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SEVERAL DIMENSIONAL PROPERTIES OF THE
SPECTRUM OF A UNIFORM ALGEBRA

RicHARD F. BASENER

The author has previously introduced a generalized Silov
boundary which seems useful in studying analytic structure
of several dimensions in the spectrum of a uniform algebra
NA. Related generalizations of 2-convexity, A-polyhedra, etc.
are developed here. Several different but equivalent ap-
proaches to these various generalizations are described. The
generalized boundaries discussed here are related to the ‘“g-
holomorphic functions’ of the author, and to %-holomorphic

convexity.

The generalized Silov boundary was introduced by the author
[2] to study multi-dimensional analytic structure in the spectrum
of a uniform algebra. Related but more extensive applications of
this boundary were developed by Sibony [13]. Kramm [10] has
utilized this boundary to help o]gtain a characterization of Stein
algebras. The definition of the Silov boundary of order ¢ in [2]
was motivated by consideration of A-varieties of codimension ¢ in
the spectrum of 2A.

Here we show how extending U by the conjugates of ¢ functions
from ¥, decomposing the spectrum of ¥ into g + 1 pieces, or gen-
eralizing the idea of an U-polyhedron all lead to the same circle of
ideas as the gth order boundary. We also relate this boundary to
“q-holomorphic” functions. (In [3], [4] the author defined a function
f to be g-holomorphic if 3f A (39f)? = 0, and developed some ele-
mentary properties of such functions.) Finally, we establish a con-
nection between the first order boundary and the %-holomorphic
convexity studied by Rickart [11].

We refer the reader to Stout’s book, [14], for notation, termi-
nology, and basic results concerning function algebras and uniform

algebras.

1. Generalized boundaries and extension algebras., Let A be
a function algebra on the compact Hausdorff space X (although the
results of this secvtion also apply if X is locally compact). Let 4,4
denote the usual Silov boundary for A. For a subset S of A let
#8S denote the cardinality of S and let

VIS) ={xeX|VfeS, f(x) =0}.
If K is a closed subset of X define the restriction algebra
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AlK = {flx: feA}
and let A, denote the uniform closure of A|K in C(K).

DEFINITION. Let ¢ be a nonnegative integer. A subset [” of X
is a qth order boundary for A if given SC A with #S < q, V(S) #
@, we have:

VieA, 3xel’ N V(S) such that ]f(x)|=r£g,)x]f[.

We then define the gth order Silov boundary for A by
0,A = Closure [U {0[A|V(S)]: S < A4, #S < ¢}].

Evidently 0,4 is the smallest closed qth order boundary for A, and
the two definitions for 0,4 are consistent.

DEFINITION. If 9 is a commutative Banach algebra with unit,
let M = M(B) denote its spectrum and B its algebra of Gelfand
transforms. Since B is a function algebra on M we may define
0,8 = d,B.

Now suppose that A is a uniform algebra on the compact Hausdorff
space X. We denote the corresponding commutative Banach algebra
by ¥, and we identify X with the corresponding subset of its spectrum
M. Evidently 9,4 = 0,2 if and only if 0, A< X. Of course X con-
tains the usual Silov boundary of A, so this always holds for ¢ = 0,
but it need not hold when ¢ > 0. (Let 4={z¢eC:|z|<1}. Take
X =04, A= P(X). Then 9,A= X for all ¢q,0% = X, but 0,9 = 4
for ¢ > 0.) The generalized Silov boundary used in [2], [10], and [13]
is 0,9, but we shall sometimes find it more convenient here to use
d,A. For examples of 9,9, see [13], pp. 145-147.

Sibony apparently arrived at his definition of 4, by considering
the behavior of plurisubharmonic functions. We include his definition
here for completeness.

THEOREM 1 (Sibony, [13] Theorem 3). If A is a uniform algebra
on the compact Hausdorff space X, then 0,U s the smallest compact
subset of M which satisfies the condition: whenever f, g, -+, g,€ A
and Re f <31, g;| on K, then Re f = 3\, ]g;| on M.

