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SEVERAL DIMENSIONAL PROPERTIES OF THE
SPECTRUM OF A UNIFORM ALGEBRA

RICHARD F. BASENER

The author has previously introduced a generalized Silov
boundary which seems useful in studying analytic structure
of several dimensions in the spectrum of a uniform algebra
2ί. Related generalizations of 2ϊ-convexity, 2ί-polyhedra, etc.
are developed here. Several different but equivalent ap-
proaches to these various generalizations are described. The
generalized boundaries discussed here are related to the "q-
holomorphic functions" of the author, and to 2ϊ-holomorphic
convexity.

The generalized Silov boundary was introduced by the author
[2] to study multi-dimensional analytic structure in the spectrum
of a uniform algebra. Related but more extensive applications of
this boundary were developed by Sibony [13]. Kramm [10] has
utilized this boundary to help obtain a characterization of Stein
algebras. The definition of the Silov boundary of order q in [2]
was motivated by consideration of Sί-varieties of codimension q in
the spectrum of Sί.

Here we show how extending 3ί by the conjugates of q functions
from % decomposing the spectrum of Sί into q + 1 pieces, or gen-
eralizing the idea of an Sί-polyhedron all lead to the same circle of
ideas as the qth order boundary. We also relate this boundary to
"tf-holomorphic" functions. (In [3], [4] the author defined a function
/ to be g-holomorphic if 3/ Λ (βdf)q = 0, and developed some ele-
mentary properties of such functions.) Finally, we establish a con-
nection between the first order boundary and the 9ϊ-holomorphic
convexity studied by Rickart [11].

We refer the reader to Stout's book, [14], for notation, termi-
nology, and basic results concerning function algebras and uniform
algebras.

1* Generalized boundaries and extension algebras* Let A be
a function algebra on the compact Hausdorff space X (although the
results of this section also apply if X is locally compact). Let d0A
denote the usual Silov boundary for A. For a subset S of A let
#S denote the cardinality of S and let

V(S) = {xeX\vfeS,f(x) = 0}.

If K is a closed subset of X define the restriction algebra
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A\K={f\κ:feA}

and let Aκ denote the uniform closure of A\K in C(K).

DEFINITION. Let q be a nonnegative integer. A subset Γ of X
is a qth. order boundary for A if given S £ A with #S ̂  #, F(S) ^
0, we have:

V/ G A, Ix e Γ n V(S) such that | f(x) | = max | /1 .

We then define the gth order Silov boundary for A by

8qA = Closure [ U {do[A \ V(S)]: SQA,%S^q}].

Evidently dqA is the smallest closed qth order boundary for A, and
the two definitions for d0A are consistent.

DEFINITION. If S3 is a commutative Banach algebra with unit,
let M = Λf(§B) denote its spectrum and B its algebra of Gelfand
transforms. Since B is a function algebra on M we may define
3gS5 - 3g£.

Now suppose that A is a uniform algebra on the compact Hausdorff
space X. We denote the corresponding commutative Banach algebra
by 5ϊ, and we identify X with the corresponding subset of its spectrum
M. Evidently dqA = 3g3I if and only if dqW Q X. Of course X con-
tains the usual Silov boundary of A, so this always holds for q = 0,
but it need not hold when q > 0. (Let J = {zed \z\ ̂ 1}. Take
X = 34 A = P(X). Then dqA = X for all g, 30Sΐ = X, but 3eW = /f
for g > 0.) The generalized Silov boundary used in [2], [10], and [13]
is 3gSΐ, but we shall sometimes find it more convenient here to use
dqA. For examples of dq% see [13], pp. 145-147.

Sibony apparently arrived at his definition of dqSΆ by considering
the behavior of plurisubharmonic functions. We include his definition
here for completeness.

THEOREM 1 (Sibony, [13] Theorem 3). If A is a uniform algebra
on the compact Hausdorff space X, then dqSΆ is the smallest compact
subset of M which satisfies the condition: whenever /, glt ••, gqeA
and R e / ^ ΣιU\θΛ on K, then R e / ^ Σj=i \ΰλ on M.

When 35 is a commutative Banach algebra with unit, dq%5 has an
interpretation in terms of quotient algebras. To see this, recall that
when 7 is a closed ideal in S3, the spectrum of 33/1 is naturally
identified with V(ϊ) = {φ e ik£(S3) | V/ e 7, f(φ) - 0}. Thus we obtain:

THEOREM 2. For a commutative Banach algebra $8 with unit,
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3g23 = Closure [U {30(35/J): I is an ideal of codimension at most q in

33}].

