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AN INEQUALITY INVOLVING THE LENGTH, CURVATURE,
AND TORSIONS OF A CURVE IN EUCLIDEAN
n-SPACE

JOEL L. WEINER

Let x be a closed nondegenerate C* curve in E” parame-
trized by arc length s. We prove an inequality for such z
which lie in a ball of radius R. For nonplanar curves in E®

the inequality is
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where L is the length of x, and » and r are the curvature
and torsion of x, respectively. Equality holds only if z is a
great circle on a sphere of radius . We also obtain from
the general inequality necessary conditions on the length,
curvature, and torsions of x in order that x be a closed
curve or a closed curve with at most one corner.

1. Definitions. We say a C" curve z in E™ is nondegenerate
if it has a Frenet framing. That is, there exists an orthonormal
set of vector fields ¢, ¢, ---, ¢, along x such that

’

2 =e
e = Ke,
(1) e, = —Ke, 7.
e = —T,0 + 758,
;o
€, = —Tp—26n_1 »

where the prime denotes differentiation with respect to arc length,
k£ is the curvature, and 7, 7, +--, 7,_, are the torsions of x. For
the remainder of this paper, we assume that x is nondegenerate
and 7,#0, for 1 =1,2,.--,n — 2. In what follows we also let
z, =k and 7,_, = 0.

We say «:[0, L] — E" is closed if it induces a C™ mapping x: S'—
E*, where S! is the circle. To say z:[0, L] — E™ is closed with at
most one corner means that x(0) = x(L) but «'(0) need not equal
2'(L).

Define z;, = (x, ¢;), for t = 1, 2, ---, n, where (, ) denotes the inner
product in E*. Then from (1) we obtain
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2 =1 + K,
Ty = —KX + T,
(2) Ty = — Ty, + Ty,
.I
Ln = T

2. The inequality, Now suppose that x is closed with at most
one corner; if x is not closed let #(0) = x(L) = origin in E™.

THEOREM. Let |x| < R. Then
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where q¢ = [(n — 1/2)], tt, = grzk_7r2k_l / S‘cék_l, and all the integrals are

taken with respect to s over [0, L. Egquality holds only if ([0, L])
18 a circle of radius R in E*. (Note that for n odd 7,y =7,, =0
so that the last term in the sum s 0.)

Proof. We rewrite (2) by means of integral formulas. All the
integrals are taken with respect to s over [0, L]. Since z is either

closed or has its “corner” at the origin, we obtain

(3.1) L= —sz

(3.1) 0= {em. - er .

Here 1 =2, -+, n. Let y;, 5 =1, ---,q be arbitrary real numbers.
Then (8-25 + 1), for 7=0,1, ---, ¢ imply

L= —\z@, + Zq‘. ;[—.[j1 ﬂk[gfﬁ—xxzi - gfza’wzﬂz]
= 2 H #kl:g( HiTei — 72J—2>x2j] + qu;ll e STqu2q+2 .

Taking absolute values of each term in the sum and applying the
Cauchy-Schwartz inequality, we obtain

<S(#a‘72i~1 - 72i—2)2>1/2<gx§5>1/2
(12 ()

q j—1
L=<y
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But |2, < R, for 5 =1,2,-++,¢ + 1. Also letting
Hi = Sz-zi*zrz:i-l / 87:2,-“1 ’

which minimizes each of the integrals X()ajz-z,-_l — Tyi_s)’, We establish

our inequality.
It is easy to check that equality holds only if x([0, L]) is a circle
of radius R in E° (Remember that we demand that 7, 0,4 =

1, ey m— 2.)

REMARK. The inequality in the theorem is sometimes better
and sometimes worse than the inequality LéRSIE. As an example
of a curve for which our inequality is better consider the curve in E?

2(t) = ((c + 1 cos t) cos —1-t, (c + 1 cos t> sin —l-t, 1 sin t) ,
" n " o on

where 0 < ¢t < 27n% ¢ + 1/n =1, and » is a positive integer. This
is a curve that winds %* times around a torus of radii ¢ and 1/n.

For this curve R = 1, L = O(n), S/c — O(n?), but

SSTC .

as n — oo,

3. Some corollaries. By a theorem of Rutishauser and Samelson
[1], we know that any closed curve in E™ of length L is contained
inside a sphere of radius L/4. Hence we may replace R by L/4 in
our inequality if x is closed and obtain an inequality involving only
L,k,and 7,2=1, .-+, n — 2. We state the result only for closed
curves in E°®

COROLLARY 1. Let x be a closed curve in E®. Then
2
2\ — (\k7
w6 - (le)
L Sz_z

A similar result holds if « has one corner.

COROLLARY 2. Let x be a closed curve in E™ with at most one
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corner, where n is odd. It is mot the case that T[T, = ¢j, @
constant, for j =1, ---, (n — 1)/2.

Proof. Since |z| = R for sonie R we may apply the theorem.
If sz—z/fza‘—l = Cjy for j = 1’ 2: ct (’I’& - 1)/2’ then

S'zii_z Thiog — (Srﬂ_ztzj_ly =0, for j=1, --+, (n — 1)/2. This implies

for n» odd that L = 0, which is an obvious contradiction.
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