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INVOLUTIONS OF SEIFERT FIBER SPACES

JEFFREY L. TOLLEFSON

A Seifert fiber space M is a compact 3-manifold which
decomposes into a collection &~ of disjoint simple closed
curves, called fibers, such that each fiber has a tubular
neighborhood which consists of fibers and is a *'standard
fibered solid torus." We consider the question, given a PL
involution h of M, can the fiber structure _^~ be chosen in
such a way that h will be fiber-preserving? We give an
affirmative answer for the case when M is orientable, irreduci-
ble, and either ΘMΦ 0 or M contains an incompressible
fibered torus.

THEOREM. Let h be a PL involution of the orientable, irreducible
Seifert fiber space M. If the orbit-surface (Zerlegungsfiache) of the
fiber structure is a 2-sphere, assume in addition that there exist at
least four exceptional fibers. Then there exists a Seifert fiber
structure on M with respect to which h is fiber-preserving.

This theorem touches on two earier results. In [6] Montesinos
considers the following problem. Given any orientable Seifert fiber
space M, determine whether M is homeomorphic to a 2-fold cyclic
covering of S3 branched over a link. He shows that all orientable
Seifert fiber spaces with orbit-surface either a 2-sphere or a non-
orientable surface are such 3-manifolds. For those with an orientable
orbit-surface of positive genus, he compiles a list of all those which
are 2-fold branched cyclic covering spaces of S3 with fiber-preserving
covering transformations. We can now conclude that this list is
complete since it follows from our theorem that all the PL involu-
tions involved as covering transformations can be viewed as fiber-
preserving involutions.

In [1] it is shown that if an irreducible, orientable, sufficiently
large 3-manifold M is covered by a compact Seifert fiber space then
M is either a Seifert fiber space or the union of two twisted line
bundles over a closed nonorientable surface. It is not clear whether
the union of these two twisted line bundles admits a Seifert fiber
structure, but there exists a two-sheeted covering space W of the
union which is a Seifert fiber space. Thus, if one could show that
M always contains an incompressible fibered torus then it would
follow that M is a Seifert fiber space.

Let us describe how one goes about constructing a fiber structure
which is preserved by an involution. Let h be a PL involution of
the Seifert fiber space M. If M is closed we construct a fibered
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torus T such that h\ T is fiber-preserving and such that M can be
split along TUh(T) to obtain a bounded 3-manifold with involution
which is fiber-preserving along the boundary. If M has a boundary
already (we may assume that h is fiber-preserving on the boundary)
we construct a sequence of fibered annuli and tori on which h is
fiber-preserving and which defines an equivariant hierarchy reducing
M down to a union of fibered solid tori with the induced involution
preserving the fibers along their boundaries. The fibering of these
solid tori can then be deformed by an isotopy constant on their
boundaries to make the involution fiber-preserving. This process can
always be carried out on orientable, sufficiently large Seifert fiber
spaces except for those with orbit-surface a 2-sphere and exactly
three exceptional fibers. These exceptions are precisely the closed,
orientable, sufficiently large Seifert fiber spaces not containing any
fibered incompressible tori.

2 Notation and preliminary lemmas* We will work in the
piece-wise linear (PL) category exclusively throughout this paper.
Let M be a 3-manifold and let F be a surface embedded in M. The
surface F is two-sided if there is an embedding c: F x [ — 1,1]—>Λf
such that c(F x [ — 1,1]) is a neighborhood of F and c(x, 0) = x for
all xβF. Thus F is properly embedded in M; that is, F Π dM = dF.
We say that a two-sided, connected surface F is incompressible in
M if fti(F) —» πx(M) is a monomorphism. (We shall omit the base-
points and all such unlabeled homomorphisms are assumed to be
induced by the inclusion map.) We say that the 3-manifold M' is
obtained from M by splitting M along the two-sided surface F if
there is a local homeomorphism p:M —> M' such that p \ p"\M — F)
is a homeomorphism and p~\F) c dM' consists of two copies of F,
each mapped homeomorphically by p onto F. If g is a homeomor-
phism of M such that g(F) = F, then there exists a unique homeo-
morphism gf of Mf lifting g.

