. Since g fixes this field, it must be
totally real. This is the assertion of part (c). The decomposition
of G into the product S3 x Z/2Z is unique, so the subgroup H is
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determined by G, which is asserted in the remark.
This completes the proof of Theorem 2.

3* Throughout this section, k = Q[v/ — m] will be an imaginary
quadratic field, m a positive integer, square free. Also, an elliptic
curve over k having good reduction everywhere and having a 2-
division point rational over k will be called admissible.

THEOREM 3. There is an admissible elliptic curve E if and
only if m — 65mt where m1 is a square mod 5 and mod 13 and 65
is a square modm^ If this is the case, then the number of isomor-
phism classes of such curveβ is 2r, where r is the number of primes
which ramify in the extension k/Q.

Proof. An admissible curve E has an integral model with odd
discriminant. Completing the square and translating a 2-division
point to the origin, we obtain a model

(1) y2 = xz + Ax2 + Bx

where A and B are integral. The discriminant is then

(2 ) Δ = -16B2(A2 - 4B) = 212D

where D is integral and prime to 2. This equation, for fixed D,
has only finitely many solutions A and B. But, Theorem 1 implies
that only finitely many D need be tried for a given field k. Using
the criteria for good reduction given below, it is routine to check
out the theorem for any given field k.

Before proceeding, we give the criteria we will use for testing
good reduction.

LEMMA, (a) Let ψ be a prime not dividing 2. Then an elliptic
curve E with model (1) has good reduction at 3̂ if and only if for
some eeZ, e ^ 0, ^β12e exactly divides A, ψe exactly divides B and
ψe divides A.

(b) Let ψ be an unramified prime dividing 2. Then an elliptic
curve with model (1) and discriminant as in (2) has good reduction
at Sβ if and only if A and B satisfy either of these sets of congruences:

(3 ) A = 2a2 (mod ψ) B = α4 (mod ψ)

(4) A = a2 (mod ψ) B=0 (mod ^4)

a is integral and prime to Sβ.
(c) Let Ω, be a ramified prime dividing 2. Then an elliptic

curve with model (1) and discriminant (2) has good reduction at £}
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if and only if A and B satisfy either the congruences (3) or (4)
with Sβ = 2 or they satisfy

A = 0 (mod O5) B = ττ4 + 8π (mod O8)

π2A - J5 Ξ π4 + π 6 or 5π4 + 4π5 + π6 (mod &10)

where π is a fixed unίformizing element.

Proof (a) Supposing E has good reduction at ^3, then E has
a model (1) with discriminant not divisible by $β. Note that the
conditions of the lemma are satisfied with e = 0. Any other model
(1) of E is obtained either by a dilation x' = u2x, yf = t&8y- or by
translating a different 2-division point to the origin. The translation
will not change the discriminant and so the condition remains true.
The dilation produces A! = u2A, Bf = u*B and Δf = u12Δ as parameters
of the new model. Let v(x) be the valuation at 5β. Now v(u) = e e Z
and e ^ 0 since J' is integral and v{Δ) = 0. But A\ B\ Δ' satisfy
the conditions with e as given.

If a model (1) is given satisfying the conditions, determine u so
that v(u) = — e but u is integral at all other primes. Then a dilation
with parameter u results in an integral model with v(Δ') = 0.

(b) Supposing E has good reduction at ^3, then E has a model

{ 6) y2 + α^?/ + α32/ = x* + a2x
2 + a4x + α6

with discriminant not divisible by 5β. Completing the square yields

( 7) y2 = x* + b2x
2 + 8&4α; + 16δ6

where

( 8) b2 =•• αϊ + 4α2 fe4 = ^i^3 + 2α4 66 = a\ + 4α6.

If $β were to divide alf then Ŝ could not divide α3 else (6) would
have bad reduction at 5β. Then one would deduce that the Newton
polygon of the cubic in x would be a single line of slope —(4/3).
But, the cubic is assumed to have a root in k, hence, 3̂ does not
divide ax.

