THE FAILURE OF EVEN CONJUGATE CHARACTERIZATIONS OF H^1 ON LOCAL FIELDS

M. H. TAIBLESON

If K is a local field, the Hardy space $H^1(K)$ is defined as follows: If f is a distribution on K let f(x,k) (defined on $K\times Z$) be its regularization. Let $f^*(x)=\sup_k|f(x,k)|$. Then $f\in H^1$ iff the maximal function f^* is integrable. Chao has given the following conjugate function characterization of H^1 . Let π be a multiplicative character on K that is homogeneous of degree zero, ramified of degree 1, and is odd. Then $f\in L^1$ is in H^1 iff $(\pi \hat{f})^\vee\in L^1$. He also shows that if μ is a finite (Borel) measure then μ is absolutely continuous whenever $(\hat{\mu}\pi)^\vee$ is also a finite measure. In this paper proofs are given that these results fail if π is not odd.

It is shown that if π is even (but otherwise satisfies the conditions above) then there is a singular measure μ and an integrable function f. $f \notin H^1$ such that $\pi \hat{\mu} = \hat{\mu}$ and $\pi \hat{f} = \hat{f}$. These results were announced earlier [Gandulfo, Garcia-Cuerva, and Taibleson, Bull. Amer. Math. Soc., 82 (1976), 83-85].

A basic reference for this paper is [4]; in particular, Chapters I, II, and IV. Regularizations are discussed in detail in IV §1. The results proven here are [3; Thm. 1 and Lemma 1]. The theorem of Chao can be found in [4; IV § 3] or in [1]. Other characterizations of H^1 can be found in [2].

A local field is a locally compact field that is not connected and not discrete. A complete list of such fields is: the p-adic number fields and finite algebraic extensions of p-adic fields (these are of characteristic zero), and fields of formal Laurent series over a finite field, $GF(p^n)$, the so-called p^n -series fields (these are of characteristic p). We note that there is a "natural" ring multiplication for the dyadic group, 2^m , so that the field of quotients of 2^m is the 2-series field.

There is a norm, $|\cdot|$, on K that is ultrametric $(|x+y| \le \max{[|x|, |y|]}]$ and so if $|x| \ne |y|$, $|x+y| = \max{(|x|, |y|)}$. If $x \in K$, $x \ne 0$, then $|x| = q^k$ for some $k \in \mathbb{Z}$. The fractional ideals $\{\mathfrak{P}^k\}$ are the balls: $\mathfrak{P}^k = \{|x| \le q^{-k}\}$. We fix a character χ on the additive group of K such that χ is trivial (identically 1) on $\mathfrak{D} = \mathfrak{P}^0$ (the ring of integers in K) and is nontrivial on \mathfrak{P}^{-1} . We choose \mathfrak{p} to be a generator of the prime ideal $\mathfrak{P} = \mathfrak{P}^1$ (in \mathfrak{D}). $|\mathfrak{p}| = q^{-1}$, and $\mathfrak{D}/\mathfrak{P} \cong GF(q)$ (the local class field of K) where $q = p^n$, p a prime. The measure of a set E is denoted

|E|. $|\mathfrak{P}^k| = q^{-k}$, so $|\mathfrak{D}| = 1$. For $u \in K$, we set $\chi_u(x) = \chi(ux)$, $\tau_u f(x) = f(x-u)$. Φ_k denotes the characteristic function of \mathfrak{P}^k .

DEFINITION. If K is of finite characteristic let $h_k = \chi_{\mathfrak{p}^{-k}} \Phi_0$. If K is of characteristic zero let $h_k = \sum_{l=1}^{q_{k-1}^k} \tau_{c_l^{k-l}} (\chi_{\mathfrak{p}^{-k}} \Phi_{k-1})$ where $\{c_l^k\}$ is a complete set of coset representatives of \mathfrak{P}^k in \mathfrak{D} .

Note. (1) If K is of finite characteristic the two definitions essentially agree. (2) If q=2, $\{h_k\}$ is the sequence of Rademacher functions.

LEMMA 1. $\{h_k\}_{k\geq 1}$ is a sequence of independent, identically distributed random variables on \mathfrak{D} .

