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PEAK-INTERPOLATION SETS OF CLASS C!
WALTER RUDIN

Let D be a bounded strictly pseudoconvex domain in C",
with C’-boundary dD. Let A(D) be the algebra of all f€
C(D) that are holomorphic in D. Let M be a C'-submanifold
of dD whose tangent space T, (M) lies in the maximal complex
subspace of T,(dD), for every w € M.

The principal result of the present paper is that every
compact subset of M is then a peak-interpolation set for A (D).

This will be stated again, in slightly different form, as Theorem
3.1. It should be stressed that the smoothness assumptions made on dD
and on M are quite weak. Under stronger regularity assumptions, the
same conclusion has been reached earlier by Henkin [6] and, independ-
ently, by Nagel [9] (if D and M are of class C°), as well as by Burns and
Stout [3] who dealt with a real-analytic interpolation problem. These
three proofs are quite different from each other. The basic idea of
[9]—to exhibit appropriate functions in A (D) by means of integrals—is
used in the present paper, but in a way that is simpler and requires less
differentiability. In part, this simplicity is achieved by establishing the
theorem first for strictly convex domains. The general case follows then
from Fornaess’ embedding theorem [4].

I thank Alexander Nagel for many interesting conversations on this
subject. My proof was originally designed for C'-manifolds in the
boundary of the unit ball of C", and it was his prodding that made me
push it to its present generality.

I. Definitions and terminology.

1.1 Throughout this paper, n will be a fixed positive integer and C"
will be the vector space of n complex variables, with the usual inner
product (z, w) = Siz;w, and norm |z | =(z,z).. For 1 =j = n, we write

(1) D,=4/3z, D,=08/dz,

1.2. Throughout this paper, W will be an open set in C", and
p: W—R will be a function of class C? i.e., a function all of whose
second-order derivatives are continuous. For each p, and for each
w € W, we define

@) N(w)=((D:p)(w), -, (D.p)(w)),
267
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n

©) P.(0)= j,;1 (D,Dip )(w) & (cec),
@ (Him)= 3 (DD@)w)i (L €C),
and

®) Q. ()= P.(§) +(H.L ).

The vector N(w) is perpendicular to the level surface of p through w
(see §1.7). P, is a homogeneous polynomial of degree 2, H, is a
hermitian operator on C" (the so-called complex Hessian of p at w), and
the Taylor expansion of p, about any w € W, can be written in the form

p(z)=p(w)+2Re(z —w,N(w))+ReQ,(z —w)

©) +lz—wle(z,w)

where €: W X W — R is continuous, and e(w, w) = 0.

1.3. A bounded open set D CC" is said to be strictly pseudoconvezx,
with C*-boundary dD, if there is an open set W D D and a C*-function
p: W—R, as in §1.2, such that

i) D={ze W:p(z)<0},
(i) N(w)#0 for all w € aD, and
(iii) there is a constant B >0 which makes the inequality

) (H.,0)z Bl¢F
true for all w € W and for all { € C".

REMARK. Strict pseudoconvexity is often defined locally. See, for
instance, pp. 262-263 of [S]. However, if the local definition is satisfied,
then there exists a global p with the above properties. This is proved on
p. 169 of [8].

1.4. An open set D CC" is said to be strictly convex if there is a
function p: C" — R, as in §1.2, such that

i) D={z€C": p(z)<0},

(i) p(z)—> > as |z|—>x, and

(iii) there is a constant @ >0 which makes the inequality

©) ReQ.(f)z alLf

true for all w €C" and all { €C™.
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1.5. Let D be a bounded open set in C". As usual, A (D) denotes
the algebra of all continuous functions f: D — C that are holomorphic in
D. A compact set E CdD is said to be a peak-interpolation set for
A (D)—or simply a PI-set—if every g € C(E) extends to an f€ A(D)
that satisfies

©) |f(z)| <max{ g(w)|: w € E}

for all z € D\E.
(The function g =0 must of course be excluded in (9).)

If u is a complex Borel measure on dD such that ffd;u = 0 for every

f€ A(D), we shall write: u L A (D).
The following well-known theorem of Bishop [1] will be used:

A compact set E C 3D is a (PI)-set for A(D) if and only if
w(E)=0 for every uw L A(D) and for every compact
E,CE.