In the remainder of this argument, we will only assume coefficients
to be φ-integral. Strong approximation then guarantees the truth
of these results for strictly integral models. With this in mind, (6)
may be transformed so that az = 0. Let ax = a. Then

{ 9) b\ Ξ= a2 (mod ψ) b4 = 0 (mod Sβ) δ6 = 0 (mod ψ) .

Conversely, if (7) satisfies these conditions, we can "uncomplete"
the square and eliminate Sβ12 from the discriminant.
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Now, the cubic in (7) has a root which has ^β-valuation ^ 3 or
= 0. Translating by one root, say θ, we obtain (1) where

A = 30 + b2 B = Zθ2 + 2bj9 + 864

(10) b2 = - 3 0 + A 8b4 = 302 - 2Aϋ + B

16&6 = -θz + Aβ2 - Bθ .

If the Rvalue of θ is 0, (3) is verified. If the φ-value of θ is
^ 3 , then (4) holds. Allowable transformations are dilations by u e &*
prime to % which will not change the congruences, and translating
a new point to the origin, which is simply making a new choice of
θ. So (3) or (4) are necessarily satisfied.

Suppose, on the other hand, that E has a model (1), discriminant
(2) and statisfies either (3) or (4). If (4) is satisfied, by the remarks
following (8), we may immediately uncomplete the square and so
remove 3̂ entirely from the discriminant. If (3) is satisfied, then
apply y = y, x = x~θ where θ = A/2(mod ψ) to obtain a model (7).
Then using (10), the congruences (9) on &2, 64 are easily seen to be
satisfied. For &6, note that θ2 - Aθ + B = (θ - A/2f - 1/4(A2 - 45).
Both terms are divisible by ^36 so all congruences (9) are satisfied.
Again, φ can be completely removed from the discriminant and (b)
is established.

(c) The argument of part (b) applies in this case with β̂ = 2
except that αx may be divisible by Sβ. We complete part (c) by
considering this latter alternative. The valuation of ax must be 1,
if not 0. This possibility gives rise to the conditions (5) as follows.

Assume we are given a curve E with model (6) and discriminant
prime to D. We may take αx = π a uniformizing element for O.
Further, since α3 must be prime to £}, we may take α3 — 1. Then
upon completing the square, the 6's satisfy these congruences:

(11) &2 Ξ= π2 (mod D4) 64 = π (mod O2) &6 = 1 (mod O4) .

The cubic in x has roots possibly of valuation 3 or 2. A con-
gruence argument shows that valuation 3 is actually impossible. So
asssume θ is a root of value 2. There can be only one such root.
It is possible to show that θ = ττ2(mod O4). Translating to a model
(1), the equations (10) may be used to demonstrate the first two con-
gruences of (5). The final condition is obtained from the fact that
-Zz + AZ2 - BZ = 16(mod012) has a solution with Z = π2(modD4).
It is easily checked that these conditions on A and B imply the
existence of a θ which will translate (1) back to a model (7) satisfying
conditions (11). Assuming the discriminant of (1) is given by (2),
this insures that uncompleting the square will remove Q entirely
from the discriminant.
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All that remains is to check that the conditions (5) are invariant
under permissible transformations of (1). Since there is only one 2-
division point, only dilations are allowed. It is easily checked that
the conditions will indeed remain unchanged. Finally, we note that
the choice of π is arbitrary, so the conditions must remain true
even if π is changed.

This completes the lemma.
We turn now to solving the discriminant equation (2). In what

follows, we assume m Φ 1, 3. These two fields are indeed found to
have no admissible curves E. As remarked before, only finitely
many possible curves result from (2) and these are easily checked
not to have good reduction at some prime.

Examining the conditions (3), (4), (5), there are three possibilities
for the 2 part of B:

( I ) B = 2eβ where e = 0 or 4
(II) B = 22/3 and 2 ramifies
(III) v^B) = 0, v2(B) = 4 where 2 splits in k and vlf v2 are the

two valuations.
β is in each case an algebraic integer prime to 2.

