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SYMMETRIC DIFFERENCE IN ABELIAN GROUPS

G. GRATZER AND R. PADMANABHAN

A groupoid 21 = ζA; *> is called a left (resp. right) dif-
ference group if there is a binary operation + in A such that
the system <A; +> is an abelian group and x*y — —x + y
(resp. x * y = x ~ y). A symmetric difference group is a
groupoid satisfying all the identities common to both left and
right difference groups. In this note we determine the struc-
ture of a symmetric difference group. Using this, we show
that any finitely based equational theory of symmetric dif-
ference groups is one-based. This includes the known result
that the theories of left and right difference groups are one-
based. Other known results on finitely based theories of
rings also follow.

Let I (resp. J) stand for the class of all binary identities true
in all left (resp. right) difference groups. Then the equational class
of groupoids satisfying all the identities I f) J is, by definition, the
class of all symmetric difference groups (SD-groups, for brevity).
For example, the identity

( 1 ) (x*y)* (((a? * z) * (u * u)) * y) = z

belongs to the class I f] J and hence valid in every SD-group. To
see this we only have to check whether (1) is true when x * y =
—x + yorx*y = x — y in abelian groups. This is indeed the case.
The main result of this paper is that the converse of the above
statement is true, namely, any groupoid satisfying identity (1) is,
in fact, an SD-group (Theorem 2). This is obtained through a struc-
ture theorem for groupoids satisfying identity (1).

1* The structure theorem* We prepare the proof of the struc-
ture theorem with a lemma.

LEMMA 1. Let 81 = <A; F} be an algebra having a binary poly-
nomial * and let w be a polynomial of the type of 81. Then the
algebra satisfies the identity

( 2 ) (x * y) * (((cc * z) * w) * y) = z

iff 8ί has an abelian group reduct <A; +, —, 0) and there exists a
map a: A —> A such that

( i ) 81 satisfies the identity w = 0;
(ii) a is an involutoric1 endomorphism of the group; and

1 We call a map a: A-+ A involutoric if a2 is the identity map on A.
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(iii) x * y = xa — ya.

Proof. If there exists a map a: A —> A satisfying (i)-(iii) then

0 * 2 / ) * (((<& * z)*w)*y)

= (xa — ί/α)<x — ((xa — 2α)α:2 — ya)a

= (x - y) - (x - z - y)

— x — y — x + z + y — z

and hence (2) is valid in 8t.
Conversely, let 81 satisfy the identity (2). Let us make x * z into

a variable a by substituting a? = a * w and z = ((a*a)*w)*w to
obtain

((α * w) * 2/) * ((α * w) * y) = ((a * a) * w) * w

Notice that we can change the term (a * w) * y into an arbitrary
variable z by substituting y = ((a * z) * w) * w. So we have

(3 ) z * z = ((α * α) * w) * ^

and hence ^ * 2; is a constant, say 0.
Observe that we have the left cancellation property for *.

Indeed, x * z — x * t implies that

z = (x * y) * ((O * 2) * w) * 1/) by (2)

= (x*y)* (((x * t) * w) * y) by (2)

= έ .

So, from (3) we get

(0 * w) * (0 * w) = (0 * w) * w ,

which implies that 0 * w = w.

Putting x = z = 0 and 2/ = w in (2) and using the above we get

ΊO * Q — 0 = w * w

and hence

( 4 ) w = 0 .

Let a? = z and 2/ = 0 in (2). We have

( 5 ) (x * 0) * 0 = x .

Putting y = 0 in (2) we get, by (5),

( 6 ) (x * 0) * (x * z) = z .



SYMMETRIC DIFFERENCE IN ABELIAN GROUPS 341

Now multiply (2) on the left by (x*y)*0 to obtain

((α? * y) * 0) * {(x * y) * (((& * s) * 0) * #)} = ((a? * y) * 0) * z ,

which reduces, by (6), to

( 7 ) ((a? * z) * 0) * # = ((a? * y ) * 0) * 0 .