1.6. Throughout this paper, ) will be an open set in R” and
®: Q— C" will be a mapping of class C'. This means that to every
x €Q corresponds an R-linear operator ®'(x): R™ — C"(=R"), the
so-called Fréchet derivative of ® at x, which gives the Taylor expansion

(10)  d@Y)=Px)+P'(x)y —x)+|y—x[n(x,y) (x,y EQ).

Here n: QX Q— C" is continuous, and 7 (x,x)=0.

We say that @ is nonsingular if the rank of ®'(x) is m for every
x €. Inthat case, every x € () has a neighborhood in which ® is one-
to-one.

1.7. Suppose now that D and p are related as in §1.3 (except that
(iii) is not needed at present), so that dD is the level surface of p given by

p(z)=0. Let QCR" be open, and consider a C'-map ®: Q— 3D. For
x € Q and v € R™, differentiation of

p(®(x +1))=0
with respect to the real variable ¢, at ¢t =0, gives
(11) Re(®'(x)v, N(P(x))) =0,

where N is defined by (2).
Setting w = ®(x), it follows that the equation
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(12) Re({,N(w))=0

describes the vectors { € C" that form the real tangent space T, (dD); its
R-dimension is 2n — 1. The equation

(13) (¢, N(w)=0
defines the maximal complex subspace of T, (dD); its C-dimension is
n-—1.

We shall be concerned with mappings ®: {}— 4D that satisfy, in
place of (11), the more stringent analogue of (13), namely

(14) (@'(x)o, N(@(x))=0 (x€Q,vER").

This orthogonality condition (14) is an analytic reformulation of the
geometric requirement (stated in the opening paragraph) that the tangent
vectors ®’(x )v should lie in the maximal complex subspace of T,, (dD).

II. Some lemmas.
2.1. LemMA. If D is strictly convex and if « is the constant that
occurs in (8), then

@15) 2Re(w =z, N(w))Z a|w -2z |
for all w € 9D, z € D.

Proof. Put h(t)=p((1-t)w+tz),tER. Then h(0)=p(w)=
0,h(1)= p(z)=0; by the chain rule,

h'(0)=2Re(z — w,N(w))
and

(16) h'(t)=2ReQ.(z — w)=2a|z — w|*

where u =(1—t)w +1tz. If these data are inserted into the Taylor
formula

h(1)=h(0)+hr'0)+:h"(),
which holds for some ¢ € (0, 1), the result is (15).
Note. By (16), h is a convex function. This shows that “strictly

convex” domains are indeed geometrically convex. Also, (15) implies
that N(w)#0 if w € aD.
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2.2. LEMMA. Suppose

(@) p: W—R is of class C?,

(b) ®: Q— W is of class C',

(c) ¥(x)= N(®(x)) for x €eQ. Then
(17) (®'(x)0, ¥'(x)v) = Qog(P'(x)0)
for all x € Q,v ER™.

Proof. Fix x and v, put y(¢t) = ®(x + tv),I'(¢) = N(y(¢)), for those
real t for which x + tv € Q. Then I'(t) = ¥(x + tv), so that the left side

of (17) is (y'(0),I"(0)).
The chain rule shows that the jth component I'; of I" is

d s N D =1 N ’
7 PRO®)= 2 (BDp)- 7i+(DD)- vi.
Hence, referring to §1.2,

(YOLT'0)) = 3 ¥5(O)T5(0)
= P,o(7'(0)) + (H,0y'(0), y'(0))
which, by (5), is equal to the right side of (17).
Our next lemma is crucial for the main theorem. It is here—and

only here—that the orthogonality condition (14) is used.

2.3. LEMMA. Assume, in addition to the hypotheses of Lemma 2.2,
that ® satisfies (14). Then the inner products

(18) <<I)(y + 61));2<I)(y + au),N(<I>(y + 6v))>

converge to
(19) Qo) (P'(y)(v — u))
as 6 =0, foryeQ,u ER", v ER™.
Note that the denominator in (18) is 8%, not 8!
Proof. Fix y,u,v. Fix 6 >0 for the moment, small enough to

ensure that convex combinations of y + éu and y + év are in ). For
0=t=1, define
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(20) x(t)=y+(1—1t)éu + tdv

and put y(t) = ®(x(¢)),I'(z) = N(D(x(¢))) = ¥(x(¢)), where ¥ = N oD, as
in Lemma 2.2. Note that