Case (I). According to the lemma, β must generate an ideal
which is a fourth power. But also, Δ = /212/33 where / == + 1 is a
unit. By the lemma, A2 = aβ where a is integral. Substituting
into (2) we obtain

a = 22+e — /28~2e

so a = -252, 260, 63 or 65. Let A, = A/6, A/2, A/3, A respectively.
Then A* = 7/3 or 65/3. This immediately implies that either 7 or 65
ramifies in k/Q. However, A2 — 7/3 is inconsistant with the con-
gruences (3) and (4). Indeed, these latter imply Ax or —A1 is a
square mod 4. But NiAJ = W where b is a rational odd integer.
(N is the norm k/Q.) Congruences will now yield a contradiction.

So now assume A\ — 65/3 and β generates a fourth power ideal.
If Ax is a square mod 4 we show that 2 or 4 nonisomorphic curves
with good reduction everywhere result according as m ΐ l or m =
1 (mod 4).

Assume m Φ1 (mod 4). If β is given then there are two choices
of B according to choiee of e and then four choices of A namely Aίf

—2Alf —Au 2Alβ But if Aι is a square mod 4 then only Aίt 2AL will
satisfy the congruences (3) or (4). The other conditions of good
reduction are satisfied by construction. To summarize we have

A = - 2 Λ B = 16-65"^ A2 = 65/3

A = A, 5 = 1 6 - 6 5 " ^ At -65/3.
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We compute C4, C6 and j for these curves

C4 = 24.65"1.257.A1

2 C6 = 26.65"1.511-A? j = 2573

(E2) C4 = ^.ΓΓ-ββ: 1 .^ C6 =-2β.65-1.7 i« j = 173.

Comparing ^-invariants, these curves are indeed nonisomorphic.
Assume m Ξ 1 (mod 4). The only change is that now —Au —2A1

both satisfy the congruences (3) or (4). So we get two more curves:

A =• 2Λ B = βδ^A2 Al = 65/3

A=-ΆιB= 16,65-^ At = 65/S .

For these curves we have

(E8) C2 - 24 65-1 257 A,2 C6 = - 26 65"1 511 A? j = 2573

(E4) C4 = 2* ΓΓ1 65-1.Aϊ C6 = ~26-65~1-7-A3 j = IT .

Comparing ^-invariants and C6 for all four curves, they are seen
to be nonisomorphic. ( — 1 is not a sixth power since m Φ 1.)

We turn now to investigating when possible β exist and how
many do. Suppose first that there are curves attached to β and
also to A Now β generates an ideal S34, βι an ideal SB}. We claim
that the sets of curves are isomorphic if and only if 33 and SBX are
equivalent ideals. Indeed the discriminant of any curve attached to
β in the above manner generates the ideal 2123312. If 33 and Ŝ  were
not equivalent then there could be no u such that Δ — v^Δx and the
curves could not be isomorphic (over k). If, on the other hand,
gS = u^lf then the dilation x — u2xly y = uzyx will carry each curve
attached to β1 to one attached to ±β. Indeed, B and Ax are deter-
mined up to sign and powers of 2 by the ideal S3. But —β cannot
have curves attached since — 1 is not a square in k. Thus, the
curves obtained by dilation are attached to β.

