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THE SIMPLEST CLOSED 3-MANIFOLDS

RICHARD OSBORNE

Every closed orientable 3-manifoId has a Heegaard
diagram and corresponding group presentations. We shall
show here how to give a complete analysis of all closed
orientable 3-manifolds that have genus two Heegaard
diagrams having a corresponding presentation one of whose
relators contains no more than 4 syllables. This is equivalent
to saying that one of the determining simple closed curves
in the diagram crosses a "waist band" of the diagram no
more than 4 times. In the appendix we have given a catalog
of manifolds with two generator presentations and not more
than 20 syllables.

The catalog was produced with the aid of a computer using the
techniques developed in [6] and [7]. The analysis comes to a grinding
halt when "generalized knot spaces" are encountered because the
author has not been able to show nontriviality of the groups en-
countered nor has he been able to decide which of these spaces are
sufficiently large. The techniques used here have been sufficient for
establishing homeomorphism between any pair of orientable 3-mani-
folds known to be homeomorphic. The author wishes to thank H.
Zieschang for helpful conversations.

1* Preliminary definitions and theorems* Let M denote a closed
3-manifold. A 2-complex K is called a spine of M if M — B collapses
to K, B denotes a (polyhedral) ball in M. In our discussion all
spines will be assumed to have a cell decomposition with only one
0-cell (vertex). It is a simple matter to modify any spine by shrinking
a maximal tree in the 1-skelton so that it has only one o-cell. It is
easy to see how one obtains a group presentation from such a cell
complex. The generators are in 1-1 correspondence with the 1-cells
and the relators are read off from the formula by which the 2-cells
attach to the 1-skelton. This group presentation will be called a
presentation of the spine. Unfortunately the spine (and hence its
presentation) does not always uniquely determine the manifold. For
instance (a\a7) is a presentation of a spine of the lens spaces L7P

for P — 1, 2, 3. These spaces are not homeomorphic [11]. However
for spines whose presentations have two generators and relators all
of whose exponents are not ± 1 and ±2, the spines uniquely deter-
mine the manifolds [5].

There are 2 quite common ways of building 3-manifolds-Heegaard
diagrams and handle decompositions. A Heegaard diagram (H19 H2, h)
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for a 3-manifold is a pair of handle bodies Hί and H2 of the same
genus together with a homeomorphism h: dH1 —> dH2. It is not
difficult to see that every closed orientable 3-manifold has a (in fact
many) Heegaard diagram. Two Heegaard diagrams (HΊ9 H2, h) and
(Hlf H2, h') are to be considered the same if h and h' are isotopic.
Notice that this definition gives us no specific vehicle for saying how
h is defined. Thus although this definition does not require it we
have not really determined a manifold until some way of specifying
h is given. The most common way of specifying h is by choosing
meridian disks Dlt , Dn for H2 and specifying the simple closed
curves hr\dDi) in dHx. Note that there are infinitely many (non-
isotopic) ways of choosing a system of meridian disks for H2 and
each of these (given h) determine the same Heegaard diagram. If
one chooses a system Elf'--*,En of meridian disks for Ht one can
now determine a Heegaard diagram by specifying only the simple
closed curves {dEt} and {hrι(βDs)} in dH,. If we have (Hίf H2, h) and
{Et} and {Dt} chosen we have also determined a handle decomposi-
tion as follows. Denote by N(X) a regular neighborhood of X. The
0-handle will be H, - U?=i N(Et); the 1-handles are {N(Et)}f the
2-handles are {N(Dό)} attached along hr\N(D5) Π dH2). The 3-handle
is H2 ~ Ui=i N(Dj). Given any handle decomposition of a 3-manifold
with one 3-handle and one 0-handle one obtains a spine by simply
collapsing the 2-handles down to their central disks; collapsing the
1-handles down to the fins obtained by joining their centers with
the central disks of the 2-handles; then collapsing the 0-handle down
to the cone over the center of the intersection of the 2-complex so
far obtained with the boundary of the 0-handle. In [14] the techni-
que of getting a presentation of spine directly from 3H19 {di£J,
{h'\dDj)} is given.