When B is a commutative Banach algebra with unit, 3,8 has an
interpretation in terms of quotient algebras. To see this, recall that
when I is a closed ideal in B, the spectrum of B/I is naturally
identified with V(I) = {pe M(®B)|Vf eI, f(p) = 0}. Thus we obtain:

THEOREM 2. For a commutative Banach algebra B with unit,
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0,8 = Closure [ U {0,B/I): I is an ideal of codimension at most q in
B}.

For the remainder of this section, we consider a function algebra
A on a compact Hausdorff space X, and show how the qth order
boundaries for A are related to extensions of A by conjugates of
functions in A.

NoraTioN. If S € C(X), let A(S) denote the function algebra
on X generated by A and S; i.e.,

AS) = { 3 gifts e Folfy o 68, g6 A, 07 N < o]
where I = (4, +--,%,) and |I| =14, + -+« + 4,; 9, -+, %, = 0.

THEOREM 3. Let I' be a closed subset of X. Then I' is a qth
order boundary for A if and only if for all S A with $S=q, I’
15 a boundary for A(S).

Proof. First assume that [" is a ¢th order boundary for A.
Let S={f, ---, f}C A, and let F e A(S), so that

F=;gzﬁ‘ eor fia
for some g, € A. Choose y € X with | F(y)| = max, | F|, and let

hJ:ft?—f;(y) j:]-’"'yq;
T':{hl) "',hq};A;

f = S f @ e A

Then y e V(T), so V(T) + @. Since I' is a qth order boundary for
A, maxy, | f|=max,qar|f|. But y€ V(T)and f=F on V(T), whence
maxy | F| = | F(y)| = max, | F| as desired.

Now suppose that for all S A with §S < ¢, " is a boundary
for AS). Let SC A, £S=<¢q, V(S) # @. Given fe A we will show
that max, | f| = maxyarlfl.

Let S={f, -+, f,} and let M =1+ maxy >2, |f;[*. Set

- i(M— gllﬁF) !

and observe that FF=1 on VSS) while 0 < FF <1 on X\V(S). For
each m = 0 we have fF™e A(S), so that

mgxlfF’”! = mlgx |fF™]| .
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Since F' peaks on V(S), it follows that

max |f| = max|f].
V(8) vs)nr

2. Relationship with g-holomorphic functions. In [3], [4] we
defined a function f on C” to be g-holomorphic if 3f A [63f]* = 0.
The motivating example of such a function is one which is holomor-
phic in (n — q) variables and arbitrary in the other ¢ variables.
(Compare Example 4 and Theorem 1 in [3].) We showed that an
(n — 1)-holomorphic function on C™ satisfies the maximum principle,
and we related “q-holomorphic convexity” to g-pseudoconvexity (Theo-
rems 2 and 3 of [3]). Hunt and Murray [9] have since related these
g-holomorphic functions to the complex Monge-Ampere equations,
obtaining results which extend Bremermann’s work [6] on a gen-
eralized Dirichlet problem.

In vorder to develop some of the connections between the gener-
alized Silov boundary and the ¢-holomorphic functions, let us define

A(K) = {f eC(K)|f is holomorphic on int K}
AYK) = {f e C(K)| f |inix € C®(int K), f
is g¢-holomorphic on int K}

for K an arbitrary compact subset of C*. So, for example, A%(K) =
A(K) and AMK) = {f € C(K)|f |z € C®(int K)}. A(K) is a uniform
algebra but A%K) is not even a linear space when 0< ¢q <,
although it does have some algebraic closure properties; for ex-
ample, if feA(K) and ge AYK), then f + g, fg, 9" c AYK) ([3],
Proposition 4). We will still say that a subset I" of K is a boundary
for AY(K) if for all fe AYK), maxy|f| is achieved on I'. The max-
imum principle for ¢-holomorphic functions mentioned above shows
that 0K is always a boundary for A%(K) when 0 < ¢ < u, and certainly
K is the only boundary for A% K) when ¢ = n. Similarly, it is clear
that 0K is a gqth order boundary for A(K) when 0 < ¢q < n, and that
the only gth order boundary for A(K) when ¢ = n is K. One reason
for this similarity is given by the following result.