Thus each ideal class will have 0, 2 or 4 curves attached and
different classes have nonisomorphic curves. Let φ5, φ13 be the
ramified primes dividing 5 and 13 respectively. An ideal S3 will give
curves precisely when ^3δ^i3^2 = [A^ is principal and A1 is ± a square
mod 4. That 3̂δ̂ i3S32 is principal is just to say that ^#S13 is in the
principal genus, which is equivalent to the congruence conditions of
the theorem. (See [1] p. 245.) Assume first that m φ 1 (mod 4). Given
any odd integral ideal S3 such that φ5$β13SS2 = [AJ is principal, then
A1 must be ± a square mod 4 and so two curves will result. Given
one such ideal S3, any other is obtained as 9ΪS3 where W is principal
and prime to 2. There are then 2r~1 classes from which S3 may be
chosen where r is the number of primes ramifying in k/Q (see [1]
p. 247). Thus there are 2r curves for this field.
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Assume m = 1 (mod 4) and 93, Aλ as above. Let p2 = — m. Then
Ax =Ξ 1 or ^(mod 2). In the former case At is a square mod 4, so no
curves result. Now all possible choices of 33 are given as 2133 where
Sί2 is principal. The ideal class of SI contains two abmiguous ideals,
that is, integral ideal composed entirely of ramified primes. Both
ideals are even or both odd. If both of these ideals are odd then
SI may be taken as either one. But this will simply change At by
multiplying by an odd rational integer, the norm of Sί, which will
not change whether Ax is a square mod 4. On the other hand, let
9Ϊ = ^ ( l + p) which is an odd integral ideal. Sί2 = [(m - l)/2 - p]
is principal. Multiplying 33 by Sί will change whether A1 is a square
mod 4. Thus, for general Sί, if both ambiguous ideals in the class
of are even, then multiplying by Sί will change whether A1 is a
square mod 4. It is now evident that there are 2r~2 admissible choices
of 33. Since four curves result for each, there are 2r curves in all.

The remainder of the proof will be to show that cases (II) and
(III) do not result in any curves.

Case (II). This results if A, B are to satisfy the congruences
(5). Again, since B = 4/9, D = fβ3 where / = ± 1 and A2 = aβ.
Substituting into (2) we have a = 0 or 32.

Assume a = 0. Then A = 0. The congruences on B then imply
that m = 1 (mod 4). If m = 1 (mod 8) then β = l + 2ρorl + 6p (mod 8)
where p2 = —rn. But then N(β) = 5 (mod 16) which is not a fourth
power. But β generates a fourth power ideal, so this cannot occur.
If m = 5 (mod 8) then β = 5 or 5 + 4ρ (mod 8) so ΛΓ(/3) = 9 (mod 16),
again not a fourth power. Thus if a = 0 no curves result with good
reduction everywhere.

Assume a = 32, then A2 = 32/9 and so A= 4ττ(mod06). Now
N(β) = b* where b is an odd rational integer, so N(A) = 32ί>2. The
congruences (5) then imply m = 2 or —2 (mod 16).

If m == 2 (mod 16) then from N(β) = 1 (mod 16) and 2/9 = (1/16)A2

being a square we deduce /9 = 7 (mod 4). But then B s 12 (mod 16)
which contradicts (5). If m Ξ —2 (mod 16) then β = I(mod4) so B =
4 (mod 16). This again contradicts (5).

This completes case (B). No curves are found for this case.

Case (III). This results when different ones of the congruences
(3), (4) hold for the two primes dividing 2. B generates the ideal
φ$34 where 33 is odd and integral. But D generates 3512, assuming
good reduction at odd primes. Thus ^ 2 = [g] say. The discriminant
equation (2) becomes
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if g is chosen so that D — — g^B*. Then N(g + 26) is a square. Let
g = 1/2 (a? + |02/) where x, # are odd integers. Then N(g + 26) =
2β(128 + a>) = 2*-t2 and t is an odd integer. Let S = »/t Now
(l/2(£ + ^ ) ) 2 = flf. Let λ = l/2(ί + *p) then A2 = h-ι ±B{h + λ*),
where •* denotes complex conjugation. So h + h* = t which must
have even valuation at all primes. Since t is not dividible by any
ramified primes, this means t is ± a rational square. Combined with
the fact that t2 + ms2 = 256, this leaves only two possibilities for
m: 7 and 255. If m = 255 then [A] = ^352. But 5βx is not a square
ideal class so there will be no curves admissible resulting. If m = 7,
the finitely many solutions are found not to satisfy (3) or (4), so no
admissible curves result.

This completes Case (III) and the theorem.