Finally, putting a? = # — z in (2) we get

( 8 ) 0 * (0 * x) = a; .

We have obtained enough identities now to recover the group struc-
ture. Define

# + 2/ = (# * 0) * (0 * y) ,

and

— # = (0 * x) * 0 .

We claim that the reduct (A; +f —, 0> is an abelian group.
Compute:

0 + x = (0 * 0) * (0 * x)

= 0 * (0 * x)

= x by (8)

-x + x = (((0 * &) * 0) * 0) * (0 * x)

= (0 * a?) * (0 * x) by (5)

= 0 ;

(x + y) + z = (((a? * 0) * (0 * 2/)) * 0) * (0 * z)

= (((a? * 0) * (0 * 2)) * 0) * (0 * y) by (7)

= (a? + z) + y .

In particular, putting # = 0, we get y + z = z + y. This com-
pletes the proof that the reduct <A; + , —, 0> is an abelian group
and the algebra 81 satisfies the identity w = 0.

Let us substitute, in (2), x = a * 0 and 2 = α * c. By (6) we have
x * £ = c. Hence (2) becomes

((α * 0) * #) * ((c * 0) * 2/) = α * c

Putting y = c * 0 and multiplying both sides by 0, on the right we
obtain using (5)

( 9 ) (a * 0) * (c * 0) = (α * c) * 0 .

Now define a: A —> A by m = a? * 0.
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We have

(x + y)a = (x + y) * 0

= ((a? * 0) * (0 * y)) * 0

= ((a? * 0) * 0) * ((0 * y) * 0) by (9)

= x * ((0 * y) * 0)

= a? * (0 * (» * 0)) by (9)

Moreover,

#α 2 = (a? * 0) * 0

= x ,

and thus a is an involutoric endomorphism of the abelian group
(A; + , - , 0>. Finally

xa — 2/α: = (a? * 0) + (0 * (ya * 0))

= (a? * 0) + (0 * y)

= ((a? * 0) * 0) * (0 * (0 * y))

= χ*y ,

and this completes the proof of the lemma.
Now we are ready to state and prove the structure theorem.

THEOREM 1. Let Sί = {A; *> be an SD-group. Then there is a
binary operation + on A such that <A; + > is an abelian group and
x * y = xa — ya for some involutoric endomorphism a of the abelian
group (A; +>.

Proof. If Sί = <A; *> is an SD-group then it satisfies identity (1)
which is a special case of (2) with w = u * u. Hence, by Lemma 1,
9ί has an abelian group reduct with the desired properties. The
additional condition u * u — 0 is, of course, true in all SD-groups as
it belongs to IΓΊ J This completes the proof of the theorem.

2. One-based theories* Let L (resp. R) denote the equational
class of all left difference groups (resp. right difference groups). So
the lattice join L V R in the lattice of all equational classes of
groupoids is precisely the class of all groupoids satisfying the
identities If)J and hence LVR is the class of all SD-groups. Let S
denote the equational class of groupoids satisfying identity (1). Then
it is clear that S 2 L V R. Thus to prove that identity (1) is indeed
a base for the equational theory of I Pi J, it is sufficient to prove
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that S £ L V R. For these and other universal algebraic notions
we refer to the relevant sections of [1].

Let Xand X' be disjoint sets with a: X<-+ X' a bisection between
them.

Let Ab{X U Xf) = (F; +, —, 0> be the free abelian group generat-
ed by the set XU X'. Now a is a mapping of the set I l J Γ into
F and by the freeness of Ab(X U Xf) we can extend this to an
endomorphism a. Moreover, since xa2 = x for all xe XU X\ we
have xa2 = x for all x e F. For sc, # in F, define x * ^ = xa — #α.
It is clear that the groupoid δl = <F; *> satisfies identity (1) of
Theorem 1 and hence 9ϊeS.