THEOREM 4. Let I" be a closed subset of the compact set K = C™.
If ' is a boundary for AYK), then I' is a qth order boundary for
A(K).

Proof. Let SSA,#S<q. Itis easy to verify that A(K)(S)<
AY(K). Since I' is a boundary for AYK), it is a boundary for
A(K)S). By Theorem 3, I" is a gth order boundary for A(K).

Now suppose that £ is a bounded open subset of C* with C?
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boundary. Recall that 2 is (strictly) g-pseudoconvex at a point x €
0f if the Levi form in the complex tangent space to 2 at x of a
defining function for 2 has at least n — 1 — ¢ nonnegative (positive)
eigenvalues. Let

F, , = Closure {x € 02| 2 is strictly g-pseudoconvex at x}.

THEOREM 5. Let 2 be a bounded open subset of C" with C*
boundary. Then F,, is a boundary for AY(Q).

Proof. For q =0, see Epe [7] (or [5] or [8]). The same argu-
ment used in, say, [5] can be applied when ¢ > 0. We outline a
proof, based on this argument, for the case 0 < ¢ < =n.

Let feA'(2); we will show that max;|f|= max, ,|f|. By
the closure properties of A?(2) mentioned above, we know that
A@({f) < AY(2). Let B denote the uniform closure of A@){f}),
so that B is a uniform algebra on 2. We will show that F,, con-
tains 0,B, which will complete the proof. For this it suffices to show
that any peak point x €02 for B is a limit of strictly ¢-pseudoconvex
boundary points of 2. Now given any small neighborhood U of such
an x, there is a g€ A(2)({f}) for which Re g achieves its maximum
value, say 1, only in U. Since Reg is g¢-plurisubharmonic on £
(Theorem 3.3 of [9]), () = —1 4+ > |%;]* + Reg(z) is strictly
g-plurisubharmonic on £ for any positive ¢. If we choose ¢ to be
a small positive number, and ¢ to be a small negative number for
which W = {z € 2|p(z) = ¢} is smooth, and if we then translate the
hypersurface W in the outward normal direction to 2 at x until W
is externally tangent to £, any point of tangency of W provides a
strictly g-pseudoconvex boundary point of 2 near x.

Note. There does not seem to be a simple way to apply the
above argument directly to the original function f e AYQ2), as the
set {z €02|Re f(z) = max; Re f} may extend over a large portion of
02. Then we cannot simply translate a level hypersurface to make
it externally tangent.

Putting Theorems 4 and 5 together, we see that F,, always
contains 9,A(2). In fact, Sibony has shown that 9,4(2) = F, , when
2 is a C~ pseudoconvex domain which is an “S;”. ([13], Proposition
4,) 1In this case £ is the spectrum of the corresponding Banach
algebra %A(2), so we also have 0,(2) = F, ,. Furthermore, it is easy
to see that F,, is the smallest closed boundary for A%®) in this
case. For an arbitrary bounded £ with C* boundary it would seem
to be a difficult question to determine whether a given strictly ¢-
pseudoconvex boundary point z of 2 must be included in every closed
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boundary for AYQ) or in 9,A(2), as these involve global existence
questions; but it is not hard to see that for any such x there is a
closed ball B centered at  for which x€d,A(@ N B) and for which
z is any closed boundary for A2 N B). (See the proof of Theorem
3 in [3] for the construction of an appropriate peaking function.)

3. Generalizations of %-convexity. Throughout this section let
A be a uniform algebra on the compact Hausdorff space X. As in
section one, A denotes the corresponding Banach algebra and M
denotes its spectrum; we will also regard U as a uniform algebra
on M. K, K;, ete. will always denote closed subsets of M. We
recall briefly some facts about UY-convexity.

The A-convex hull of K is defined by

WE) = {ee MIVS e | /@) = max | f1} ,

and the rational A-convex hull of K is
rh(K) = {xe M|Vf e, f(x) e f(K)}.

K is a boundary for ¥ if and only if A(K) = M. One says that a
set K is -convex if and only if h(K) = K. The simplest A-convex
sets are the %A-polyhedra. If D= {jz| <1} and if F,, ---, F.e¥, the
corresponding A-polyhedron is

a(Fy, -+, F,)={xeM|Fjx)eD,j=1, -+, 7}.

