AN INEQUALITY INVOLVING THE LENGTH, CURVATURE, AND TORSIONS OF A CURVE IN EUCLIDEAN *n*-SPACE

JOEL L. WEINER

Let x be a closed nondegenerate C^n curve in E^n parametrized by arc length s. We prove an inequality for such x which lie in a ball of radius R. For nonplanar curves in E^s the inequality is

$$L {\le} R^2 rac{\int_0^L \! \kappa^2 ds \int_0^L au^2 ds - \left(\int_0^L \! \kappa au ds
ight)^2}{\int_0^L \! au^2 ds}$$

where L is the length of x, and x and τ are the curvature and torsion of x, respectively. Equality holds only if x is a great circle on a sphere of radius R. We also obtain from the general inequality necessary conditions on the length, curvature, and torsions of x in order that x be a closed curve or a closed curve with at most one corner.

1. Definitions. We say a C^n curve x in E^n is nondegenerate if it has a Frenet framing. That is, there exists an orthonormal set of vector fields e_1, e_2, \dots, e_n along x such that

$$egin{aligned} x' &= e_1 \ e_1' &= \kappa e_2 \ e_2' &= -\kappa e_1 + au_1 e_3 \ e_3' &= - au_1 e_2 + au_2 e_4 \ dots \ e_n' &= - au_{n-2} e_{n-1} \ , \end{aligned}$$

where the prime denotes differentiation with respect to arc length, κ is the curvature, and $\tau_1, \tau_2, \dots, \tau_{n-2}$ are the torsions of x. For the remainder of this paper, we assume that x is nondegenerate and $\tau_i \neq 0$, for $i = 1, 2, \dots, n-2$. In what follows we also let $\tau_0 = \kappa$ and $\tau_{n-1} = 0$.

We say $x: [0, L] \to E^n$ is closed if it induces a C^n mapping $x: S^1 \to E^n$, where S^1 is the circle. To say $x: [0, L] \to E^n$ is closed with at most one corner means that x(0) = x(L) but x'(0) need not equal x'(L).

Define $x_i = (x, e_i)$, for $i = 1, 2, \dots, n$, where (,) denotes the inner product in E^n . Then from (1) we obtain

2. The inequality. Now suppose that x is closed with at most one corner; if x is not closed let $x(0) = x(L) = \text{origin in } E^n$.

THEOREM. Let $|x| \leq R$. Then

$$egin{aligned} L & \leq R^2 igg[\sum\limits_{j=1}^q igg| \prod\limits_{k=1}^{j-1} \mu_k igg| igg[rac{\int \! au_{2j-2}^2 \int \! au_{2j-1}^2 - \left(\int \! au_{2j-2} au_{2j-1}
ight)^2}{\int \! au_{2j-1}^2} igg]^{1/2} \ & + igg| \prod\limits_{k=1}^q \mu_k igg| igg[\int \! au_{2q}^2 igg]^{1/2} igg]^2 \; , \end{aligned}$$

where q = [(n-1/2)], $\mu_k = \int_{\tau_{2k-2}} \tau_{2k-1} / \int_{\tau_{2k-1}} \tau_{2k-1}$, and all the integrals are taken with respect to s over [0, L]. Equality holds only if x([0, L]) is a circle of radius R in E^2 . (Note that for n odd $\tau_{2q} = \tau_{n-1} = 0$ so that the last term in the sum is 0.)

Proof. We rewrite (2) by means of integral formulas. All the integrals are taken with respect to s over [0, L]. Since x is either closed or has its "corner" at the origin, we obtain

$$(3.1) L = -\int \kappa x_z$$

(3.i)
$$0 = \int \tau_{i-2} x_{i-1} - \int \tau_{i-1} x_{i+1} .$$

Here $i=2, \dots, n$. Let μ_j , $j=1, \dots, q$ be arbitrary real numbers. Then $(3\cdot 2j+1)$, for $j=0,1,\dots,q$ imply

$$egin{aligned} L &= - \! \int \! au_0 \! x_2 \, + \, \sum\limits_{j=1}^q \prod\limits_{j=1}^j \, \mu_k \! igg[\! \int \! au_{2j-1} \! x_{2j} \, - \, \int \! au_{2j} \! x_{2j+2} \, igg] \ &= \sum\limits_{j=1}^q \prod\limits_{k=1}^{j-1} \mu_k \! igg[\! \int \! ig(\mu_j au_{2j-1} \, - \, au_{2j-2} ig) \! x_{2j} \, igg] \, + \, \prod\limits_{k=1}^q \mu_k \int \! au_{2q} \! x_{2q+2} \; . \end{aligned}$$