Now let M be a compact-orientable 3-manifold with nonempty
boundary and suppose we are given a handle decomposition of M.
From this we obtain the presentation φ = (x19 , xn\Rlf •• , Rk}.
Let a be any simple closed curve in dM. We may move a isotopi-
cally so that it lies entirely on the 0 and 1-handles of M. Again
by an isotopic adjustment we may assume that the intersection of
a with each of the 1-handles consists of parallel arcs. If we orient
a and assign a direction to each 1-handle we can associate a (cyclic)
word in the free semigroup on xίf , xn with a by traveling around
a and when a passes over the ith. 1-handle writing χi if the direction
of travel agrees with the chosen direction and writing xiι otherwise.
(If a lies entirely in the 0-handle the corresponding word is 1.)
This cyclic word W(a) will be called a word corresponding to a or
a presentation of a. Note: two isotopic curves on dM may have
different presentations; however, both words must represent the same
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element of Π^M) as presented by φ.
Now suppose H is a genus 2 handlebobody. Let D be properly

embedded disk that splits H into two genus 1 handlebodies, D will
be called a waist-cut of H. If meridian disks for H have been chosen
we always assume that the waist-cut is disjoint from the meridian
disks. If a is a simple closed curve on dH then the minimum number
of points of intersection of a with D will be the number of syllables
of the word w{a) corresponding to a.

We are now ready to give the technical tools of this section.

THEOREM 1.1. Suppose <pt — (xiΛ, xiti, , xitmi\RiΛ9 , ϋJ<,fci>,
i = 1, 2; present the spines Kt of Mt. Suppose further that the
curves aίt •• ,an cut 3Mι into an open disk and that g: dMι-+dM2

is a homeomorphism. Let M be the manifold Mγ [Jg M2. Then φ =
<{*„; i=l,2; i = l,2, ,mj|{i^ ; i = l,2; i = l, -,*,} UίTΓ^y)^1^));
i = 1, 2, , w}> presents a spine of M. Here W^a/) respectively
W2(cCj) denote the words in x1;1, , xlt1Λl respectively x2>lf , x2>γϊl2

corresponding to a5 respectively g'^a/).

A very closely related theorem proved by the same techniques
is

THEOREM 1.2. Suppose φif Kt and Mt are as above and that
au %'jan is a collection of disjoint simple closed curves in dil^
and that N(cCi) is a small regular neighborhood of at in dM^ Let
g: U?=i N(at) -~> dM2 be a homeomorphism and let M — M1 \Jg M2.
Then φ = {Xij}\{Ris\ U {W^a^W^ia^)} presents a spine of M.

Proof We assume without loss of generality that U ^ and
) lies in the 0 and 1-handles of a handle decomposition of Mι

respectively M2 determined by the spines Kx and K2 respectively.
It is not difficult to see that we can enlarge Kt by "joining" U?=i cct

with the 1 complex that is the spine of the handlebody that is the
union of the 0 and 1-handles. After enlarging the spine of M2 in a
similar way we have 2 complexes K[ and K2 of Mι and M2 respec-
tively with the property Mt collapses to Kt and K[ Π BMX = U*U aι
while K2f)dM2 — UΓ=î (α<). It is easy to see that (in both theorems)
K[ \Jg K2 is a spine of M. Now choose an arc connecting the 0-cell
of K[ with the 0-cell of K2 by crossing ax exactly once and crossing
no other aίf i — 2, •••, n. Shrink this arc to a point and read off
the correspoding presentation to get the desired result.

Our next theorem enables us to show that none of the entires
in our appendix contains a fake 3 ball unless it is simply connected.
Further that all manifolds listed are irreducible if their fundamental
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group is not cyclic or is not a free product of two cyclic groups.

THEOREM 1.3. Let φ be a presentation of a spine of the closed
Z-manifold M. Denote by g(φ) the number of generators in the
presentation φ and let r(φ) by the rank (minimum number of
generators) of the group presented by φ. If g{φ) <; r(φ) 4- 1 then M
contains no fake S-balls. If g{φ) = r(φ) then M is reducible if and
only if φ presents a nontrivial free product.

Proof. Denote by g(M) the genus of a minimal genus Heegaard
diagram for M. Assume that M = Mx% M2 where # denotes the
connected sum along a 2-sphere S2. In [1] Haken shows we may
assume that S2 intersects the Heegaard surface of a minimal Heegaard
diagram in a simple closed curve. It follows that g(M) — g(M1) + g(M2).
Both results follow from this formula and the fact that no genus
1 counterexample for the Poincare conjecture exists.

2* Sums of lens spaces. We consider first spaces having a spine
with a presentation of the form <α, b\am, R2) where R2 is some word
in a and b.

THEOREM 2.1. A closed Z-manifold with a presentation of the
form (a, b | am, R2) is a spine of the connected sum of two lens spaces
and of no other 3-manifolds. Furthermore one of the summands
must be Lm,p for some choice of p and, if there are two b-syllables
with different exponents n and q then the second summand is uni-
quely determined.

