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THE FAILURE OF EVEN CONJUGATE
CHARACTERIZATIONS OF H!
ON LOCAL FIELDS

M. H. TAIBLESON

If K is a local field, the Hardy space HK) is defined
as follows: If f is a distribution on K let f(z, k) (defined on
K x Z) be its regularization. Let f*(x)=sup, |f(x, k)|. Then
fe H* iff the maximal function f* is integrable. Chao has
given the following conjugate function characterization of H*.
Let = be a multiplicative character on K that is homogeneous
of degree zero, rgmiﬁed of degree 1, and is odd. Then fe L!
is in H® iff (zf)” € L. He also shows that if x is a finite
(Borel) measure then u is absolutely continuous whenever
(am)~ is also a finite measure. In this paper proofs are given
that these results fail if = is not odd.

It is shown that if 7 is even (but otherwise satisfies the condi-
tions above) then there is a smgular measure [ and an integrable
function f. f¢ H' such that wfi = i and =f = f. These results
were announced earlier [Gandulfo, Garcia-Cuerva, and Taibleson,
Bull. Amer. Math. Soc., 82 (1976), 83-85].

A basic reference for this paper is [4]; in particular, Chapters
I, II, and IV. Regularizations are discussed in detail in IV §1. The
results proven here are [3; Thm. 1 and Lemma 1]. The theorem of
Chao can be found in [4; IV §3] or in [1]. Other characterizations
of H* can be found in [2].

A local field is a locally compact field that is not connected and
not discrete. A complete list of such fields is: the p-adic number
fields and finite algebraic extensions of p-adic fields (these are of
characteristic zero), and fields of formal Laurent series over a finite
field, GF(p®), the so-called p-series fields (these are of characteristic
»). We note that there is a “natural” ring multiplication for the
dyadic group, 2%, so that the field of quotients of 2° is the 2-series
field.

There is a norm, ||, on K that is ultrametric (jo+y|=max[|z|, |y|]
and so if |x|#|y|, |[t+y|=max(z], |y]). If xe K, x+0, then || =q*
for some k¢ Z. The fractional ideals {*} are the balls: P* = {jz| < ¢7*}.
We fix a character ¥ on the additive group of K such that y is
trivial (identically 1) on ® = §3* (the ring of integers in K) and is
nontrivial on L7'. We choose p to be a generator of the prime ideal
P=P (in D). |p|=4q7" and D/P = GF(q) (the local class field of
K) where ¢ = p", p a prime. The measure of a set E is denoted

501



502 M. H. TAIBLESON

|E|. [P =q7% so0|D|=1. ForuckK, we set y,(x) = y(ux), 7.f(x)=
f(x—u). @, denotes the characteristic function of P3*.

DEeFINITION. If K is of finite characteristic let &, = x,-+®,. If
K is of characteristic zero let h, = 395 7,i-:(y,~19,_,) where {c}} is

a complete set of coset representatives of P* in D.

Note. (1) If K is of finite characteristic the two definitions
essentially agree. (2) If ¢ = 2, {h,} is the sequence of Rademacher
functions.

LEMMA 1. {h;}iz 28 @ sequence of independent, identically dis-
tributed random variables on D.

Proof. Each h, is supported on ® and we identify h, with its
restriction to ®. The values of h, are pth roots of unity. &, is
constant on the ¢* = p"* cosets of P* in ©. On each of the ¢ = p
cosets of P*! in cosets of P*C D it takes on each of its p possible
values exactly p* ' times. Thus, if ¢ is a pth root of unity
[{h, = €}| = »p™*. We see that the h, are identically distributed. To
show independence we need to observe that if {k;}i_, is a finite col-
lection of distinet positive integers and {¢;} a set of pth roots of
unity then |{h,; =¢; j=1, .-+, t}|] = p'. Using the facts above we
get this result by systematically counting. This completes the proof.

The Fourier transform of a distribution f is denoted f and for

fe L, f(é) = SKf(x)X—e(x)dx. If ¢ is a finite Borel measure, f(¢) =
| @dn(a). “We note that Zu = %-w ()" = 7uf, (uf) = %, and
ék =q'0_,.