A Seifert fiber space is a compact 3-manifold M which can be
decomposed into the union of disjoint simple closed curves (fibers)
such that each fiber has a neighborhood, consisting of fibers, that can
be mapped by a fiber-preserving homeomorphism onto a fibered solid
torus. A fibered solid torus of type (μ, v) is formed when one
identifies the ends of the cyclinder D2 x I by a homeomorphism of
the disk Dz which is a rotation through an angle of 2πv/μ degrees,
where μ and v are relatively prime integers μ > v > 0. The fibers
arise from the joining of the arcs {x} x I. Thus the core, arising
from {0} x /, meets ΰ 2 x 0 once and every other fiber meets D2 x 0
exactly μ times. If μ > 1, the core (or any fiber of M correspond-
ing to the core) is called an exceptional fiber of order μ. The quotient
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space of M by the fibers is a 2-manifold which we call the orbit-
surface. A map between two Seifert spaces is said to be fiber-
preserving if it maps fibers into fibers.

If M is an orientable Seifert fiber space in which πλ(M) is infinite
then πx(M) has a nontrivial cyclic normal subgroup N generated by
the class of an ordinary fiber. In fact, with only a few exceptions,
N is the unique maximal cyclic normal subgroup of πx(M).

LEMMA 1 [1]. Let M be an orientable, irreducible Seifert fiber
space with dM Φ 0 . Then the subgroup N generated by the class
of a fiber in dM is the unique maximal cyclic normal subgroup of
π^M), unless M is S1 x D2, S1 x S1 x I, or the orientable Sι-bundle
over the Mobius band.

We shall need to know under what circumstances we can split
a Seifert fiber space along a surface F in such a way that the
resulting 3-manifold W is a Seifert fiber space with the projection
fiber-preserving. For this we use the following lemma.

LEMMA 2 [1]. Let M be an orientable, irreducible Seifert fiber
space and let F be a two-sided incomplessible surface in M. Let N
denote the normal subgroup generated by the class of an ordinary
fiber, (a) If Nςtπ^F), then N is the center ofπ^M) and M fibers over
S1 with F as a fiber, (b) If Naπ^F), then there exists a Seifert
fiber structure of M in which F is the union of ordinary fibers.

With only a few exceptions, the Seifert fiber structure of a
given 3-manifold is unique up to isotopy. This follows from the
next result due to Waldhausen [11].

LEMMA 3. Let f: M-+Nbe a homeomorphism of the orientable,
irreducible, sufficiently large Seifert fiber spaces M and N, which
we assume are not one of the following: S1 x S1 x S1, S1 x S1 x I,
an Sx-bundle over the Mobius band, an S^bundle over the Klein
bottle. Then f is isotopic to a fiber-preserving homeomorphism.

3* Equivariant pairs of surfaces. Consider a 3-manifold M with
an involution h. Given a surface F properly embedded in M, we
say that the pair {F, h(F)} is equivariant if either (i) h{F) Π F = 0
or (ii) h{F) = F and F is in general position with respect to Fix (h).
In a Seifert fiber space M we will want to find equivariant pairs of
annuli and tori which are unions of the fibers. The techniques we
use are developed in detail in [3] and [5], although some modifications
will be necessary.
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Assume that the involution h is simplical with respect to some
triangulation of M in which the properly embedded surface F can be
viewed as a subcomplex. Then F can be moved into an equivariant
general position, which we call h-general position, by the following
procedure. First move F into general position with respect to
Fix (A) and then, using only isotopies constant on Fix (A), move
F — Fix (h) into general position with respect to h{F) — Fix (h).
(Of course changing F also changes h(F) so one must watch F
and h(F) simultaneously during the isotopy.) Now FΠh(F) is a
graph in F with the vertices of the graph contained in Fix (h). If
we start with a surface F which has some components B of dF
invariant under h and transverse to Fix (h), we sometimes find it
useful to move F into h-general position modulo B. We proceed
as before except all isotopies will be constant on B U Fix (h). Thus
F — (Fix (h) U B) will be in general position with respect to h(F) —
[Fix (h) U B] and the graph F Π h(F) will include B.