Proof. We use the R — R system of φ as developed in [5]. In
[5] we showed that every presentation of a spine can be derived
from some R — R system containing no free cancellations. The
company corresponding to am is pictured in Figure 1 below. It is

FIGURE 1

easy to see that every relator R2 which fits in the above picture
must have the properties that all exponents in α-syllables must be
±m. Using Theorem 2.6 of [5] we eliminate am from R2, thus
producing a presentation of the form <α, 6|αm, bn). This presents
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only spines of connected sums of 2 lens spaces. Note that if two
different b exponents appear then the "gap" as discussed in [4] is
determined so that the second summand is uniquely determined.
The first summand corresponding to am is not uniquely determined.

Note. It could be that one or both of the summands is S3 (if
for instance m = 1).

3. Seifert fiber spaces* We now investigate spaces with presen-
tations of the form <α, b\ambn, R2}.

THEOREM 3.1. A closed 3-manifold with a presentation of the
form (α, b\ambn, R2) is a Seifert fiber space over S3 with ^ 3 excep-
tional fibers.

Note. If n = 0 we have the situation of 2, already discussed.
It is known [10] that Seifert fiber spaces over S3 with exactly 3 ex-
ceptional fibers are not sufficiently large unless their first homology
is infinite.

Proof. All of these manifolds are obtained by sewing a solid
torus to a manifold with spine presented by (a, b\ambn). Since
(a,b\ambn) has center when m, n Φ 0 and, since the corresponding
3-manifold is irreducible (by Theorem 1.3) and has torus boundary,
it is a Seifert fiber space over a disk with ^ 2 exceptional fibers
[10]. Attaching a solid torus gives a Seifert fiber space over S2

with ^ 3 exceptional fibers. If m or n = 0 we are again in the case
discussed in §2.

Note. For any of the presentations of this form listed in the
appendix it is not difficult to identify which Seifert fiber spaces
they present (in terms given by Seifert in [9]. For instance

<α, b I apbn, (ambn+qfambq)

presents a Seifert fiber space over S3 with 3 exceptional fibers as-
suming \p\ and \n\ > 1). The exceptional fibers are specified by the
pairs of integers p, m; n, q; k + 1, 1. A rigiorus proof can be
obtained using Theorems 1.1 and 1.2 and the construction of the
specified Seifert fiber space as given by Seifert.

4* The 4 torus spaces*

THEOREM 4.1. Let M be a closed 3-manifold presented by
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(a, b\(amb')rb*, am(a*bn)8)

for some choice of m, n, p, q, r, s with (m, p) = (n, q) — (r, s) — 1.
Then M is the union of 4 solid tori, each pair of which meet in
an annulus or a disk on their boundaries. Further, if \m\ and
\n\ > 1 then M is sufficiently large (hence uniquely determined among
irreducible closed 3-manifolds by its fundamental group [12]). //
\m\ or \n\ = 1 then M is a Seifert fiber space over S2 with 5̂ 3 ex-
ceptional fibers.

Proof. If m or n = 0 we have a case already investigated in
§2. If m = 1 then setting c — άbq transforms our presentation into
(a, c\crbn, R2). Now such a transformation gives a new spine for
M [5] also [13] so that we have the case treated in §3. If \r\ or
s\ <; 1 we are again in the case of §3.

We assume now that |m|, \n\, \r\, \s\ ^ 2. We first note that
(ambq)rbn = 1 implies that am and bn commute (write am ^ bn). To
see this observe that (ambq)bn(ambq)r-l(ambq)-rb"n = 1 but this is
ambna~mb"n = 1. A similar argument shows that am(apbn)8 — 1 implies
am>^lbn. We now consider subgroups of our groups G determined
by the generators listed below.

Subgroup Generators
G o am, bn

Gi am, b
G2 a, bn

Guo (ambq)r

G2i0 (apbn)s

G2f2 a

We have the following subgroup diagram. All maps are the inclu-
sions.