Proof. Each h_k is supported on $\mathfrak D$ and we identify h_k with its restriction to $\mathfrak D$. The values of h_k are pth roots of unity. h_k is constant on the $q^k = p^{nk}$ cosets of $\mathfrak P^k$ in $\mathfrak D$. On each of the $q = p^n$ cosets of $\mathfrak P^{k-1}$ in cosets of $\mathfrak P^k \subset \mathfrak D$ it takes on each of its p possible values exactly p^{n-1} times. Thus, if ε is a pth root of unity $|\{h_k = \varepsilon\}| = p^{-1}$. We see that the h_k are identically distributed. To show independence we need to observe that if $\{k_j\}_{j=1}^k$ is a finite collection of distinct positive integers and $\{\varepsilon_j\}$ a set of pth roots of unity then $|\{h_{k_j} = \varepsilon_j, j = 1, \dots, t\}| = p^t$. Using the facts above we get this result by systematically counting. This completes the proof.

The Fourier transform of a distribution f is denoted \hat{f} and for $f \in L^1$, $\hat{f}(\xi) = \int_K f(x) \overline{\chi_{\xi}}(x) dx$. If μ is a finite Borel measure, $\hat{\mu}(\xi) = \int_K \overline{\chi_{\xi}}(x) d\mu(x)$. We note that $\overline{\chi_u} = \chi_{-u}$, $(\chi_u f)^{\hat{}} = \tau_u \hat{f}$, $(\tau_u f)^{\hat{}} = \overline{\chi_u} f$, and $\hat{\Phi}_k = q^{-k} \Phi_{-k}$.

LEMMA 2. Let $g_k = Re h_k$ and

Then $\mu(x, k)$ is the regularization on K of a nontrivial, real-valued, finite Borel measure μ , that is singular, supported on \mathfrak{D} , $|\mu| < 1$, $\mu(\mathfrak{D}) = 0$, and $\hat{\mu}$ is supported on $C = \bigcup_{k \ge 1} \{(\mathfrak{p}^{-k} + \mathfrak{P}^{-k+1}) \cup (-\mathfrak{p}^{-k} + \mathfrak{P}^{-k+1})\}$. If q = 2, μ is supported on a two point set. If q > 2, μ is continuous.

Proof. From Lemma 1 we see that $\{g_k\}$ is a sequence of independent, identically distributed random variables on \mathfrak{D} (are i.i.d. on \mathfrak{D}). Observe that if J is a coset of \mathfrak{P}^l , l < k, then $\int_J g_k = 0$. We

break the proof into smaller steps.

I. $\mu(x, k)$ is regular. Since g_k is constant on cosets of \mathfrak{P}^k , $\mu(x, k)$ is constant on cosets of \mathfrak{P}^{-k} . Next we see that $\int_{\mathfrak{D}} \mu(x, -1) = \int_{g_1} g_1 = 0 = \mu(x, 0)$. Finally we need to show that if $J = y + \mathfrak{P}^{-(k+1)} \subset \mathfrak{D}$, k < -1, then $\int_J \mu(x, k) = \int_J \mu(x, k+1) = q^{k+1} \mu(y, k+1)$. But, $\mu(x, k) = \mu(x, k+1)(1-g_{-k})$, so $\int_J \mu(x, k) = \mu(y, k+1) \int_J (1-g_{-k}) = \mu(y, k+1) |J| = q^{k+1} \mu(y, k+1)$.

II. $|\mu(x, k)|$ is regular on the domain, $\mathfrak{D} \times \{k \leq -1\}$. The proof for I works since $(1 - g_l(x)) \geq 0$ for all x.