Taking absolute values of each term in the sum and applying the Cauchy-Schwartz inequality, we obtain

$$egin{aligned} L & \leq \sum\limits_{j=1}^q \, \left| \prod\limits_{k=1}^{j-1} \mu_k
ight| \Big(\int (\mu_j au_{2j-1} - \, au_{2j-2})^2 \Big)^{1/2} \Big(\int \! x_{2j}^2 \Big)^{1/2} \ & + \, \left| \prod\limits_{k=1}^q \mu_k
ight| \Big(\int \! au_{2q}^2 \Big)^{1/2} \Big(\int \! x_{2q+2}^2 \Big)^{1/2} \,. \end{aligned}$$

But $|x_{ij}| \leq R$, for $j = 1, 2, \dots, q + 1$. Also letting

$$\mu_j = \left \lceil au_{2j-2} au_{2j-1}
ight / \left \lceil au_{2j-1}^2
ight
ceil$$
 ,

which minimizes each of the integrals $\int (\mu_j \tau_{2j-1} - \tau_{2j-2})^2$, we establish our inequality.

It is easy to check that equality holds only if x([0, L]) is a circle of radius R in E^z . (Remember that we demand that $\tau_i \neq 0$, $i = 1, \dots, n-2$.)

REMARK. The inequality in the theorem is sometimes better and sometimes worse than the inequality $L \leq R \int \kappa$. As an example of a curve for which our inequality is better consider the curve in E^3

$$x(t)=\left(\left(c\ +rac{1}{n}\cos t
ight)\cosrac{1}{n^2}t$$
 , $\left(c\ +rac{1}{n}\cos t
ight)\sinrac{1}{n^2}t$, $rac{1}{n}\sin t
ight)$,

where $0 \le t \le 2\pi n^2$, c+1/n=1, and n is a positive integer. This is a curve that winds n^2 times around a torus of radii c and 1/n. For this curve R=1, L=O(n), $\kappa=O(n^2)$, but

$$\frac{\int \kappa^2 \int \tau^2 - \left(\int \kappa \tau\right)^2}{\int \tau^2} = O(n)$$

as $n \to \infty$.

3. Some corollaries. By a theorem of Rutishauser and Samelson [1], we know that any closed curve in E^n of length L is contained inside a sphere of radius L/4. Hence we may replace R by L/4 in our inequality if x is closed and obtain an inequality involving only L, κ , and τ_i , $i=1, \dots, n-2$. We state the result only for closed curves in E^s .

COROLLARY 1. Let x be a closed curve in E^3 . Then

$$rac{16}{L} < rac{\int \! \kappa^2 \int \! au^2 - \left(\int \! \kappa au
ight)^2}{\int \! au^2} \ .$$

A similar result holds if x has one corner.

COROLLARY 2. Let x be a closed curve in E^n with at most one

corner, where n is odd. It is not the case that $\tau_{2j-2}/\tau_{2j-1}=c_j$, a constant, for $j=1, \dots, (n-1)/2$.

Proof. Since $|x| \leq R$ for some R we may apply the theorem. If $\tau_{2j-2}/\tau_{2j-1} = c_j$, for $j=1,2,\cdots,(n-1)/2$, then $\int \! \tau_{2j-2}^2 \! \int \! \tau_{2j-1}^2 - \left(\int \! \tau_{2j-2} \tau_{2j-1}\right)^2 = 0, \text{ for } j=1,\cdots,(n-1)/2. \text{ This implies for } n \text{ odd that } L=0, \text{ which is an obvious contradiction.}$

REFERENCES

1. H. Rutishauser and H. Samelson, Sur le rayon d'une sphere dont la surface contient une courbe fermée, C. R. Acad. Sci. Paris, 227 (1948), 755-757.

Received July 11, 1977. Research supported in part by NSF Grant MCS 76-08320.

University of Hawaii at Manoa Honolulu, HI 96822