For the remainder of this section, we consider a function algebra
A on a compact Hausdorff space X, and show how the qth order
boundaries for A are related to extensions of A by conjugates of
functions in A.

NOTATION. If S £ C(X), let A(S) denote the function algebra
on X generated by A and S; i.e.,

A(S)= \ Σ gift - flΊA, •• ,freS,gzeA,O£r,N< ool

where I = (i19 , ir) and 1/1 = ^ + .. + ίr; ilf , ir ί> 0.

THEOREM 3. Let Γ be a closed subset of X. Then Γ is a qth
order boundary for A if and only if for all S £ A with #S <Ξ q, Γ
is a boundary for A(S).

Proof. First assume that Γ is a qth order boundary for A.
Let S = {flf . ' . , / J c 4 , and let FeA(S), so that

F = Σ ^ •••/;•

for some gzeA. Choose yeX with \F(y)\ = m a x x | F | , and let

&i = / i -Λ(3/) i = 1. '•> Q

Then ye V(T), so F(T) ^ 0 . Since Γ is a gth order boundary for
A, maxF{Γ) | / | = maxF(Γ)nr l/l But yeV(T) and f=F on V(T), whence
maxj |JF| = 1 (̂̂ )1 = maxΓ | JP| as desired.

Now suppose that for all S £ A with % S ^ q, Γ is a boundary
for A(S). Let S S A, # S ^ g, F(S) ^ 0 . Given / 6 A we will show
that maxF(s) | / | = m a x m , n Γ | / | .

Let S = {/„ , /J and let Λf = 1 + maxx Σy=i IΛΓ Set

1 / ^ \

M\ i=i /

and observe that f = l on F(S) while 0 < F < 1 on X\F(S). For
each m H w e have / F m 6 A(S), so that

max I fFm \ = max | fF"
X Γ
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Since F peaks on V(S), it follows that

max I /1 = max | /1 .
V(S) V(S)f)Γ

2* Relationship with g-holomorphic functions* In [3], [4] we
defined a function / on Cn to be g-holomorphic if 9/ Λ [93/]* = 0.
The motivating example of such a function is one which is holomor-
phic in (n — q) variables and arbitrary in the other q variables.
(Compare Example 4 and Theorem 1 in [3].) We showed that an
(n — l)-holomorphic function on Cn satisfies the maximum principle,
and we related "g-holomorphic convexity" to g-pseudoconvexity (Theo-
rems 2 and 3 of [3]). Hunt and Murray [9] have since related these
g-holomorphic functions to the complex Monge-Ampere equations,
obtaining results which extend Bremermann's work [6] on a gen-
eralized Dirichlet problem.

In order to develop some of the connections between the gener-
alized Silov boundary and the g-holomorphic functions, let us define

A(K) = {feC(K)\f is holomorphic on intK}

Aq(K) = {fe C(K) I / | i n t* e C<2)(int K), f

is g-holomorphic on intK}

for K an arbitrary compact subset of Cn. So, for example, A\K) =
A(K) and An(K) = {feC(K)\f\intKeC<2\intK)}. A(K) is a uniform
algebra but Aq(K) is not even a linear space when 0 < q < n,
although it does have some algebraic closure properties; for ex-
ample, if feA(K) and geAq(K), then f + g, fg, g2 eAq(K) ([3],
Proposition 4). We will still say that a subset Γ of ϋΓis a boundary
for Aq{K) if for all fe Aq(K), max* | / | is achieved on Γ. The max-
imum principle for g-holomorphic functions mentioned above shows
that dK is always a boundary for Aq(K) when 0 <; q < n, and certainly
K is the only boundary for Aq(K) when q ^ n. Similarly, it is clear
that dK is a gth order boundary for A{K) when 0 ^ g < n, and that
the only gth order boundary for A{K) when g ^ n is K. One reason
for this similarity is given by the following result.

THEOREM 4. Let Γ be a closed subset of the compact set K Q Cn.
If Γ is a boundary for Aq{K), then Γ is a gth order boundary for
A(K).

Proof. Let S Q A, # S ^ g. It is easy to verify that A(K)(S) S
Aq{K). Since Γ is a boundary for Aq(K), it is a boundary for
A(K)(S). By Theorem 3, Γ is a gth order boundary for A(K).