III. $\mu(x, k)$ is regularization of a nontrivial, real-valued, finite Borel measure, that is supported on \mathfrak{D} , and $\mu(\mathfrak{D})=0$. Using [4; IV (1.8)(e) and (1.9)(b)] we only need observe that $\mu(x, k)$ is real-valued; $\mu(x, k)=0$ if $x \notin \mathfrak{D}$; and show that $\int \mu(x, k) dx \equiv 0$, $k \in \mathbb{Z}$; and $\int |\mu(x, k)| dx = \int |g_1| > 0$, $k \geq -1$. $\int \mu(x, k) dx \equiv 0$ follows I. For $k \geq 0$ it is trivial, for $k \leq -1$, $\mu(x, k)$ is regular so

$$\int_{\mathbb{R}} \mu(x, k) dx = \int_{\mathfrak{D}} \mu(x, k) dx = \int_{\mathfrak{D}} \mu(x, 0) dx = 0.$$

That $\int \mu(x, k) = \int |g_1|$ follows from II. $|\mu(x, k)|$ is regular for $k \leq -1$, so if $k \leq -1$,

$$\int_{\mathbb{R}} |\mu(x,\,k)| \, dx = \int_{\mathfrak{D}} |\mu(x,\,k)| \, dx = \int_{\mathfrak{D}} |\mu(x,\,-1)| \, dx = \int_{\mathbb{R}} |g_{\scriptscriptstyle 1}| > 0 \, .$$

IV. μ is a singular measure. To see that μ is not absolutely continuous we use [4; (1.8)(d)]. This implies that the regularization of an absolutely continuous measure is Cauchy in L^1 . We use the fact that $\{g_k\}$ is i.i.d. on \mathfrak{D} . Then for $k \geq -1$,

$$egin{aligned} \int_{\mathbb{R}} |\mu(x,\,k) - \mu(x,\,k-1)| &= \int_{\mathfrak{D}} |g_{\scriptscriptstyle 1}| (1-g_{\scriptscriptstyle 2}) \cdots (1-g_{\scriptscriptstyle -k}) |g_{\scriptscriptstyle -k+1}| \ &= \int_{\mathfrak{D}} |g_{\scriptscriptstyle 1}| \int_{\mathfrak{D}} (1-g_{\scriptscriptstyle 2}) \cdots \int_{\mathfrak{D}} (1-g_{\scriptscriptstyle -k}) \int_{\mathfrak{D}} |g_{\scriptscriptstyle -k+1}| &= \left[\int |g_{\scriptscriptstyle 1}|
ight]^2 > 0 \;. \end{aligned}$$

Note that $|\{(1-g_k(x))=0\}|=p^{-1}$, so $|\{\mu(x,k)\}\neq 0\}|=(1-p^{-1})^{-(k+1)}$ and so $\mu(x,k)\to 0$ a.e. From which it follows that $\mu^*(x)<\infty$ a.e. [4; V (2.3)]. Let $E_N=\{\mu^*(x)< N\}$. By the dominated convergence theorem $|\mu|(E_N)=0$ (use II) and so $|\mu|(\bigcup_N E_N)=0$, but $\bigcup_N E_N$ is a set of full measure, so μ is supported on a set of measure zero.

Actually we can do the whole thing in one simple step if we carefully analyse the set in $\mathfrak D$ on which $\mu(x,k)=0$. That set, call it F_k , is a union of cosets of $\mathfrak P^{-k}$, $|F_k|\to 1$, $\{F_k\}$ is increasing. Thus μ is supported on the set $\sim(\bigcup_k F_k)$ which is a closed set of measure zero.

V. If q=2 μ is a 2-point measure. If q>2, μ is continuous. For q=2 a little computation shows that there are decreasing sequences of cosets $\{I_k^i\}$, i=1,2, such that I_k^i is a coset of \mathfrak{P}^{-k} and

$$\mu(x,\,k) = egin{cases} 2^{-k-1} \;, & x \in I_k^1 \ -2^{-k-1} \;, & x \in I_k^1 \ 0 \;\;, & ext{otherwise.} \end{cases}$$

Since $|I_k^i|=2^k$, we see that $\mu(\cdot,k)$ converges W^* to a 2-point measure with mass 1/2 at one point and mass -1/2 at the other. More generally we note that $|\mu(x,k)| \leq 2^{-k-1}$ for all x, so that if I_k is a coset of \mathfrak{P}^{-k} , then

$$egin{aligned} |\mu|(I_k) &= \lim_{l o -\infty} \int_{I_k} |\mu(x,\,l)| \, dx \ &= \int_{I_k} |\mu(x,\,k)| \leqq |I_k| \, 2^{-k-1} = (1/2)(q/2)^{-k} \longrightarrow 0 \end{aligned}$$

as $k\to -\infty$ if q>2. Thus, if $\{I_k\}$ is a decreasing sequence of cosets, $|\mu|(I_k)\to 0$ and so μ has no atomic component.