3y y'(1) = ' (x(£))x'(t) = 6" (x (1)) (v — u).
Thus (14) implies the relation
(22) y'@),r@e)=0 (O=r=1)
which is used in the following computation:
(D(y +6v) = D(y + 6u), N(P(y + 8v))) = (y(1) — v(0), I'(1))

= [ r@.ranar
= f (y(6), T(@) = T(t)dt
- L Lt [ (y'(), T"(s))ds

= [ar[ @ @@)w - w), W) - whds

As 8 — 0, (20) shows that x(t)— y, uniformly for t €[0,1]. Since
p € C?, we have N € C', hence ¥ € C'. The last integrand converges
therefore uniformly to

23) (@ (y)(v—u), ¥'(y)v—u))

as 8 > 0. Since the double integral extends over one half of the unit
square in the (s, t)-plane, the desired conclusion folows from (23) and
Lemma 2.2.

2.4. LemMma. If F: R" — C is a homogeneous polynomial of degree
2, such that ReF(x)>0, unless x =0, then

dx

(24) . [—1‘_1—17(;5]7 #0.

Here, and later, dx denotes Lebesgue measure.

Proof. The hypotheses imply that Re F(x)= c¢|x |* for some ¢ >
0. Theintegrandin (24)isthusin L'(R™). Writing F(x)in the form
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(25) F(x)= Y, cuxx
k=1

with ¢, €C, cx = ¢y, We associate a matrix (ci) to each F. Put a, =
Recj. Our hypothesis is then that the symmetric real matrix (a;) is
strictly positive-definite, i.e., that all of its eigenvalues A,, -+, A, are
positive.

Put J =f [1+[x ] dx.
-
We claim that

26) det (c) { Lm [ 1+ coxxe ]_m dx }2 e

whenever (a,) is strictly positive-definite.

Since J >0, (26) implies (24).

To prove (26), suppose first that ¢, €R, i.e., that ¢; = a,. An
orthogonal transformation of R” will diagonalize (a, ) and will transform
the integrand to [1+2Ax?]™. Since the determinant is ITA;, (26) fol-
lows, for real c;, by replacing Ajx, by y;

To prove (26) in general, regard the symmetric matrices (c;) as
points in C¥, where N = m(m +1)/2. Let T CC" be the tube domain
that consists of all (cx) for which (a,) is strictly positive-definite. We
just proved that (26) holds if (c,) € T NR™. Since the integral in (26) is
a holomorphic function of (ci) in T, (26) holds for all (c;)E T.

III. The main theorem.

3.1. THEOREM. Let D be a bounded strictly pseudoconvex domain
in C", with C*-boundary.

Let Q) be an open set in R™ and let ®: Q) — dD be a nonsingular
C'-mapping that satisfies the orthogonality condition

27) (@'(x)o, N(®(x)) =0

for all x € Q,v ER™.
Let K be a compact subset of ).
Then ®(K) is a peak -interpolation set for A(D).

REMARKS. (i) Theorem 3.1 implies the one stated in the Introduc-
tion, if we think of M as being parametrized by ®. Note, however, that
® is not assumed to be globally one-to-one in (). Thus ®({2) need not be
a manifold.

(i) Theorem 3.1 has a converse: If ®: Q— 3D is of class C', if @’
satisfies a Lipschitz condition of some positive order, and if ®(K) is a
(PI)-set for A (D), for every compact K CS), then (27) holds.
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This is contained in [10]. Whether the Lipschitz condition can be
removed from the converse is an unanswered question.

3.2.  Proof for strictly convex D.

We shall prove that every p € Q) has a neighborhood ), such that
w(P(K))=0 for all compact K CQ, and for all u L A (D).

By Bishop’s theorem, quoted in §1.5, this gives the conclusion of
Theorem 3.1.

Fix p €Q. Since ®'(x) has rank m for all x € Q and since P’ is
continuous, we can find a constant ¢ >0 and a ball B, centered at p, with
B CQ, so that

(28) |®'(x)v|=c|v]| (x EB,v ER™)
and
(29) |®(x)-P(y)|zc/x-y| (xy€EB).

We shall prove the above statement with €, = B.
Choose a >0 so that (8) holds. Then (28) implies

(30) Re Qu(P'(y)v) = ac’|v (y EB,v ER™).

The absolute values of the integrands in

6D g0)= [ {1+10u,@G)0) " (EB)

are thus dominated by {1+ iac?/v [}, which is in L'(R™). Moreover,
g(y)#0, by (30) and Lemma 2.4.