2,0
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We shall show that the above diagram gives a decomposition of G
into the 4 infinite cyclic subgroups Gitj so that G is the tree product
(see [2] for the definition of tree product) of the Gitj. More simply-
stated G is the tree product of Gx and G2 with Go amalgamated,
and Gi is the free product of GiΛ and GtΛ with GiΛ amalgamated.
In order to do this we build another diagram and show isomorphic
equivalence. Let G'itί = Z (the group of integers) for i = 1, 2 and
j = 0,1, 2. Define injections ψiti: G'it0-*G'itd by ψ1Λ(l) = r, ψli2(l) = -n,
ΨIΛ(X) = *f t w ( l ) = - m . Now define GJ - G'ίtiri}1==Ψlβ'ί)2. Clearly Gί

and G2 are presented by φx = (zlf yx \ zlyΐ) and φ2 = {z2, y2 \ zs

2y?) re-
spectively. Setting z1 = α̂ y? and z2 = ajfy2 we get presentations

and g and

Now let Gί = ̂ φ ^ and define homomorphisms ψi:G
tQ—>G'i by

^ ( 1 , 0) = X,, 11(0,1) = y , f 2(1, 0) - xΐ, ^2(0, 1) = yz. It must be
that ft and α̂ 2 are homomorphisms because x± ̂ 1 yl in G[ and ΛJΓ ̂ Ϊ y2

in G2. We now show that ψx and α̂ 2 are monomorphisms. Suppose
φ^u, v) = 16 Gί. Then xΓs/Γ = 1. Note that xΐyΓ = {zγyτq)uyΓ =
wΓ(«iίΓff) . But SiθGί,!- ti,i(Gίf0) and ?/r5 6 Gί,2 - ψlfϊ(Gί,0) because
\n\ > 1 and ^ and q are relatively prime. Furthermore y\n eψl)2(GU0).
Thus the length of yΓfayΓ9)* is greater than 0. (See [3] for the
definition of length in a free product with amalgamation.) It follows
that %lyT Φ 1 for u Φ 0. Suppose now that u = 0. Then our
expression is yT. But clearly ^ has infinite order so y? = 1 if and
only if v — 0. We see then that ψλ (and by a similar argument α/r2)
is a monomorphism. We now form the free product with amalgama-
tion Gr - Gl^Ufi'z. Clearly

presents G'. Eliminating ccL and y2 we get

v»m\h2 /

which is our original presentation. Now we map a—*x2 and 6 —* 2/1
and lift subgroups to get the original decomposition for G.

Since we have Π^M) is a nontrivial free product with amalgama-
tion when |m|, M, |r|, |s| > 1, M is sufficiently large [10]. It follows
from [12] that Π^M) uniquely determines M among irreducible
closed 3-manifolds. The 4 tori TiS required in the theorem cor-
respond to the 4 groups G'i3 ; i, j = 1, 2. We now give a construc-
tion which yields our manifolds from 4 tori meeting as specified.
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Let an be a simple closed curve in dTn running longitudinally around
dTn r times while running meridianally around dTn once and let
an be a simple closed curve in dT12 running longitudinally around
3T12 n times while running meridianally around dT12 p times. Now
sew Tn to T12 along regular neighborhoods in dTn and dT12 of an

and a12 respectively. We have a new space 2\ which according to
Theorem 1.2 has a spine presented by φ^ A similar construction
yields T2 with a spine presented by <ρ2. The presentations φ1 and φ2

define a handle decomposition for T1 and Γ2. If we change meridian
disks in each of these handle decompositions by setting zλ = xxyl and
z2 = χξy2 we get new spines with presentations φ[ and φ'2. Now sew
3ΓX to 3Γ2 so that the simple closed curve presented by yΐ in dTt

is sewed to the curve presented by y2 in dT2 and the curve presented
by x1 in 3TΊ is sewed to the curve presented by xT in dT2. By
Theorem 1.1 the resulting manifold has a spine presented by <p. The
eliminations of x1 and y2 can be done [5, Theorem 8.1] yielding a
new spine presented by φ.

Our entire construction is summarized in Figure (2a) and (2b).
Figure (2a) shows a R-R system [5] for 2\ while Figure (2b) shows
a R-R system for T2. These diagrams are divided into an upper
and lower part representing regions on the boundaries of Tn or T21

and T12 or T22, respectively. In order to construct our manifold M
the dotted curves are to be sewed together as are the dashed curves.
This diagram makes it easy to check that Ti3 intersect in annuli or
disks.

FIGURE 2
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Note that the foregoing construction does not depend on the
values of m, n, r, s being greater than 1.