VI. $\hat{\mu}$ is supported on C. It will suffice to show that each $\hat{\mu}(\cdot, k)$ is supported on C. Note also that for q=2, this is an uninteresting statement since $C=K\sim \mathfrak{D}$. To show that $\mu(\cdot, k)$ is supported on C it will be sufficient to show that if $\{k_j\}$ is a finite set of distinct positive integers with $k_s=\max_j k_j$ then $(g_{k_1}\cdots g_{k_s})^{\hat{}}$ is supported on

$$\{(\mathfrak{p}^{-k_s}+\mathfrak{P}^{-k_s+1})\cup(-\mathfrak{p}^{-k_s}+\mathfrak{P}^{-k_s+1})\}$$
 .

We consider two cases. If K is of finite characteristic,

$$egin{aligned} g_{k_1} \cdots g_{k_s} &= 2^{-s} (\chi_{\mathfrak{p}^-k_1} + \chi_{-\mathfrak{p}^-k_1}) \cdots (\chi_{\mathfrak{p}^-k_s} + \chi_{-\mathfrak{p}^-k_s}) oldsymbol{\Phi}_0 \ &= 2^{-s} \sum \chi_{\pm \mathfrak{p}^-k_1} \cdots \chi_{\pm \mathfrak{p}^-k_s} oldsymbol{\Phi}_0 &= 2^{-s} \sum \chi_{(\pm \mathfrak{p}^-k_1 \pm \cdots \pm \mathfrak{p}^-k_s)} oldsymbol{\Phi}_0 \ . \end{aligned}$$

Thus,

$$(g_{k_1}\cdots g_{k_s})^{\hat{}}=\sum au_{(\pm \mathfrak{p}^{-k_1}\pm \cdots \pm \mathfrak{p}^{-k_s)}} alla_0$$
 .

Each term is the characteristic function of a coset of \mathfrak{D} in one or the other of $\mathfrak{p}^{-k_s} + \mathfrak{P}^{-k_s+1}$ or $-\mathfrak{p}^{-k_s} + \mathfrak{P}^{-k_s+1}$. For K of finite characteristic we proceed more carefully.

$$egin{align} g_{k_1} \cdots g_{k_s} &= 2^{-s} (h_{k_1} + \overline{h_{k_1}}) \cdots (h_{k_s} + \overline{h_{k_s}}) \ . \ & \ \hat{h}_k &= [q^{-k+1} \sum_{l=1}^{q(k-1)} \overline{\chi}_{c_l^{k-1}}] au_{v^{-k}} arPhi_{-k+1} \ . \ \end{cases}$$

Since $c_l^{k-1} \in \mathfrak{D}$ it follows that the term in the "square" brackets is constant on cosets of \mathfrak{D} . $\tau_{\mathfrak{p}^{-k}} \varPhi_{-k+1}$ is the characteristic function of $\mathfrak{p}^{-k} + \mathfrak{P}^{-k+1}$ so \widehat{h}_k is a finite linear combination of characteristic functions of cosets of \mathfrak{D} contained in $\mathfrak{p}^{-k} + \mathfrak{P}^{-k+1}$. Thus h_k is a finite linear combination of terms of the form $\chi_u \varPhi_0$, $u \in \mathfrak{p}^{-k} + \mathfrak{P}^{-k+1}$, k > 0. Similarly, \overline{h}_k is a finite linear combination of such terms with $u \in -\mathfrak{p}^{-k} + \mathfrak{P}^{-k+1}$. The proof now proceeds as in the finite characteristic case.

This completes the proof of Lemma 2.

Note. μ is defined as a local field version of a Riesz product. See [5; V § 7]. It should then come as no surprise that μ is a continuous singular measure when $q \geq 3$. We also note that if q=3, then μ (except for a trivial factor) is the Cantor-Lebesgue measure supported on the Cantor set, if one identifies $\mathfrak D$ with [0,1] in the usual way.