Now suppose that Ω is a bounded open subset of Cn with C2



SEVERAL DIMENSIONAL PROPERTIES 301

boundary. Recall that Ω is (strictly) g-pseudoconvex at a point x e
3Ω if the Levi form in the complex tangent space to Ω at x of a
defining function for Ω has at least n — 1 — q nonnegative (positive)
eigenvalues. Let

Fq>Ω = Closure {x e dΩ \ Ω is strictly g-pseudoconvex at x}.

THEOREM 5. Let Ω be a bounded open subset of Cn with C2

boundary. Then Fq>Ω is a boundary for Aq{Ω).

Proof. For g = 0, see Epe [7] (or [5] or [8]). The same argu-
ment used in, say, [5] can be applied when q > 0. We outline a
proof, based on this argument, for the case 0 < q < n.

Let feAg(Ω); we will show that maxa\f\ = m.B.xFQ\f\. By
the closure properties of Aq{Ω) mentioned above, we know that
A(Ω)({f}) Q Aq{Ω). Let B denote the uniform closure of A(Ω)({/}),
so that B is a uniform algebra on Ω. We will show that Fq,Ω con-
tains d0B, which will complete the proof. For this it suffices to show
that any peak point xedΩ for B is a limit of strictly g-pseudoconvex
boundary points of Ω. Now given any small neighborhood U of such
an x, there is a g e A(Ω)({f}) for which Re g achieves its maximum
value, say 1, only in U. Since Reg is g-plurisubharmonic on Ω
(Theorem 3.3 of [9]), φ{z) = - 1 + εΣ*=i l^iΓ + Re #0) is strictly
g-plurisubharmonic on Ω for any positive ε. If we choose ε to be
a small positive number, and c to be a small negative number for
which W = {z e Ω | φ{z) = c} is smooth, and if we then translate the
hypersurface W in the outward normal direction to Ω at x until W
is externally tangent to Ω, any point of tangency of W provides a
strictly g-pseudoconvex boundary point of Ω near x.

Note. There does not seem to be a simple way to apply the
above argument directly to the original function feAq(Ω), as the
set {zedΩ\ Re f{z) = max^ Re /} may extend over a large portion of
dΩ. Then we cannot simply translate a level hypersurface to make
it externally tangent.

Putting Theorems 4 and 5 together, we see that Fg>Ω always
contains dqA(Π). In fact, Sibony has shown that dqA(Ω) — Fq>Ω when
Ω is a C°° pseudoconvex domain which is an "Sδ". ([13], Proposition
4.) In this case Ω is the spectrum of the corresponding Banach
algebra 81(42), so we also have 9̂ 31(42) = FQ)Ω. Furthermore, it is easy
to see that Fq>Ω is the smallest closed boundary for Aq(Ω) in this
case. For an arbitrary bounded Ω with C2 boundary it would seem
to be a difficult question to determine whether a given strictly g-
pseudoconvex boundary point x of Ω must be included in every closed
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boundary for Aq(Ω) or in dqA(Ω), as these involve global existence
questions; but it is not hard to see that for any such x there is a
closed ball B centered at x for which x e dqA(Ω Π B) and for which
x is any closed boundary for Aq(Ω Π B). (See the proof of Theorem
3 in [3] for the construction of an appropriate peaking function.)

3* Generalizations of 8ϊ-convexity* Throughout this section let
A be a uniform algebra on the compact Hausdorff space X. As in
section one, 8Ϊ denotes the corresponding Banach algebra and M
denotes its spectrum; we will also regard SI as a uniform algebra
on M. K, Kjf etc. will always denote closed subsets of M. We
recall briefly some facts about Sϊ-convexity.

The Sί-convex hull of K is defined by

h(K) = \xeM\Vfe% \f{x)\ ̂ max|/|

and the rational 8ϊ-convex hull of K is

rh(K) = {xeM\Vfe 81, f(χ) e f(K)}.

K is a boundary for 81 if and only if h(K) = M. One says that a
set K is Sί-convex if and only if h(K) = if. The simplest 8l-convex
sets are the 8ί-polyhedra. If D = {\z\ ^1} and if Flf •••, F r e 8 ί , the
corresponding 8ί-polyhedron is

π(Flf . . . , Fr) = { α e i l f l F ^ e A i = 1, ••-, r } .

ft(jBΓ) = Π {̂ : ^ 2 iί, ^ is an 8ϊ-polyhedron}.
There is an obvious generalization of h(K) parallel to the gen-

eralized Silov boundary.