LEMMA 4. Let M be an orientable, irreducible Seifert fiber space
with a fiber structure J^. Assume that dM Φ 0 and that M is not
S1 x D2 or the Sι-bundle over the Mobius band. If h is an involu-
tion of M such that h\dM is fiber-preserving, then there exists a
fiber structure _^r/ of M and a surface S (either an annulus or a
torus) properly embedded in M such that (a) J^ \dM = ^ι\ dM,
(b) {S, h(S)} is equivariant, (c) S U h(S) is a union of fibers from
J^' which are preserved by h, (d) if S separates M, then each com-
ponent of M-S is neither S x I nor a trivially fibered torus.

Proof Procure an annulus S which is a union of fibers and
satisfies (d) by lifting an appropriate arc from the orbit surface of
^ Such an annulus is always incompressible since it is two-sided
and 7Γi(S) is mapped injectively into π^

Case 1. Every fiber in dM is invariant under h. Thus each
component of dS is invariant under h. We use an isotopy constant
on dM to move S into A-general position modulo dS and deform J^
at the same time. The desired surface will be constructed from this

Suppose there exists a disk E in h(S) such that E f] S is a simple
closed curve J. Let Eγ denote the disk in S bounded by / and let
E2 denote the closure of the other component of S-J. Consider the
annulus S' = E U E2. Since the 2-sphere E U Et bounds a 3-cell, we
can isotope S to S' by an isotopy constant on dM. We now need
a second isotopy to regain A-general position. Let U denote a small
regular neighborhood of E in M such that U Π S is a regular
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neighborhood of J in S. Choose a new disk E' close to E in U such
that (i) E'nS=dE'; (ii) E' n h(S) = Jf] (Fix (λ) U 3S); (iii) in J5a,
J U dE' bounds an annulus A pinched along J Π (Fix (h) U dS) (that
is, A is homeomorphic to the quotient space of J x I obtained by
identifying y x I to a point for each # 6 ((Fix (h) U 9S) Π J); (iv) the
interior of the 3-cell in U bounded by E U A U Er is disjoint from
S D h(S). Define S" to be the annulus E' U (S' - ( i U #)). If S"
fails to meet Fix (h) transversally along J Π Fix (h) we can equi-
variantly push S" away from h(S") at these bad points.

Thus there exists an isotopy constant on dM moving S first to
S' and then to S". Observe that the graph S Π h(S) will have been
reduced at least to the extent that J — (Fix (h) U dS) has been
removed.

Now suppose that a disk such as E above does not occur. It
follows that the graph S Π h(S) has no vertices on dS (it is not hard
to rule out the case in which there is a single vertex on each com-
ponent of dS). Suppose there exists an annulus E c h(S) such that
E Π S = dE and dE has a component K in common with dh(S). It
follows from Lemma 2 that we may assume S U E is a union of
fibers. For if we split M along S, we obtain a fibered space M' in
which dE consists of two fibers in dM'. By Lemma 2 there is a
fibering of Mr in which £7 is the union of fibers. This fibering of
Mf can be deformed near dM1 to agree with the original fibering
along dMr while not changing it along E. This will define the desired
fibering of M in which S U E is a union of fibers. Let J - dE - K
and let D denote the annulus in S bounded by K\J J. Let St denote
the 2-manifold U U D which is invariant under h. In the case when
D Φ S we also have another annulus S2 — E{J(S—D). If S2 satisfies
property (d), we can recover ^-general position for S2 by methods
similar to those used above. Otherwise we must use Sx which is
either a torus or a Klein bottle. First we push Sx into the interior
of M by deforming it slightly in a small neighborhood of K. This
can easily be done keeping S1 invariant under h since h(K) = K.
Consider a fibered regular neighborhood of Sx in M which is invariant
under h. Either S[ or S2 has property (d) except when S± is parallel
to a component T of dM. If S[ is parallel to T then so is S1 and we
use Theorem 1 of [3] to find an invariant annulus spanning K and
a fiber in T. The same argument is used when D = S unless D is
parallel to S and then we apply [3]. Thus we get either a simpler
annulus or the desired torus.