There is another type of presentation encountered in the catalog
in which one relator has 4-syllables. The simplest of these is the
19th entry. This space is again the result of sewing 4 tori together.
But the sewing is not so simple as that given in Theorem 4.1. In
particular, one shows that in

<α, b I am+p(a~pb~n)\ (a

m+pbn+9yb~n(am+pbn+qfb-~n} am+p

and bn commute. This gives a decomposition for this group into a
tree product. However, the presentations φ[ and φ'2 in the proof of
Theorem4.1 now look like (zuyx\zlyrm~p), and (z2,x2\zl%z~

nz2x2~
n)> respec-

tively. The remaining steps of the analysis are the same except
that the figure analogous to Figure 2 shows that some of the tori
intersect in two of disks instead of one disk.
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A P P E N D I X

A CATALOG O F S P I N E S O F C L O S E D 3-MANIFOLDS

W I T H G E N U S 2 H E E G A A R D DIAGRAMS

R. P. OSBORNE AND J . YELLEN

We present here a complete list of the simplest closed orientable
3-manifolds that have genus 2 Heegaard diagrams. These manifolds
are given by specifying their spines and by specifying the way in
which these spines meet the boundary of a regular neighborhood of
the single vertex in a cell decomposition of the manifold. The spines
are uniquely determined by a group presentation. The spine is con-
structed by attaching a pair of disks to a figure 8 according to the
formulae given by the relators of the group presentation. The
beginning point for the construction of this catalog was a listing of
the 598 distinct R-R systems whose presentations have two generators
and no more than 20 syllables in their relators (see [5] for the de-
finition of R-R system and how it determines the manifold). This
listing was given by R. Stevens with help from the computer at
the University of Michigan. The program has been rewritten and
checked at Colorado State University. The techniques needed for
writing this program were developed in [5] and [7]. Many of the
presentations corresponding to a connected sum of lens spaces were
not included in this listing. This listing contained a large number
of redundancies in that it listed R-R systems that determined exactly
the same set of manifolds. At this point the 2nd author with the
help of R. Memmel undertook the writing of a computer program
which grouped these R-R systems into 137 equivalence classes, the
shortest member of which is listed in the catalog. The listing is
complete in the sense that every orientable closed 3-manifold that
has a spine whose presentation has two generators and no more than
20 syllables appears at least once.

Suppose M is a manifold obtained by assigning integer values
to the exponents of some entry in the catalog. It is highly unlikely
that M can also be obtained from a different entry. The likelihood
of this type of coincidence rapidly decreases as the length of the
presentation increases. For an example of such a coincidence consider
the first and second listed classes whose presentations are

<α, b I ambg, apbn)

and

<α, b I ambn+qamb\ apbn) .
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If for the first presentation we choose m = 2, q = 3, p = 3, and
n = 4, we get a spine of S3 (see [7] for verification of this fact).
If in the second presentation we choose m — — 1, q = 5, ^ = — 3,
and p = 1 we also get a spine of S3.

1* Determining the embedding from the 7 numbers in the
catalog* Denote these numbers by a, β, 7, a'y β', 7', δ. See Figure
3 for an illustration of this construction for 3, 0, 2, 1, 1, 3; 1. We

FIGURE 3

shall construct the R-R system of the presentations listed in the
catalog. Let Da and Dh be disjoint regular hexagons in the plane.
In Da lable successive sides by the integers m, m + p, and p. Now
construct a oriented parallel line segments with one end (tail) on the
side opposite the edge labelled m, the other end (head) on the side
labelled m. Next construct β parallel line segments with heads on
the side m + p and tails on the opposite side. Similarly construct
7 parallel line segments with heads on the side labelled p and tails
on the opposite side. Construct systems of parallel line segments in
Db corresponding to the numbers a', βr, and 7' in the same way.
These line segments are called tracks. We next draw an arc con-
necting the last (clockwise) head of a track in Da with the <5th track
in Dh counting clockwise from the first (clockwise) tail of a track in
Db. This first track should be counted as the Oth track. Now draw
the remaining arcs joining the tracks in Da and Db so that these
arcs are disjoint. The R-R system is now completed. To obtain the
group presentation corresponding to this R-R system we proceed as
follows. Trace out a closed curve by following a track through Da

then along arc connecting the end of the track to a track in Db.
Next follow the arc connecting the end of this track with the end
of a track in Da. We continue until we return to the starting point.
This closed curve determines a relator in a presentation in the
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following way. As we travel along a closed curve, we record a
syllable am if we travel from tail to head along a track whose head
lies on the side labelled m. Next we follow the closed curve to a
track in Db. If we follow along this track from tail to head we
record a syllable bn (or bn+p or bp). If we travel along a track from
head to tail we record the syllable with a minus sign preceding the
exponent, e.g., a~m or b~q. We continue in this way until we return
to the starting point. This gives us one of the relators listed in the
catalog. The R-R systems obtained from the table have two relators,
hence we will always have exactly two of these closed curves.
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TABLE OF GROUP PRESENTATIONS

The letters that appear represent alternatively the exponents of the
generators a and b. For example, the 4th entry denotes the presentation
form ζa,bjamb~ta~pb~t

fa
8bqasb~ny. Here s denotes m + p and t denotes

n + q. By choosing integer values for m, n, p, and q such that
(m,p) — 1, (n,q) = 1 one gets a presentation of the spine of a closed
3-manifold.