DEFINITION.

hq(K) = |a? 6 M\ VS C «, if # S ̂  g and a? 6 F(S) ,

then V/eSΪ, |/(a?)| ^ |
V{S)(λK

(Here V(S) = {xeM\VfeS, f(x) = 0}.) Evidently K is a ^th order
boundary for the algebra 81 on M if and only if hq{K) = M.

A similar generalization of 8ί-polyhedron is also possible, and in
fact one was made by Rothstein [12] in studying Hartogs' theorems
for analytic varieties. Our definition is based on his. Let

Dn = {zeCn\z = (X, •••, zn)f and for some j , \z3-\ ^ 1} ,

and let «• = {F = (/,, . . .,Λ)|/ l f •• ,/.68ί}.
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DEFINITION. If F19 , Fr e Sίg+1, the corresponding ^-polyhedron is

π(Fl9 , Fr) = {xeMlFjWeD**1, i = 1, • , r} .

Note for future reference that the g-polyhedra are precisely the
subsets of M which are finite intersections of unions of q + 1 31-
polyhedra; for example, if F= (/„ ~ 9fq+ι)9 then π(F) = U?ίU(Λ).

The g-polyhedra are related to hq(K) in the same way that 9ί-
polyhedra are related to h(K). In proving this we will make use
of some alternative descriptions of hq(K), two of which are based
on decomposing K into q + 1 pieces and examining their hulls. We
need a preliminary lemma which describes this kind of decomposition
in Cq.

LEMMA. If Bn = {zeCn\\z\ ^1}, then there are compact poly-
nomially convex sets Lo, L19 , Ln £ Bn such that:

( i ) Bn = U;=o L3 and
(ii) 0 is a peak point for P(LS)9 j = 0, , n.

Such a decomposition is not possible with fewer than n + 1 subsets
of B\ (Here \z\ = (Σ\zj\2γ/2.)

Proof. Let

Mj = \z e Cn [ for each nonzero coordinate zt of z ,

Each Mj is a product of one dimensional sectors about the origin,
and U?=o Mά - C\ It follows that

L o = M 3 - Γ \ B n , i = 0, . - . , ? &

yields the desired decomposition. That n + 1 pieces are needed will
follow from the next result applied to P(Bn), since dn^(P(Bn)) = 3£\

As a final preliminary, suppose S £ 3ί and define

- {̂  6 M\ Vf e 5ί(S), I fix) \ ^ max |

Of course this is just the 33-convex hull of K, where B is the uniform
algebra generated by A and {/: / 6 S).

THEOREM 6. For any closed subset K of M, the following sets
are equal:
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Hx - hq(K)

H3= f\{π\π is a q-polyhedron containing K)
x eM\for any decomposition K — \J Kό, xe\J h(Kj)\

j=o i=o )

JEΓβ = \x e MI if Klf ---, KqQ K and xgζj rh(K3), then there

q \

is a compact set L £ K\[J K3- with xeh(L)\ .

Proof. Ht = H2: This follows readily from the definitions by
considering A\Hl and A\H2 together with Theorem 3.

ίZi C i/5: Let α 6 hq(K), let ZΊ, , Kq £ iC, and assume x £
\J]=1rh{K5). We will exhibit a compact set L £ K, L disjoint from
Klf , Kq, with oj 6 h(L). !

For i - 1, , g choose fό 6 3ί with 0 = f,-(x) ίfs(Ks). Let S =
{/i, ••-,/,}. Then x e 7 ( S ) Π W , so V/e«, |/(α?)| ^ max 7 ( s ) n ί | / | .
I, = F(S) Π JK̂  has the desired properties.

JHB £ -ff4: This is obvious.

H4 £ jEZi: Let cc e H4, let >S = {flf , /J £ Sί, and assume a? 6
F(S). We will show that xeh(V(S) n X"). Assume 2Ί/,!2 ^ 1.

By the above lemma there are compact polynomially convex
sets Lo, , Lq £ Bq with Bq = (Jl=o L3 and 0 a peak point for
P(Lj)f i = 0, ...,ff. Let

Z-y = {a? eίΓ| (/,(»), ...,/,(»)) eL y }, i = 0, . - , ? .