Now let f: R® — C be continuous, with support in B. For é >0,
define

~ 8™ (f1g)(x)dx
(32) %&%ng+@uy;N@umw'

By Lemma 2.1, the real part of the inner product in (32) is nonnegative if
z € D. For each 8 >0, the integrand is thus bounded, and we see that
hs € A(D).

We claim that {h,;} has the following properties:

(1)  {hs} is uniformly bounded on D.

(I1) lims;_ohs;(z)=0 for all z € ﬁ\@(ﬁ_).

(IID) lims_ohs(®(y))= f(y) for all y € B.
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Proof of (I). Fix z €D, choose y EB so that |®(x)—z|=
|®(y)—z| for all x € B. Then

(33) 2|0(x)-z|z[®(x)-D(y)| (xE€B).

Define the integrand in (32) to be 0 when x& B. Then B can be
replaced by R in (32), and we can rewrite (32) in the form

) (F/g)(y + 8v)dv
(34) hs(z) = Lm [1+8 X®(y +6v)— z, N(®(y + 50)))}"

by the change of variable x =y +év. If y +6v € B, it follows from
Lemma 2.1, (33), and (29) that

Re(P(y + 8v)— z, N(P(y + 6v))) = ¢,8* v [},

where 8¢, = ac®. The integrands in (34) are thus dominated in absolute
value by

(35) /g |41+ cifo [}

which isin L'(R™). Since the bound (35) is the same for all z € D, § >0,
we have (I).

Proof of (I).  Fix z € D\®(B), and choose y € B as in the proof of
(I). If y+6év € B, it follows from Lemma 2.1 and the minimizing
property of y that

2Re(P(y +8v)— 2z, N(®(y + 6v))) = a|P(y)— z > 0.

Thus, (II) follows from the dominated convergence theorem, applied
to (34).

Proof of (III). Replace z by ®(y) in (34), and use the dominated
convergence theorem once more. The numerator of the integrand tends
to f(y)/g(y), as 6—>0. Apply Lemma 2.3 (with u =0) to the de-
nominator, and compare with (31), the definition of g(y). (III) follows.

Having proved (I), (II), and (III), pick a compact K CB, pick
w LA(D). There are continuous functions f,: R™ — [0, 1], with com-
pact supports K;CK, ,CB, so that K= NK; and f(x)=1 for
x EK. _Since ® is one-to-one on B, there are continuous functions F; on
E = ®(B) given by F,(P(x))=fi(x),x € B. Construct {h;} as above,

with f; in place of f. SinceJ’had,u = 0 for every 8 >0, properties (I), (II),
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(III) imply that f Fdu =0. Since F;(w)=1if w € ®(K)and F;(w)—0
E

if w € E\®(K), as i — %, another passage to the limit gives u (P(K)) = 0.
This completes the proof for strictly convex D.

3.3 Proof of the general case. Let D be a bounded strictly
pseudoconvex domain, with defining function p, as in §1.3. For suffi-
ciently small € >0, the domain

(36) D.={z€W:p(z)<e}

has compact closure D, C W, and D, is also strictly pseudoconvex. To
apply Fornaess’ embedding theorem [4] we need two facts about D
and D.:

(i) There is a biholomorphic mapping of D, onto a closed sub-
manifold of some C*.

(ii) D is holomorphically convex in D..

The first of these is true because D, is a domain of holomorphy ([7],
Theorem 4.2.8), hence a Stein manifold ([7], p. 105), and thus Bishop’s
embedding theorem ([12], or Theorem 5.3.9 of [7]) gives (i) with
k=2n+1.

As regards (ii), note that p is plurisubharmonic, by (7) and (4), so
that D is equal to its P(D,)-hull (see Definition 2.6.6 in [7]). Thus (ii)
follows from Theorem 4.3.4 in [7].

Since D is strictly pseudoconvex, Fornaess’ Theorem 9 asserts the
existence of a positive integer p, of a biholomorphic map ¢ taking D,
onto a closed submanifold of C?, and of a strictly convex domain D in C,
such that ¢(D)CD, ¢(éD)C4D, and ¢(D.\D) lies outside the closure
of D.