COROLLARY. Let π be a multiplicative character on K that is ramified of degree 1, homogeneous of degree zero, and is even. Let μ be the real-valued, singular measure defined in Lemma 2. Then $\pi \hat{\mu} = \hat{\mu}$.

Proof. We show that $\pi(x) \equiv 1$ on C. π is ramified of degree 1 so π is constant on each coset $\pm \mathfrak{p}^k + \mathfrak{P}^{k+1}$ so we only need to determine $\pi(\mathfrak{p}^k)$ and $\pi(-\mathfrak{p}^k)$. π is homogeneous of degree zero so we only need to determine $\pi(1)$ and $\pi(-1)$. π is even so $\pi(-1) = \pi(1)$. π is a multiplicative character so $\pi(1) = 1$. This completes the proof.

THEOREM. Let μ be as above, and let $\{c_k\}$ be a collection of distinct coset representatives of $\mathfrak D$ in K. Then there is a sequence $\{a_k\}$ of real numbers such that if $f(x) = \sum_{k=1}^{\infty} a_k \tau_{c_k} \mu(x, -k)$, then $f \in L^1$, but $f \notin H^1$. Furthermore, \hat{f} is supported on C.

Proof. Let $f_k = \tau_{c_k} \mu(\cdot, -k)$. f_k is supported on $c_k + \mathfrak{D}$.

$$f_k(x, l) = egin{cases} \mu(x-c_k, l) &, & l > -k \ \mu(x-c_k, -k) &, & l \leq -k \end{cases}.$$

Thus $f_k(\cdot, l)$ is supported on $(c_k + \mathfrak{D}) \times \mathbf{Z}$. Consequently,

$$\int \! |f| = \sum |a_k| \int \! |f_k| = \int \! |g_1| \sum |a_k|$$
 , and $\int \! f^* = \sum |a_k| \int \! (f_k)^*$.

We claim that $\left\{\int (f_k)^*\right\}$ is unbounded. If this claim is valid we simply choose $\{a_k\}$ so $\sum |a_k| < \infty$ and $\sum a_k \int (f_k)^* = \infty$. To prove the claim suppose $\left\{\int (f_k)^*\right\}$ is bounded. We note that $(f_k)^*(x) = \sup_{l \geq -k} |\mu(x-c_k,l)|$, so $\{(f_k)^*(x+c_k)\}$ is a nondecreasing sequence with limit μ^* . By the Lebesgue monotone convergence theorem $\mu^* \in L^1$. But $\mu(x,k)$ converges a.e. so by the Lebesgue dominated convergence theorem $\{\mu(\cdot,k)\}$ converges in L^1 and hence is Cauchy in L^1 . But $\{\mu(\cdot,k)\}$ is not Cauchy in L^1 , a contradiction.

We need to show that \hat{f} is supported on C. But $\hat{f} = \sum \alpha_k \chi_{c_k} \hat{\mu}(\cdot, k)$, and $\hat{\mu}(\cdot, k)$ is supported on C for all k, so \hat{f} is also supported on C. This completes the proof of the theorem.

Acknowledgment. Ms. Anna Gandulfo provided some heroic calculations for a variety of special cases of Lemma 2. These examples established the background for the more general results that appear in this paper.

REFERENCES

- 1. J.-A. Chao, Maximal singular integral transforms on local fields, Proc. Amer. Math. Soc., 50 (1975), 297-302.
- 2. J.-A. Chao and M. H. Taibleson, Generalized conjugate systems on local fields, to appear in Studia Math., 64.
- 3. A. Gandulfo, J. Garcia-Cuerva, and M. H. Taibleson, Conjugate system characterizations of H¹: Counterexamples for the Euclidean plane and local fields, Bull. Amer. Math. Soc., 82 (1976), 83-85.
- 4. M. H. Taibleson, Fourier Analysis on Local Fields, Math. Notes No. 15, Princeton Univ. Press, Princeton, N.J., 1975.
- A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge, 1959.

Received August 10, 1976. Research supported in part by the National Science Foundation under Grant No. MPS75-02411.

Washington University St. Louis, MO 63130