Case 2. Some fibers in dM are interchanged by h. We may
assume that S was chosen such that h(dS) Π (dS) = 0 . We proceed
exactly an in Case 1 to remove any contractible closed curves in
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Sf)h(S). Suppose after this there exists an annulus Ech(S) such
that E has one boundary component K in common with dh(S) and
BE — K = E Π S. Let D denote an annulus in S having one boundary
component J in dS and such that D Π h(S) — 3D — J' = dE — K. Now
consider the two annuli Sx = ϋ7 U D and S2 = E I) (S — D), which we
may assume are unions of fibers. At least one of these annuli, say
Sif satisfies (d). Either h(St) = St or we can regain ^-general position
for Si (as before) so as to obtain a simpler graph Si Π &(S<).

After a finite number of such steps this construction will produce
the desired surface and deformation of the fiber structure &~ to

LEMMA 5. Let M be a closed orientable Seifert fiber space.
When M has a 2-spheτe for an orbit-surface assume additionally
that there exist at least four exceptional fibers. Let h be an involu-
tion of M. Then there exists a torus T and a fiber structure &~
for M such that (a) {T, h(T)} is equivariant, and (b) T{Jh(T) is a
union of fibers of J^ which are preserved by h.

Proof. First suppose that there exists a nonseparating torus T
in M. (Recall that a nonseparating torus in an orientable, irreducible
3-manifold is always incomplessible.)

By using the proof in [5] for Theorem B (substituting "non-
separating" for the phrase "^-invariant" throughout), one can con-
struct a nonseparating torus T such that {T, h(T)} is equivariant.
It follows from Lemmas 1 and 2 that there exists a fiber structure
&~ for M such that either T U h(T) is a union of fibers of ^ or
T is transverse to the Seifert fibers in &~ and M is a torus bundle
over S1 with T and h(T) fibers. In the latter case, we can view M
as T x [0, ϊ\/φ with T = T x 0 and where φ is a homeomorphism of
T of finite order [8]. It is not hard to show (see [2]) that we can
parametrize T such that φ is given by one of the following: (1) identi-
ty, (2) (a?, y) *-+(&, y), (3) (a?, y)-+(y, xy), (4) (x, y)->(y, x), (5) (x, y)-+
(y, xy)- In the first two cases there is clearly a Seifert fiber struc-
ture in which T \J h(T) is a union of fibers. In each of the last
three cases, the orbit-surface of the natural Seifert fiber structure
is a 2-sphere with 3, 4, and 5 exceptional fivers, respectively. Thus
the third case is excluded by hypothesis and the last two will be
taken care of by the next argument.

Suppose that M does not admit a Seifert fiber structure with
respect to which M contains a nonseparating fibered torus. It fol-
lows that the orbit-surface is a 2-sphere and, with only one excep-
tion, the fiber structure is unique. This lone exception is {0; (0j, 0);
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(2,1), (2,1), (2, 1), (2, 1)}, which admits a second Seifert fiber structure
{0, (n2,2)} with respect to which there does exist a fibered non-
separating torus. Thus, all spaces M considered in the remainder
of this proof have unique Seifert fiber structures and π^M) contains
a unique maximal cyclic normal subgroup.

Let T be a fibered torus in M such that each component of
M-T contains at least two exceptional fibers. Move T into ^-general
position by an isotopy, deforming the fiber structure at the same
time so as to keep T fibered. The torus T can be modified to obtain
the desired torus by the methods in [5]. We content ourselves here
with merely observing that the constructions in [5] can always be
done in such a manner to yield a fibered torus T satisfying (b).

We assume that Tf)h(T) has the minimal complexity among all
such fibered tori T. If T f] h(T) = 0 than all we have to is adjust
the fiber structure, which we do for all the cases at the end.

Suppose TΓ\h(T)Φ 0 . Let Mι and M2 denote the two com-
ponents of the Seifert fiber space obtained by splitting M along T.
Let AcM1 denote an innermost component of "h(T) split along
Tnh(T)" Since Tnh(T) is assumed to be minimal, it follows that
Int(A) is not an open disk. Thus A is an incompressible annulus
in Λflβ Let B denote one of the annuli in T bounded by dA. Recall
that the class of an ordinary fiber in T represents the cyclic normal
subgroup Naπ^M,) c π^M).