LEMMA 2. Let g, = Reh, and

0.(@) I — g,®), 2D, k< —1

k) =
#, ) { 0 , otherwise.

Then p(z, k) is the regularization on K of a nontrivial, real-valued,
finite Borel measure p, that is singular, supported on D, |p| <1,
UD)=0, and £ is supported on C= Uz, {(p7*+P ) U(—pF+P ).
If ¢q =2, ¢ is supported on a two point set. If q > 2, p is con-
tinuous.

Proof. From Lemma 1 we see that {g,} is a sequence of inde-
pendent, identically distributed random variables on ® (are i.i.d. on

®). Observe that if J is a coset of P, [ <k, then S g =0. We
J
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break the proof into smaller steps.

I. wm(x, k) is regular. Since g, is constant on cosets of P, u(z, k)
is constant on cosets of PB*. Next we see that S e, —1) = \g, =
0 = ¢(x, 0). Finally we need to show that if J Z Yy + P EVCD,
k< —1, then SJﬂ(x, k) = SJy(x, k+1) = "' uy, b+ 1). But, g, k) =
e, kDL —9-), 50 | e, )= iy, b+ D (1—g.) = o, b+ D}J| =
'y, b+ 1).

II. |p(=, k)| is regular on the domain, ® X {k < —1}. The proof
for I works since (1 — g,(x)) = 0 for all x.

III.  wm(x, k) is regularization of a nontrivial, real-valued, finite
Borel measure, that is supported on ®, and x(®) = 0. Using [4; IV
(1.8)(e) and (1.9)(b)] we only need observe that p(x, k) is real-valued;

na, k)y=0 if x¢9; and show that Sy(x, kdx =0, keZ; and
§|;c(w, k)| ds = S[gll >0, k= —1. Sp(x, k)dz = 0 follows I. For & = 0

it is trivial, for £ < —1, u(x, k) is regular so
S (@, k)de = g (e, k)de = S (e, 0)de = 0 .
K D D

That Sp(x, k) = SI g.| follows from II. |p(x, k)| is regular for k < —1,
so if k£ —1,

[, e, 1)1dw = { | o, By do = (e, —Dlder = | Jou] > 0.

IV. p is a singular measure. To see that g is not absolutely
continuous we use [4; (1.8)(d)]. This implies that the regularization
of an absolutely continuous measure is Cauchy in L'. We use the
fact that {g,} is i.i.d. on ©. Then for ¥k = —1,

[, ja ) = e o= 1)1 = [ 910 = g) -+ (@ = g0 g
= ngll Sg(l —g) e Sg(l — 92 ng—kﬂl = Blgll]z >0.

Note that |{(1 — gu(®)) = 0}| = »7%, so [{i(=, k)} # 0}| = (1 — p~*) &+
and so y(z, k) — 0 a.e. From which it follows that p*(x) < o a.e.
[4; V (2.3)]. Let Ey = {¢*(x) <N}. By the dominated convergence
theorem |p|(Ey) =0 (use II) and so |¢|(Uy Ey) =0, but Uy Ey is
a set of full measure, so ¢ is supported on a set of measure zero.
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Actually we can do the whole thing in one simple step if we care-
fully analyse the set in ® on which g(x, k) = 0. That set, call it
F,, is a union of cosets of 7%, |F,|—1, {F,} is increasing. Thus
¢ is supported on the set ~(U, F,) which is a closed set of measure
ZEro.

V. If ¢ =2 p is a 2-point measure. If ¢ > 2, ¢ is continuous.
For ¢ = 2 a little computation shows that there are decreasing se-
quences of cosets {I}}, ©+ =1, 2, such that I} is a coset of % and

27kt xel}
wx, k) =4{—-27%1, zel
0 , otherwise.
Since |I}| = 2%, we see that py(-, k) converges W* to a 2-point meas-
ure with mass 1/2 at one point and mass —1/2 at the other. More

generally we note that |z, k)| < 27%* for all x, so that if I, is a
coset of B¢, then

(L) = lim || (e, 1)l de
= |, It Bl S L1274 = 2)@2) ™ — 0

as k— —o if ¢ > 2. Thus, if {I,} is a decreasing sequence of cosets,
|#|(I,) — 0 and so ¢ has no atomic component.