5* In this section, we discuss some numerical examples. These
examples result from the fact that for certain complex quadratic
fields &, there can be no field K, galois over Q, enjoying all the
properties described in Theorem 2. If this is the case, then any
elliptic curve over k having good reduction everywhere must have
a rational 2-division point over k. These curves have been completely
determined in Theorem 3.

Determining whether or not suitable fields K exist for a given
complex quadratic field k can be reduced to searching a table of
cubic extensions of Q. To see this, consider the three possibilities
for G given in Theorem 2. If K has Galois group S3> let F be
one of the cubic fields contained in K. We claim that the discriminant
of F is either — m or — 4m. Indeed, any prime ramified in F/Q but
not dividing 2 cannot be triply ramified, so must appear in the dis-
criminant of F to the first power. Since the discriminant of F is
a square times — m, such a prime must also divide m. For 2, the
highest power that can divide the discriminant of F is 8. These
assertions concerning the p-part of the discriminant of F are taken
from the table on page 568 in [4]. We now see that the discriminant
of F must divide 8m. Conversely, m must divide the discriminant,
since any prime ramifying in kfQ also ramifies in F/Q. Finally, — m
differs from the discriminant of F by a square factor, so disc (F) =
—m or —4m as claimed.

If K has Galois group S3 x Z/2Z then, as noted in Theorem 2(b),
K must contain a totally real S3 extension of Q. Let F be a cubic
field contained inside this S3 extension. The previous argument applies
to show that the discriminant of F must divide 8m. Also, the dis-
criminant of F must be positive. For the final possibility for G, the
argument proceeds as before to show that there are two cubic exten-
sions of Q contained in K having discriminants dividing 8m with one
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positive, one negative. Putting this together, we have the first part
of this proposition:

PROPOSITION, Let k — Q{V—m] be a complex quadratic field,
where m is a square-free positive integer. There exists a field Bo

which is an extension of k with Galois group either Sz or ZβZ
and such that BJk is unramified outside of 2 if and only if there
is a nongalois cubic extension F/Q with one of these properties:

(a) Disc(F) = —m or — 4m
(b) Disc (F) > 0 and disc (F) divides 8m.

To prove the converse, note that in case (a), we may let Bo be
the S3 extension of Q containing F. In case (b), Bo is the composite
of k and the Sz field containing F. These fall into cases (i) and (ii)
of Theorem 2.

The tables in [3] suffice to check for values of up to m = 161.
The positive discriminants are listed up to 1296, the negative discri-
minants, up to 1000 (pp. 159-160). Of the values of m for which it
can be shown that no field Bo exists and which fall in this range, only
one satisfies the conditions of Theorem 3. We have then

THEOREM 4. (a) There are no elliptic curves over Q[i/—m]
having good reduction everywhere if m = 1, 2, 3, 5, 6, 7, 10, 13,14,15,
17, 21, 22, 30, 33, 34, 39, 41, 42, 46, 47, 55, 57, 58, 62, 66, 69, 70, 73, 77, 78,
82, 85, 86, 93, 94, 95, 97, 102, 103,105, 113, 114,119,122,130,133,134,137,
138, 143,145, 146, 149, 151, 154, 159, or 161.

(b) There are 8 elliptic curves, up to isomorphism, defined over
—65] having good reduction everywhere. Each such curve has

a 2-division point defined over Q{\/—65].

Stroeker's main result in [9] is that any elliptic curve defineed
over a complex quadratic field k and having good reduction everywhere
does not have a global minimal model, that is, the curve does not
have an integral model with a unit discriminant. Stroeker deduces
from this that for m = 1, 2, 3, 7, 11, 19, 43, 67, 163, there are no
elliptic curves over Q[V~m\ having good reduction everywhere.
These are, of course, just the fields of class number 1. By using
the second corollary to Theorem 1, this may be extended to:

THEOREM 5. If the class number of k = Q[\/—m] is prime to
6, then there are no elliptic curves defined over k having good reduc-
tion everywhere.
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