If Nczπ^A) then there exists a Seifert fiber structure of M1

(which can be extended to one on M) in which A U T is fibered. It
follows that T — A U B is a torus rather than a Klein bottle. (For
if T were a Klein bottle, then the orbit-surface would contain a
nonseparating simple closed curve, contradicting the fact that it is
a 2-sphere.) If this torus T is incompressible, then we proceed
exactly as in [5] to show that when h(T') Φ T we can move T into
/^-general position with T Π h{T) having a lower complexity than
TΓ)h(T). Hence T must be compressible. Let X denote the solid
torus bounded by T. We may assume that B is innermost in T,
for if not there would be another such pair of annuli available to
us inside X. By the minimality of TΓ\h(T), the two annuli A and
B are not parallel. Thus X must be a fibered torus which contains
an exceptional fiber. We can adjust dX by an isotopy to obtain an
equivariant pair {dX, h(dX)} by the usual technique. Observe that
since h\dA is already fiber-preserving, the fibering of M can be
deformed near X to make h\dX fiber-preserving.

If Naπ^A), then both M1 and M2 are annulus-bundles over S1

and hence M — {b; (n2, 2)}, where the orbit surface for this fiber
structure is a Klein bottle. Only in the case when 6 = 0 does such
a Seifert fiber space admit a second fiber structure with orbit-surface
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a 2-sphere and we have already treated this case.
Thus in every case we have shown that there exists a fibered

torus T such that the pair {T, h{T)} is equivariant. If T happens to
be compressible, then h{T) — Γand we have already made h\ T fiber-
preserving. When T is incompressible, it remains to adjust the
fiber structure on Tϋh(T) to make h\ T fibe-preserving. Let us first
consider the case when rcx{M) has a unique maximal cyclic normal sub-
group N. We may assume TUh(T) is a union of fibers in view of
Lemma 2. Then h carries a fiber in T onto a simple closed curve in
h(T) which is homotopic to a fiber in h(T). Hence the fibering can
be deformed so that h\T is fiber-preserving, even when h(T) = T. The
only two cases when N is not unique are S1 x S1 x S1 and {0; (n2f 2)}.
These spaces can be viewed as the torus-bundles T x [0, l]/φ, where
Γ = Γ x { 0 ) and φ induces φ* = ± 1 on H^T; Z). According to [10]
we can view h as h([x, t\) = [β(x), λ(#)], for a suitable parametriza-
tion where β is an involution of T and λ(ί) — t, 1 — t, or t + 1/2.
There exists a simple closed curve JaT such that /3(J) = J or
β(J) Π J = 0 . Since 0(J) is homotopic to J we can define a Seifert
fiber structure of T x [0, 1]/^ in which J x {0} and h(J x {0}) are
fibers and T\Jh(T) is a union of fibers. It follow that the fiber
structure can be further adjusted to make h | T fiber-preserving.
This completes the proof of the lemma.

4* Fiber-preserving involutions* Given an involution h of a
Seifert fiber space M, we are ready to construct a fiber structure
on M with respect to which h is fiber-preserving. The first two
lemmas deal with two basic Seifert fiber spaces, the fibered solid
torus and S1 x S1 x I. In the proof of the main theorem we es-
sentially reduce the consideration of M down to these two spaces,
each of which admit infinitely many nonisotopic fiberings.

LEMMA 6. Let M = Sι x D2 and let ^ he a Seifert fiber
structure for M. Let h be an involution of M such that h | dM is
fiber-preserving. Then there exists a fiber structure ^' for M
such that h preserves the fibers of JF"1 and J^f agrees with ^ on
dM.