MK) = N{r:7 2 K, 7 is an A-polyhedron}.
Therg is an obvious generalization of h(K) parallel to the gen-
eralized Silov boundary.

DEFINITION.
hy(K) = {xeM]vs; % if £S < q and ze V(S),
then Vfe¥, | f(x)| < max |f|} .
V(S)NK

(Here V(S) = {xe M|VfeS, f(x) = 0}.) Evidently K is a ¢th order
boundary for the algebra % on M if and only if A,(K) = M.

A similar generalization of 2-polyhedron is also possible, and in
fact one was made by Rothstein [12] in studying Hartogs’ theorems
for analytic varieties. Our definition is based on his. Let

D" ={zeC"|z = (%, *-*, 2,), and for some j, [z;|] < 1},

and let A* = {F= (fp ey n)lfl: "'ifnem}’
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DEFINITION, If F, ---, F.e U™, the corresponding ¢-polyhedron is
ﬁ(Fu M) FT) = {xeM(Fj(x)e-Dq-’—iy j = 1: M) 7’} .

Note for future reference that the g-polyhedra are precisely the
subsets of M which are finite intersections of unions of ¢ + 1 A-
polyhedra; for example, if F' = (f;, -+, fi11), then n(F) = U%in(fy).

The g-polyhedra are related to h,(K) in the same way that %U-
polyhedra are related to A(K). In proving this we will make use
of some alternative descriptions of A,(K), two of which are based
on decomposing K into ¢ + 1 pieces and examining their hulls. We
need a preliminary lemma which describes this kind of decomposition
in C°.

LEMMA. If B" = {zeC"||z| £ 1}, then there are compact poly-
nomially convex sets L, L,, -+-, L, & B™ such that:

(i) B*= U?=o L; and

(ii) 0 s a peak point for P(L;),j =0, ---, n.
Such a decomposition is mot possible with fewer than n + 1 subsets
of B". (Here |z| = (T|2;[)Y%)

Proof. Let

M; = {z € C" | for each nonzero coordinate z; of z,

_2_@_<ar <2L(1_1’_+_-7)} k=0,---
n+17 g = n+1 )’ R

Each M; is a product of one dimensional sectors about the origin,
and U, M; = C*. It follows that

Lj:anBn$ jzoy"'yn

yields the desired decomposition. That n + 1 pieces are needed will
follow from the next result applied to P(B™), since d,_,(P(B") = 6B".
As a final preliminary, suppose S & % and define

ho(K) = {w e MIVS e %(S), |7@)] = max|f]} .

Of course this is just the ‘B-cogvex hull of K, where B is the uniform
algebra generated by A and {f: fe S}

THEOREM 6. For any closed subset K of M, the following sets
are equal:
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H, = h(K) ;
H,=N{h(K)SSAU, £S=4q};
H,=N{x|7 is a g-polyhedron containing K} ;

H, = {x € M| for any decomposition K = l:j K;, xe lf_j h(K,-)} ;
=0 i=0
H; = {x eM|if K, -+, K, S K and x ¢ ij rh(K;), then there

18 a compact set L < K\Cl K; with xeh(L)} .
=1

Proof. H, = H,: This follows readily from the definitions by
considering A |z, and A|,, together with Theorem 3.

H C H;: Let zeh(K), let K, ---, K, < K, and assume x¢
UL lfrh(K,) We will exhibit a compact set LC K, L d1s301nt from
K, -+, K,, with xeh(L)

For j=1,---,q choose f;eA with 0 = f;(x) ¢ fi(K;). Let S=
{fo ooes e Then xe V(S) N h(K), so Vfe, |f(®)| = maxysnx [
L =V(S)N K has the desired properties.

H, < H,: This is obvious.

H,C H: Let xeH, let S={f, ---, f} <Y, and assume zx¢€
V(S). We will show that xeh(V(S) N K). Assume X|f;?< 1.