LEMMA 2. The groupoid SI = <F; *) constructed above is the free
S-groupoid generated by the set X.

Proof. Let 85 = (B; *> be any S-groupoid and let φ be a mapping
from X into JB. By Theorem 1, S3 has an abelian group reduct
(B; + , —, 0> and an involutoric endomorphism β of the group struc-
ture such that x * y = xβ — yβ for all x, y e B. Given an a ' e Γ ,
there is a unique xeX such that xa = x'. Define x'φ — xφβ and
extend the map φ: X U Xf —> i? to a homomorphism of the free abelian
group A6(XU X') into (B; + , —, 0>. We claim that xaφ = #φ/3 for
all x e F (see Figure 1). Indeed, if xeF, then xα<£> = x'φ = #<p/3 by

BM
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1

definition; if #' 6 Xf then α?'α̂ > = xaaφ — xφ while x'φβ = xφββ =
and hence ##<£> = x<p/3 for all x e l U l ' and hence for all xeF.
Now, for x, y eF,

(x * #)9> = (a?α — ya)φ

= xφ * ^ ,

and hence <p: 91 -—> 33 is a homomorphism. This completes the proof
that Sί is the free S-groupoid with X as its free set of generators.
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LEMMA 3. Sί = (F; *) of Lemma 2 belongs to the equational
class L V R.

Proof. For x, y eF, define (x, y} e Θ iff xa — ya = —x + y. It
is easy to see that Θ is an equivalence relation on the set F. More-
over, if (x, y}eθ and (z, t} e θ, then

— (as *z) + (y*t)= —(xa — zα) + (ya — to)

= — (xa — J/Λ) + (zα — ta)

= -(~x + y) + (-z + ί)

= (s - *) - (y - *)

= (x * «)α — (y * ί)α ,

and hence (jx * z, y * £) 6 θ which shows that θ is a congruence rela-
tion on 5ί = <F; *>. Since, by the proof of Lemma 1 x — y is a
polynomial of *, θ is also a group congruence.

Now, for all x, y eF,

(x * y)a — (x — y)a = (a?α — yά)a —

= (a? — y) — («α -

= O - y) - (»* y)

= ~(a?*y) + (a? - y) ,

and hence {x * ̂ /, a; — y} e θ for all x, y in ί7. So, in the S-groupoid
Sί/β, we have x * y — x -- y, the left difference and hence Sί/β e L.
Similarly, the S-groupoid Sί/Φe/Ϊ where

Φ = {<α?, y> I α, y 6 F, xa - yα = α - y]

and so their direct product 5ί/Θ x Sί/ΦeL V R. Now, for each a ef ,
let xX = <[a?]θ, [a?]Φ>. Thus λ is a homomorphism of §ί into 81/θ x 8ί/Φ.
If a λ = yλ for some x, y in F then <#, y> e θ Π Φ and this implies
that — x + y = x — y or 2a? = 2y. But since the group structure in
Sί is free, we have x — y. Thus Sί is isomorphic to subalgebra of
the direct product and hence % 6 L V R. This completes the proof
of the lemma.

THEOREM 2. The identity (1) is a base for the equational theory
ofinJ.

Proof. As mentioned in the beginning of this section, it is
sufficient to prove that S Q L V R. Now, if 35 = (B; *> is any S-
groupoid then it is a homomorphic image of some free S-groupoid
Sί = (F; *> and by Lemma 2 every such 8ί belongs to L\/ R. Since



SYMMETRIC DIFFERENCE IN ABELIAN GROUPS 345

equational classes are closed under homomorphic images we get the
conclusion that S £ L V R.

3* Applications* In §2 we have used only identity (1) which
is a special case of identity (2) of Lemma 1. In this section we will
apply identity (2) to establish that certain familiar theories are one-
based.

THEOREM 3. A finitely based equational theory Θ of symmetric
difference groups is one-based.