VI. # is supported on C. It will suffice to show that each
f(-, k) is supported on C. Note also that for ¢ =2, this is an
uninteresting statement since C = K ~ ®. To show that p(-, k) is
supported on C it will be sufficient to show that if {k;} is a finite
set of distinct positive integers with k, = max;k; then (g, --- g;,)"
is supported on

{(p7% + PHY U (—p7h + PR},
We consider two cases. If K is of finite characteristic,
Guy v o0 G, = 270k Aymia) =00 (ks + Lr=k0) Py
=270 3 Yyt * 0t Xap=ke@o = 27° 3] Yiap—brseeesy=iy Do
Thus,
(G, = O,)" = X Tieptrsensya@o «

Bach term is the characteristic function of a coset of ® in one or
the other of p~* 4 P+t or —p~* 4 P %+, For K of finite char-
acteristic we proceed more carefully.
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Gy * e gks = 27%(hy, + h_kl) cee (b, + h—ka) .
[q—k+1 q(k 1) ]T kQ—k+1 .

Since ¢/ e D it follows that the term in the “square” brackets is
constant on cosets of ®. 7,-1d_,,, is the characteristic function of
pE 4+ P g0 h,, is a finite hnear combination of characteristic funec-
tions of cosets of ® contained in p~* + P+, Thus h, is a finite
linear combination of terms of the form yx,9,, wep™® + P, k> 0.
Similarly, &, is a finite linear combination of such terms with u e
—p7F 4 P¥+,  The proof now proceeds as in the finite characteristic
case.
This completes the proof of Lemma 2.

Note. p is defined as a local field version of a Riesz product.
See [5; V §7]. It should then come as no surprise that g is a con-
tinuous singular measure when ¢ = 3. We also note that if ¢ =3,
then g (except for a trivial factor) is the Cantor-Lebesgue measure
supported on the Cantor set, if one identifies ® with [0, 1] in the

usual way.

COROLLARY. Let @ be a multiplicative character on K that is
ramified of degree 1, homogeneous of degree zero, and s even. Let
o be the real-valued, singular measure defined in Lemma 2. Then
T = [

Proof. We show that n(x) =1 on C. 7 is ramified of degree 1
so w is constant on each coset +p* + P so we only need to de-
termine 7#(p*) and #(—p*). =« is homogeneous of degree zero so we
only need to determine w(1) and #(—1). = is even so #(—1) = x(1).
7 is a multiplicative character so 7(1) = 1. This completes the proof.

THEOREM. Let pt be as above, and let {c,} be a collection of
distinct coset representatives of D wn K. Then there is a sequence
{a} of real mumbers such that if f@) = 25 oyt e, —k), then
fe L', but fe H. Furthermore, f is supported on C.

Proof. Let f, =z, (-, —k). f; is supported on ¢, + D.

o /’t(x'—cln l) ’ 1> —k
filw, ) = {y(x—ck, k), 1= k.

Thus fi(+, 1) is supported on (¢, + D) x Z. Consequently,

(71 =l (iA1= 1Sl and (= Sa{@
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We claim that {\(f,)*: is unbounded. If this claim is valid we
simply choose {a,} so >.|a.] < - and > a, S(f")* = o, To prove
the claim suppose {S(f,,)*} is bounded. We note that (f)*(x) =

sups_i | t@—ey, 1)1, so {(fi)*(x+c,)} is a nondecreasing sequence with
limit #*. By the Lebesgue monotone convergence theorem p* ¢ L.
But p(z, k) converges a.e. so by the Lebesgue dominated convergence
theorem {g(-, k)} converges in L' and hence is Cauchy in L'. But
{{(+, )} is not Cauchy in L', a contradiction. ~

We need to show that f is supported on (Z But f=3 au)., 2(-, k),
and f(-, k) is supported on C for all k, so f is also supported on C.
This completes the proof of the theorem.
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amples established the background for the more general results that
appear in this paper.
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