By the above lemma there are compact polynomially convex
sets Ly -, L, S B with B*=U%,L; and 0 a peak point for
P(L),j=0,---,q. Let

K = weK|(f@), - fi@)el}, =0 -q

Since z € H,, there is a j such that x € h(K;). Let + be a function
in P(L;) which peaks at 0, and let ¥ = 4(f;, -+-, f,). Then ¥ €%,
the uniform closure of the restriction algebra Al g,;. From the facts
that x e V(S) N h(K;) and that ¥ peaks on V(S) N w(K;), it follows
that any representing measure for x on K; is supported on V(S) N K.
Thus 2 2(V(S) N K;) < (V(S) N K) as desired.

H, C H,;: Suppose x¢ H,, Let mw be a ¢-polyhedron for which
KCxm but x¢n. As noted above, @ can be written in the form
T = N: U 75, Where the 7,; are QI-polyhedra. Then for some ¢ we
have x¢U%o7;. Let K;=KNwy j=0,---,9. Evidently K =
UL, K; and 2 ¢ Ul 2 Ul A(K)), so er

H,C H,: Suppose x¢ H,. Then there are K,, ---, K, with K =



SEVERAL DIMENSIONAL PROPERTIES 305

UK, xeUh(K;). Choose f;e with |f;(®)| > 1= maxg,|f;], =
0,-+,q. Let FF=(fy, ++-,f). Then x¢xn(F)=2 K, so x¢H,

COROLLARY. 0% 1is the smallest compact subset K of M having
the property: for every decomposition of K into q + 1 compact subsets,
K = U%, K;, one has Ui, M(K;) = M.

4. 9Y-bolomorphic convexity and the first order boundary.
Again let A denote a uniform algebra on X, with M, ¥ as in section
three. Since the higher order boundaries reflect higher dimentional
structure in M, and since holomorphic convexity first becomes inter-
esting in C?, it is reasonable to expect some connection between the
first order boundary and uniform algebra generalizations of holomor-
phic convexity. An appropriate notion of 2-holomorphic convexity
was studied by Rickart [11], which we now recall.

DEFINITION. Let U be an open subset of M and let #7(U) denote
the locally 2-holomorphic functions on U, i.e., Z2(U) = {f e C(U)|vVz e
U3 a compact neighborhood N of x such that f|y € %y}. For a compact
set K CU, set ‘

R = {se U|Vf e oU), | f(@)| = max |F]} .

Then U is called %-holomorphically convex if for all compact sets
K C U, K is compact.

THEOREM 7. There are no proper A-holomorphically convex open
subsets of M containing 0,2

Proof. Let U be an open subset of M contaiging 0,%. Assume
K = M\U=+# @. Wewill show that U is not 2-holomorphically convex
by showing that (0,%)” is not compact.

Let  be a peak point for Ax. Then xe€ K, and the local max-
imum modulus principle implies that x € 9[h(K)]. Choose x, € M\h(K)
with z, — #, and for each « choose f, € 9 with f,(x,) = 1 > maxg|f,|.
Fix « and take S = {f, — 1}. Then x, ¢ V(S) S U, and 3,[%,s] < .Y,
whence (using, say, Corollary 28.9 in [14]) z.€ (@, %)". Thus (G,2)"
is not compact.

Let us say that a compact set K & M is “large” when the only
9l-holomorphically convex open set containing K is M, so that the
content of Theorem 7 is that o, is always large. Clearly any large
set must contain 0,2, so that when 0, = 0,%, this is the smallest
large subset of M. (This happens, e.g., for A = P(B™), n = 2.) When
0, == 0,%, it may happen that there is a smallest large set K with
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either K = 0,% or K = 0, or d,A & K & 0,Y; or there may be no small-
est large set. For example, if A = P(4") (where 4" = {zeC"||z;| =1}),
then 9,2 = 04', but 0,% = 4' is the smallest large set. If A = R(X)
where X is one of the compact subsets of 04 in [1] or [15], 0, = X
is the smallest large set while 0,9 = h.(X) # X. Finally, consider
A=P, K, =0 =0t K, ={z wyed||zl=1or |z|=|w|}, K, =
{(z, wye £ ||lw| =1 or |w|=|z]}. Then K, K,, K; are all large, but
K N K,N K, =0, is not large.
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