Proof. Let Θ be an equational theory of groupoids by defined
/ Π J together with a finite set of identities. Recalling that Θ has
the left cancellation property (because of (1) which belongs to If) J),
any identity / = g is equivalent to / * g = 0. Now let / = 0 and
g = 0 be any two identities in Θ with disjoint sets of variables. It
is clear that, in presence of I C)J, these two identities are equivalent
to the single identity f^g — 0. Thus we can assume that Θ is
defined by I n J together with one identity w = 0. Hence Θ contains
the identity (2) of Lemma 1. Conversely, the theory defined by the
identity (2) with the above w contains, by Lemma 1, identity (1) and
w = 0. Now, by Theorem 2, identity (1) is a base for IΠ J and
hence we have IΠ J together with w = 0. This completes the proof
of the theorem.

COROLLARY 1 (G. Higman and B. H. Neumann [3]). Any finitely
based equational theory of J is one-based.

Proof. J has the identity x * 0 = x. Conversely, if a groupoid
Sί = {A; *> satisfies both (1) and x * 0 = x then by property (iii) of
Lemma 1, xa — 0a = cc, that is xa = x for all x and hence x * y =
x — y, the right difference and hence 9ί satisfies all the identities of
J. Thus J itself is defined by (1) together with x * 0 = 0 and hence
any finitely based theory of J is one-based.

COROLLARY 2. Any finitely based theory which contains a theory
of rings with right unit as a reduct is one-based.

REMARK. The above result was announced independently in [2]
and [4].

Proof. Let Θ be a finitely based theory of type τ and let +,
—, , 0, 1 be operation symbols in Θ such that their reduct in Θ is
a theory of rings with right unit i.e. xl = x is an identity. It is
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well-known that such a theory of rings is definitionally equivalent
to a theory in which + and — are replaced by a single binary
operation * which stands for, say, the right difference. Now let
/ = 0 and g = 0 be two identities in Θ and let z and t be variables
not occurring in / or g. It is clear that these two identities imply
fz* gt — 0. Conversely, if fz* gt = 0, then fz * gt = fz * fz and one
left cancellation yields fz = gt. Finally the substitution z = 1, t = 0
yields / = 0 and similarly g — 0. In other words, modulo xl = x,
xθ = Ox = 0, and the symmetric difference properties of *, any
finite number of identities in Θ can be equivalently expressed by a
single identity, say wι — 0. Now define the polynomial w as

(WjX * wxy) * (((α^&ί * α8)) * (^A * # i θ ) * (fol * 0#5) * (&* * 0))) ,

where x, y, x19 , xδ are variables not occurring in wι and multiplication
has precedence over *.

Let Sϊ = {A; F) be an algebra of type τ satisfying identity (2)
of Lemma 1 with this w. Then the reduct <A; *> is an SD-group
and Sί satisfies the identity w = 0.

In the following computation we will often apply the property
that a * & = 0 implies a = b which is true in any SD-group. From
w = 0 we get immediately

(10) (w,x) * (w,y) = (Oife * x3)) * (xxx2 * ar^a)) * (x4l * 0 5̂) * (x4 * 0) .

The substitution x ~ y in the above yields

(11) (aj,(a?2 * x3)) * (x^2 * x&z) = (α?4l * 0xδ) * (a 4 * 0) .

Now x4 = 0, &β = 1 in tl*e above makes the right hand side 0 * (0 * 0) =
0*0 = 0 and hence we obtain the distributive identity

(12) xλ{x2 * x3) — xLx2 * xλxz -

Setting x2 — xs in the above we get

(13) ^0 = 0 .

Now from (11) and (12) we have

xAl * 0x5 = x4 * 0 .

Putting tf5 = 0 and using (13) and (15) we obtain

(14) x*l = x, ,

which, in turn, yields, by the left cancellation property of *,

0xδ - 0 ,
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and hence wι = 0 is satisfied in 9t. This proves that the theory Θ
is one-based.
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