Since x e iϊ4, there is a j such that x e h(Ks). Let f be a function
in P(Lj) which peaks at 0, and let Ψ = ^ ( / , ••-,/,). Then Ψ emKj,
the uniform closure of the restriction algebra $ί\Kj. From the facts
that x 6 V(S) Π h(Kj) and that ?Γ peaks on V(S) n λ(JSΓ, )» it follows
that any representing measure for x on JK̂  is supported on V(S)-Γi K3 *
Thus x 6 A( 7(S) n K,) £ fc(F(S) Π £ ) as desired.

H4 £ Jϊ3: Suppose x $ H3. Let π be a g-polyhedron for which
KQπ but #ί7Γ. As noted above, TΓ can be written in the form
π = Πi UUo πij> where the πtj are Sl-polyhedra. Then for some i we
have x £ U?=o πa Let K3- = Kf\ πijf j = 0, , g. Evidently if =
Uf=o Kά and α? ί U?=o πiS 2 UĴ o Λ ^ ) , so x ί J3,.

£ iϊ4: Suppose a? g Jϊ4. Then there are Ko, , Kq with ίC =
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U Kj, x ί U h (jfiΓy). Choose fd e SI with | f, (x) \ > 1 ^ max*,. ]/} |, j =
0, , g. Let i*7 = (/o, , fq). Then a? $ π(F) 2 ίΓ, so x g iϊ3.

COROLLARY. 3gSI is the smallest compact subset K of M having
the property: for every decomposition of K into q + 1 compact subsets,
K = U?=o Kjf one has \JU h(Kό) = M.

4+ Sί-holomorphic convexity and the first order boundary•
Again let A denote a uniform algebra on X, with M, SI as in section
three. Since the higher order boundaries reflect higher dimentional
structure in M, and since holomorphic convexity first becomes inter-
esting in C2, it is reasonable to expect some connection between the
first order boundary and uniform algebra generalizations of holomor-
phic convexity. An appropriate notion of Sί-holomorphic convexity
was studied by Rickart [11], which we now recall.

DEFINITION. Let U be an open subset of Λfand let ^(TJ) denote
the locally 9ϊ-holomorphic functions on U, i.e., <?(U) = {feC(U)\Vxe
£73 a compact neighborhood N oΐ x such that f\Ne Sί̂ }. For a compact
set KQU, set

£ = {xeU\Vfeέ?(U)9 \f(x)\£ max |

Then U is called Sί-holomorphically convex if for all compact sets
K Q U, K is compact.

THEOREM 7. There are no proper %-holomorphically convex open
subsets of M containing d$ί.

Proof. Let U be an open subset of M contaiging d$H. Assume
K = M\U Φ 0 . We will show that U is not Sί-holomorphically convex
by showing that (d^y is not compact.

Let x be a peak point for SΆK. Then xeK, and the local max-
imum modulus principle implies that x e d[h(K)]. Choose xa e M\h{K)
with xa —> x, and for each a choose fa e Sί with fa(xa) — 1 > rnax^ \fa\.
Fix a and take S = {fa - 1}. Then xa e V(S) £ U, and do[Wv(s)] Q d,%
whence (using, say, Corollary 28.9 in [14]) xa e (d&Γ. Thus (3^)"
is not compact.

Let us say that a compact set K £ M is "large" when the only
Sί-holomorphically convex open set containing K is M, so that the
content of Theorem 7 is that ^Sί is always large. Clearly any large
set must contain 30Sί, so that when 30SΪ = 3^, this is the smallest
large subset of M. (This happens, e.g., for A = P(Bn), n^2.) When

ί, it may happen that there is a smallest large set K with
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either K = 30SΪ or K = 3xSi or 30SΪ §Ξ jδΓg 3xδί; or there may be no small-
est large set. For example, if A = Pίz/1) (where zΓ = {2; 6 Cn \ \ Zj | ^ 1}),
then 30Sί = dΔ\ but 3 ^ = Δ1 is the smallest large set. If A = Λ(X)
where X is one of the compact subsets of 3J2 in [1] or [15], 30Sί = X
is the smallest large set while dJΆ = fer(-3Γ) ̂  X. Finally, consider
A = P(Δ2), Jξ = d& = dΔ\ K2 = {(*, w) 6Δ2\ \z\ = 1 or |^ | = |w|}, .ΛΓ8 =
{(«, w) e J 2 | |w | = 1 or |w| = |«|}. Then i^, K2, Kz are all large, but
Kx n JBΓ21Ί K, = 30Sί is not large.
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