Proof. We may assume that M is parametrized by {{rx} y)\x, y eS1

and 0 <; r <; 1} in such a way that h(rx9 y) = (ra(x), β(y)) [4]. Let
Pr: dM—>M be the map defined by Pr(x, y) = (rx, y). Define Jrt to
be the collection {Pr(J)\JddM and

LEMMA 7. Let M = S1 x S1 x / and let ^ 0 and ^ be fiberings
of S1 x S1 x {0} and S1 x S1 x {1}, respectively, by circles which are
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homotopic in M. Suppose that h is an involution of M such that
h preserves the fibers of ^0 and ^ . Then there exists a Seifert
fiber structure ^ of M extending ^ 0 U ̂ Ί such that h preserves
the fibers of <_̂7

Proof. Extend ίf0 U ^ to a Seifert fiber structure of M. Then
there exists a nonseparating fibered annulus A spanning the two
components of dM. By Lemma 4, we may further assume that
{A, h(A)} is equivariant and AVh(A) is a union of fibers preserved
by h. (Recall that M has no exceptional fibers.) Split M along
AUh(A) to obtain Mr, a union of disjoint solid tori. If Mf consists
of two components which are interchanged by hf we may simply
refiber one component by the images of the fibers in the other. If
each component is invariant under h' then we apply Lemma 6 to Mr

and h' to complete the proof.

Proof of the main theorem. We first treat the case when M has
a nonempty boundary. There exists a hierarchy for M, determined
by a sequence of fibered annuli, reducing M down to a union of
disjoint fibered solid tori. We define the complexity of M to be the
sum of the number of exceptional fibers together with the minimal
length of the sequence determining such a hierarchy.

Since we have already considered S1 x D2 and S1 x S1 x I, let
us assume that M is not homeomorphic to either of these. If M is
the S -̂bundle over the Mobius band, observe that π^M) contains
only two maximal cyclic normal subgroups and both of these are
characteristic subgroups. Otherwise, there exists a unique maximal
cyclic normal subgroup N, which is generated by the class of a fiber
in dM. It follows in either case that the fibers in dM are preserved
up to homotopy by h. Hence we can deform the fiber structure of
M near dM to make h\3M fiber-preserving. We use an induction
argument on the complexity of M to prove the theorem.

It follows from Lemmas 6 and 7 that the theorem holds for M
with a complexity equal to one. Thus assume the induction hy-
pothesis: Let h be an involution of M such that h\dM is fiber-
preserving. If the complexity of M is ^n, then the fibering of
M can be redefined, leaving it unchanged on dM, such that h is
fiber-preserving.

Suppose that M has a complexity equal to n + 1. It follows
from Lemma 4 (except when M is S^-hundle over the Mobius band)
that there exists a deformation of the fibering, constant on dM, and
an equivariant pair of surfaces {A, h{A)} such that A U h(A) is
fibered, h\A\J h(A) is fiber-preserving, and splitting Malong A U h(A)
gives a Seifert fiber space Mr for which each component has a com-
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plexity less than or equal to n. We apply the induction hypothesis
to each invariant component of MI. It is easy to redefine the fiber
structure on any components which are interchanged by hi to make
hi fiber-preserving on these. Together, these fiber structures define
a new fiber structure of M with respect to which h is fiber-preserving.
In case M is the S^-bundle over the Mobius band, we apply the
method used in the proof of Lemma 4 to construct an equivalent
pair {A, h(A)} as above. If the construction is successful we can
proceed as before. Notice however, that the construction fails only
when we encounter an invariant Klein bottle with an invariant

fibered neighborhood U such that M — U & dM x I. In this case
we may deform the fibering on U such that h \ U is fiber-preserving
and then apply Lemma 7 to extend the fibering of dMU Ό over
M — U in such a way that h will preserve the fibers on M. This
completes the inductive step.

Now suppose that M is a closed 3-manifold. By hypothesis, M
contains a fibered incompressible torus. Thus it follows from Lemma
5 that there exists a Seifert fiber structure for M and a fibered
torus T such that {T, h(T)} is equivariant and h\T\Jh(T) is fiber-
preserving. Split M along T U h(T) to obtain the Seifert fiber space
MI with involution hi which is fiber-preserving along dMf. It follows
from the previous case that there is a Seifert fiber structure of M',
agreeing with the original on dM', with respect to which hi is fiber-
preserving. This defines the desired fiber structure on M.
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