1,0,1,l,0,l;0 mq, pn
2,0,1,1,1,1; 0 mtmq, pn
3,0,1,1,2,1; 0 mtmtmq, pn
1,2,1,1,2,1;2 m - t - p - t, sqs - n
4,0,1,1,3,1; 0 mtmtmtmq, pn
1,3,1,2,1,2; 0 mqsnpnsq, st
1,3,1,2,1,2; 1 m — n — p — n, stsqsq
5,0,1,5,0,1; 1 mn — mnm — n, mqm — n — p — n
5,0,1,1,4,1; 0 mtmtmtmtmq, pn
5,0,1,3,1,2; 3 mqm — nmqm — nm — n, pt
1,4,1,3,1,2; 0 mqsnsq, snpnst
1,4,1,3,1,2;5 m — q — p — qf s — ns — ns — ns — t
3,1,2,3,1,2;0 mtmqmq, snpnpn
3,1,2,3,2,1; 0 mtmtmq, snpnpn
3,1,2,3,1,2; 2 mqsqm — n, m — n — p — t — p — n
6,0,1,1,5,1; 0 mtmtmtmtmtmq, pn
6,0,1,1,5,1;2 mtm — t — m — q — m — t, mtptm — n
1,5,1,4,1,2;6 m — q — p — q, s — ns — ns — ns — ns — t
1,5,1,2,3,2; 1 m — n — p — n, ststsqstsq
1,5,1,2,3,2;2 m — nsts — n, stptsqsq
4,1,2,3,1,3;0 mtmqmqmq, snpnpn
4,1,2,3,1,3;4 m — nm — nm — nm — t, sqpqpq
4,1,2,3,1,3; 5 m — nm — q — p — q — p — q, m — ns — nm — t
3,1,3,2,3,2; 3 m — nm — nm — t — p — t, sqptpq
7,0,1,1,6,1;0 mtmtmtmtmtmtmq, pn
7,0,1,1,6,1; 2 mtm — nmtm — t — m — t, mtptmq
7,0,1,5,1,2; 3 mn — m — q — m — q — mnm — n, mtm — n — p — n
7,0,1,5,1,2; 5 mqm — nm — nmqm — nm — nm — n, pt
7,0,1,4,1,3;4 mqm — nmqm — nmqm — nm — n