Now let ®: 0 — 9D be as in the statement of Theorem 3.1. Then
® = ¢ o® is a nonsingular C'-map of Q into dD. Fix x € Q, v € R™, put

{=D'(x)y, w=D(x), w=>7k), [=&(x)w

By (27), both { and i{ are in T, (D). Since ¢ (3D)C 4D, y'(w) maps
T,(8D) into T, (3D). Since ¢ is holomorphic, ¢'(w) is C-linear. Thus
both £ and il = iyy'(w){ = ¢'(w)(i¢) lie in T;(8D). This shows that &
and D satisfy the hypotheses of Theorem 3.1.

Let K CQ be compact. By §3.2, ®(K) is a (PI)-set for A(D). If
g € C(®(K)) then there exists G € C(®(K)) given by G(¥(w))=
g(w),w EK, and G has a peak-interpolation extension F € A (D).
Finally, the function f=Fo¢y € A(D) is an extension of g with the
properties required in §1.5.

This completes the proof.
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IV. The dimension of (PI)-sets.

4.1. Suppose that the hypotheses of Theorem 3.1 hold. Associate
to each x € () the real vector space

37 V,={®'(x)u: u ER™}.

Since ®'(x) has rank m,dimg V, = m. It will be shown, in Theorem 4.2,
that V, N(iV,)={0}, i.e., that V, contains no complex subspace of
positive dimension. (Such vector spaces are said to be totally real. A
different proof, using stronger smoothness assumptions, appears in [3].)

By (27), both V, and iV, lie in the maximal complex subspace of
T (dD), whose real dimension in 2n — 2. This leads to the (perhaps
surprising) conclusion that the hypotheses of Theorem 3.1 can only hold
when m =n — 1.

It seems thus reasonable to conjecture that the topological dimen-
sion of no (PI)-set in dD exceeds n —1, if D is any bounded strictly
pseudoconvex domain in C".

The conjecture is open even when D is a ball.

4.2. THEOREM. If the hypotheses of Theorem 3.1 hold and if V, is
defined by (37), then

(38) V. N V.) = {0}

Proof. Take x =0, without loss of generality, and write V in place
of V,.

Choose { € V,n € V. Then { =®'(0)u and n = ®'(0)v, for some
u,v ER". Put¥ = No®d asin Lemma 2.2, and define 1 = ¥'(0)v. Then

(&, 1) =lim

8§—0

<CIJ(8u) — ®(0) V(5v)— «y(())>
B ’ 5

= %iir(x)[La(u, 0)+ L;(0,v)— Ls(u, v)]

where L;(u,v)= 8 XP(6v)— ®(u), ¥(5v)).
Hence it follows from Lemma 2.3 (with y = 0) that

2€4,m)=0()+Q(n)-Q( —n)
=P({)+P(n)—P({—n)+2Re(H{ )

where we have written Q, P, H in place of Qa), Pog), Heo- (See §1.2.)
Suppose now that 7 generates a complex subspace of V. We can
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then replace { by An in the preceding calculation, for any A € C. Since
P is homogeneous, of degree 2, and since A>+ 1 — (A — 1)*= 24, it follows
that

(39) A{n,7) = AP(n)+Re{A(Hn, )}

for every A €EC. Thus A[(n,7%)— P(n)] is real, for all A; this forces
(n,M)=P(n), and hence (39), with A =1, gives (Hn,n)=0. But
(Hn,m)= B|n |’ for some B >0, since D is strictly pseudoconvex (see
§1.3). Thus n =0. This implies (38).

4.3. We conclude with examples of Theorem 3.1 for the case
D = B,, the unit ball of C", and Q =R""".

Let @« = (a;, - -, @,) be a nonsingular C*-map of R""' onto a hyper-
surface in R" whose normal has all components positive. This implies
that there are positive functions F;: R"™'— R that satisfy
(40) ZF?(x)g—:i(x)=O (1=k=n-1)

k

j=1

and are of class C'. Moreover, one can adjust them so that

(1) > Fi(x)=1.
Now put ® = (¢, -, ¢,), where
(42) ¢,(x) = Fi(x)expfio,(x)} ~ (1=j=n).

Then @ is a nonsingular C'-map of R"™" into dB, that satisfies
43) ngi(x)é,(x)=0 (I=k=n-1),
=1 k

because of (40) and (41).
Since D = B,, we can take p(z)=|z[*— 1, hence N(w)=w. Thus
(43) gives the orthogonality condition (27).
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