}
 pt

1,6,1,1,6,1; 2 m — t — s — t — p — t — s — t, stsqsts — n
1,6,1,5,1,2; 7 m — q — p — q, s — ns — ns — ns — ns — ns — t
1,6,1,4,1,3; 0 mqsnsqsnsq, snpnst
1,6,1,3,2,3; 3 m — nsqsqsqs — n, stpts — n
5,0,3,4,1,3;6 m — nm — tm — nm — q — p — q, m — npqp — n
5,1,2,5,1,2;2 mtm — n — p — n — p — n, mqmqm — n — s — n
5,1,2,4,1,3; 3 mqm — nmqsqm — n, m — n — p — t — p — n
5,1,2,4,3,1;4 mqm — nm — nm — nm — n, stptpt
5,1,2,4,1,3; 5 m — nm — nm — nm — nm — t, sqpqpq
5,1,2,3,2,3; 0 mtmqmtmqmq, snpnpn
5,1,2,3,2,3; 5 m — nm — nm — tm — nm — t, sqpqpq
5,1,2,3,2,3;6 m — nm — q — p — q — p — q, m — ns — nm — tm — t
4,1,3,4,1,3;0 mtmqmqmq, snpnpnpn
4,1,3,4,3,1;0 mtmtmtmq, snpnpnpn
4,1,3,4,3,1; 1 mtm — n — p — n — p — n — p — n, mtstmq
4,1,3,4,1,3;6 m — ns — nm — q — p — q, m — npqp — nm — t
4,1,3,3,2,3;! mqmqmqm — n — p — n,
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3,2,3,3,2,3; 2 mqsqsqm — n, m — n — p — t — p — t — p — n
3,2,3,3,2,3;4 m — nm — t — p — q — p — t, m — nsqpqs — n
8,0 , l , l ,7 , l ;0 mtmtmtmtmtmtmtmq, pn
8,0, l ,5 , l ,3 ;3 mn — m — q — m — q — m — q — mnm — n, mtm — n — p — n
8,0,1,5,1,3;5 mqm — nmqm — nm — nmqm — nm — n, pt
7,0,2,1,7,1;2 mt — mtm — t, mqm — t — p — tm — nm — t — p — t
1,7,1,6,1,2; 8 m — q — p — q, s — ns — ns — ns — ns — ns — ns - t
1,7,1,2,5,2; 1 m — n — p — n, stststsqststsq
1,7,1,2,5,2;3 m — t — s — q — s — q — s — t, sts — nstpts — n
l ,7, l ,4,2,3;0 mqsnsqsnsq, snpnstst
1,7,1,4,2,3; 5 m — t — p — t, sqs — nsqs — nsqs — ns — n
1,7,1,4,2,3;6 m — tsqs — t, sqpqs — ns — ns — ns — n
6,1,2,5,1,3; 2 mtm — n — p — n — p — n, mqmqmqm — n — s — n
6,1,2,5,3,1; 5 mqm — nm — nm — nm — nm — n, stptpt
6,1,2,5,1,3; 6 m — nm — nm — nm — nm — nm — t, sqpqpq
6,1,2,3,3,3; 1 mtm — n — p — n — p — n, mtstmqmqmq
5,1,3,2,5,2;0 mtmqmtstmq, mtpnpnpt
5,1,3,4,1,4;0 mtmqmqmqmq, snpnpnpn
5,1,3,4,1,4;4 mqpqm — nm — nm — nm — n, sqptpq
5,1,3,4,1,4;5 m—nm—nm—nm—nm—t, sqpqpqpq
5,1,3,4,1,4; 8 m — np — nm — qm — tm — q, m — q — pn — sn — p — q
5,1,3,4,2,3; 0 mtmqmtmqmq, snpnpnpn
5,l,3,4,3,2;0 mtmtmqmtmq, snpnpnpn
5,1,3,4,3,2; 1 mtm — n — p — n — p — n — p — n, mtstmqmq
5,1,3,4,2,3;3 mqm — nmqsqm — n, m — n — p — t — p — t — p — n
5,1,3,4,3,2; 5 m — nm — nm — nm — nm — t — p — t, sqptpq
5,1,3,4,2,3;7 m — ns — nm — q — p — qt m — npqp — nm — tm — t
4,2,3,3,3,3; 1 mqmqmqm — n — p — n, ststpnpt
9,0,1,9,0,1; 3 —m — nmn — mnm — n — mn, —m — nmqm — n — mnpn
9,0,1,9,0,1; 1 mn — mn — mnm — nm — n, mqm — nm — n — p — nm — n
9,0 , l , l ,8 , l ;0 mtmtmtmtmtmtmtmtmq, pn
9,0,1,1,8,1; 3 mtm — t — m — tmtm — t — m — q — m — t, mtptm — n
9,0,1,7,1,2; 1 mnmqmnmqmnm — n — m — n, mnpnmt
9,0,1,7,1,2;7 mqm — nm — nm — nmqm — nm — nm — nm — n, pt
9,0,1,5,1,4; 3 —m — nmqmqmqmqm — n — mn, —m — t — mnpn
9,0,1,5,1,4; 5 mqm — nmqm — nmqm — nmqm — nm — n, pt
1,8,1,7,1,2;1 m — n — s — n — p — n — ,
1,8,1,7,1,2;2 —mnsqsnpnsqsn, —s — n — i
1,8,1,7,1,2;6 m — ns — n — p — ns — n, sts — nsqs — nsqs — n
1,8,1,7,1,2; 9 —mqpq, —sn — sn — sn — sn — sn — sn — sn — st
1,8,1,6,1,3;0 mqsnstsnsq, snsnpnsnsq
1,8,1,6,1,3;2 —mnsqstsqsn, —s — n — p — n — snsqsn
1,8,1,5,1,4; 0 mqsnsqsnsqsnsq, snpnst
1,8,1,5,2,3;4 m — nsts — nsts — n, sqsqsqs — n — p — n
1,8,1,5,2,3;6 m — t—p — t, sqs — nsqs — ns — nsqs — ns — n
1,8,1,5,2,3;7 m — tsqs — t, sqpqs — ns — ns — ns — ns — n
1,8,1,3,4,3;3 m — nsts — nsts — n, stptsqsqsq
7,0,3,5,2,3; 8 m — nm — tm — nm — tm — nm — q — p — q, m — npqp •
7,l ,2,7, l ,2;0 mnmqmnsnmq, mnpnmnpnmt
7,1,2,6,3,1;4 mtm — nmtstm — n, mqm — n — p — nm — n — p — n
7,1,2,6,3,1;6 mqm — nm — nm — nm — nm — nm — n, stptpt
7,1,2,6,1,3;7 m — nm — nm — nm — nm — nm — nm — t, sqpqpq
7,1,2,6,1,3; 8 —mn — mn — mqpqpq, —mn — mn — sn — mn — mt
7,1,2,5,1,4;2 mtm — n — p — n — p — n, mqmqmqmqm — n — s — n
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7,1>2,5,1,4; 4 mqm — nmqm — nmqsqm — n, m — n — p — t — p — n
7,1,2,5,2,3; 3 mtstm — n, mqmqm — n — p — nmqm — n — p — n
7,1,2,5,3,2; 5 mqm — nm — nmqm — nm — nm — n, stptpt
7,1,2,5,2,3; 7m — nm — nm — nm — tm — nm — nm — t, sqpqpq
7,l,2,3,4,3;0 mtmtmqmtmqmtmq, snpnpn
7,1,2,3,4,3; 7 m — nm — tm — nm — tm — nm — tm — t, sqpqpq
7,1,2,3,4,3; 8 —mn — mqpqpq, —mn — sn — mt — mt — mt — mt
6,1,3,6,1,3;2 mtm — n — p — n — p — n — p — n, mqmqmqm — n — s — n
6,1,3,6,1,3; 4 mqm — nmqsqm — n, m — n — p — nm — n — p — t — p — n
6,1,3,6,1,3; 8 m — nm — tm — nm — q — p — q, m — ns — nm — npqp — n
6,1,3,5,4,1; 2 mtm — n — p — n — p — nmtm —• n — p — n, mtstmq
6,1,3,5,1,4; 5 mqpqm — nm — nm — nm — nm — n, sqptpq
6,1,3,5,4,1; 5 mqm — nm — nm — nm — nm — n, stptptpt
6,1,3,5,1,4; 6 m — nm — nm — nm — nm — nm — t, sqpqpqpq
6,1,3,5,3,2; 6 m — nm — nm — nm — nm — nm — t — p — ί, sqptpq
6,1,3,5,3,2; 7 — mn — mn — sn — mn — mt, —mn — mtpqpqpt
6,1,3,3,4,3; 1 mtstm — n — p — n, mtpnptmqmqmq
6,1,3,3,4,3; 4 mqm — t — p — t — p — t — p — t, mqsqm — nm — nm — n
5,0,5,5,0,5; 2 mqm — n — p — q — m — q — p — n, mqpnpqm — n — p — n
5,1,4,5,1,4; 0 mtmqmqmqmq, snpnpnpnpn
5,l,4,5,4,l;0 mtmtmtmtmq, snpnpnpnpn
5,1,4,5,1,4; 4 mqptpqm — nm — n, m — n — p — q — s — q — p — nm — n
5,1,4,5,2,3; 0 mtmqmtmqmq, snpnpnpnpn
5,1,4,5,3,2; 0 mtmtmqmtmq, snpnpnpnpn
5,1,4,5,3,2; 1 mtm — n — p — n — p — n — p — n — p — n, mtstmqmq
5,1,4,5,2,3; 2 mqmqm — n — p — nmqm — n — p — n, stpnpt
5,1,4,5,2,3;7 m — nm — tm — ns — nm — t, m — npqpqpqp — n
5,1,4,5,2,3; 9 —mn — pn — sn — pn — mq, —mt — mt — mqp — npq
5,1,4,3,4,3;6 —mn — mt — mn — sn — mt, —mtpqpqpqpt
5,2,3,5,2,3; 0 mtmqmtmqmq, snpnsnpnpn
5,2,3,5,3,2; 0 mtmtmqmtmq, snpnsnpnpn
5,2,3,5,2,3; 4 mqsqsqm — nm — n, m — n — p — t — p — t — p — nm — n
5,2,3,5,2,3;8 m — ns — ns — nm — q — p — q, m — npqp — nm — tm — t
5,2,3,3,4,3; 8 m — tm — tm — tm — tm — q — p — q, s — ns — npqp — n
5,2,3,3,4,3; 9 —mt — mqp — npq — mt — mq, —mt — sn — pn — st
3,4,3,3,4,3; 2 mqstptsqm — n, m — n — p — t — s — q — s — t — p — n
3,4,3,3,4,3;4 m — nm — t — p — t — p — t — p — t, m — nsqsqsqs — n






