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WORD EQUATIONS IN SOME
GEOMETRIC SEMIGROUPS

MoHAN S. PurcHA

Let S be a semigroup and let w,= w,(x, -, X,), wo=
wax1, -+, x,) be two words in the variables x,,---,x. By a
solution of the word equation {w,, w.} in S, we mean a,, - -, a, €
S such that w,(a;, -, a;)= wy(a; -, a). Let Fr denote the
free product of ¢ copies of positive reals under addition. In §3
and §5 we show that if Y is either the semigroup of certain paths
in R" or the semigroup of designs around the unit disc, then any
solution of {w,, w,} in Y can be derived from a solution of
{wy, wo} in Fr. This answers affirmatively a problem posed in
Word equations of paths by Putcha. Word equations in %y are
studied in §1. Using these results, it is shown that any solution
in Y of {w,, w,} can be approximated by a solution which is
derived from a solution in a free semigroup. There are two
books by Hmelevskii and Lentin on word equations in free
semigroups. We also show that if {w,, w,} has only trivial
solutions in any free semigroup, then it has only trivial solutions
in Y.

1. Preliminaries. Throughout this paper, N, Z, Z*, 2, 2%, R,
R* will denote the sets of nonnegative integers, integers, positive
integers, rationals, positive rationals, reals and positive reals,
respectively. Form,n € Z7, let R**", 2™"" denote the setsof all m X n
matrices over the reals and rationals, respectively. If S is a semigroup,
then S'= S U {1} with obvious multiplication if S does not have an
identity element; S'= S otherwise. If T CS’, then T'= T U{1}.

DEerFINITION. Let S be a semigroup and a,b € S.

(1) alb if b = xay for some x,y €S".

(2) alb if b =ax for some x €S".

(3) alb if b =ya for some y €S".

If I' is a nonempty set, then let ¥ = %(I') denote the free semigroup
onI'. If w€ %, then let [(w)=length of w. If S is a semigroup and

a, -+, a, €S, then we say that a € S is a word in a,,---,a, if a=
w(ay, -, a,) forsome w(x;, -+, x,) € F(x1,- -+, x,). Thisisthe same as
saying that a is an element of the semigroup generated by a,,- -, a,.

Let I' be a nonempty set. Let %Fxr= Fx(I') denote the set of all
nonempty finite sequences (also called words) of the type w = A§'--- A
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wheren € Z*, ay, -, a0, ER", A, - A, ETland A, # A,,,fori,i+1€
{1,---,n}. We define e(w)=n and IWwW)=a,+ - +a, Let
wi, W, € Fg. Suppose w,=A{---Ax, w,=Bf---Bf Then we
define

Afl."A5"+B‘BZBZ."BEnm lf A,‘=B1.
wiw, =
g AxBfi-. . Bbn if A,#B,.

Now, of course, expressions of the type w = A¢' - -+ As(ay,**, a, ER;
A, -+, A, €T) make sense even when A, = A,,, for some i, i+1€
{1,---,n}. But note that if n = e(w), then A,;# A,,, forany i, i +1€
{1,---,n}. In such a case we call A{'--- A, the standard form of
w. Fg(l') is a semigroup and is just the free product of |T'| copies of R*
under addition (see for example [3; p. 411]). Let ¥ =N (T)=
{A“|A €ET,a ER*}. Ifu,v € Fx(T), then define u ~ v if either u = w',
v=w' for some wE %, i,jEZ" or if u=A°, v=A" for some
a,BER", A€E€Tl. Clearly, ~ is an equivalence relation on A'(I'). It
will follow from Theorem 1.9 that ~ isin fact an equivalence relation on
Fe(). Let we&€ Fg, w=A¢---Ax in standard form. Let A €T.
Then A appears integrally in w if for each i € {1,-- -, n}, A, = A implies
a; € Z". Otherwise A appears nonintegrally in w. A appears ration-
ally in w if for each i€{l,---,n}, A, =A implies o, €2". Let
Fy(L)={w|w € Fu(I'), A appears rationally in w for each A €&
I'}. %, () is a subsemigroup of Fx(I').

DEerINITION. By a word equation in variables x,, -+, x, we mean
{wi, wo} where w, = wy(xy, -+, x,), wa= wy(xq,***, %, )€ F(x1,- -, x,). It
is not necessary that each x, appearsin w,w,. Let S be a semigroup and
a, --,a,€S. Then (a,---,a,) is a solution of {w, w,} if
wi(ay, -, a,)=wia, -, a,).

Let (b;, - - -, b,) be a solution in F(I') of a word equation {w,, w,} in
variables x,,---,x,. Let S be a semigroup and ¢: F(I)—S, a
homomorphism. Let a; = ¢(b), i=1,---,n. Then (a, -, a,) is a
solution of {w,, w,}. We say that (a,, - - -, a,) follows from (b, - - -, b,).

DErFINITION.  Let {w,, w,} be a word equation in variables x,, - - -, x,
and S a semigroup.

(1) Let(ay, -+, a,)be asolution of {w,, w,}in S. Then (a,,- -, a,)
is strongly resolvable if it follows from some solution of {w,, w,} in F(I')
for some nonempty set I'. By Lentin [2] we can then choose |I'| = n.

(2) {w,, w,} is strongly resolvable in S if every solution of {w,, w,} is
strongly resolvable.
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Let I' be a nonempty set and let §: I'— 2. Then clearly there
exists a unique automorphism ¢ of %, (') such that ¢ (A) = A** for all
AET. Now let a,,---,a, € % (I'). Then there exists an automor-
phism ¢ of %,(I') of the above type such that b, = ¢(a,)€ F(),
j=1,---,n. Suppose (a, --,a,) is a solution of a word
equation. Then (b, -, b,) is also a solution of the same equation and
a=¢7'(b),i=1,---,n So we have the following.

THEOREM 1.1. Every word equation is strongly resolvable in %, (I')
for any nonempty set T'.

DEerFINITION.  Let wy, w, € FR(I'). Suppose w, = A{--- A% w,=
B#---Bf in standard form. If m =n and A, =B, (i=1,---,n), then
let d(W], Wz) = 2?:1 l a; — B,‘ l. OtherWiSC let d(wl, Wz) = o,

LEMMA 1.2. Let uy, uy, us, u, € Fp(l'). Then the following are true
in the extended real line.

(i) e(uu,)=-e(u)+e(uy) or e(u,)+e(u,)—1.

(i) d(ui, u)=0 if and only if u,= u,.

(i) d(uy, us) = d(uy, uy) + d(uy, us).

(iv) d(uy, uy) = d(us, uy).

v) duiu,, usu) = d(uy, us)+ d(u,, uy).

Proof. (i), (ii), (i) and (iv) are clear. So we prove (v). Let
wi, w, € Fp([), d(w, w)) <o, Let w,=Af---A w,=Af---Ablin
standard form. Let A €T. If A# A, then for any «a ER*, w,A* =
Ay AxA°, w,A*=Af---A%A* in standard form. So
dw, A, w,A“)=d(w,w,). If A=A, then wA*=A? - A",
w,A = AP -~ A*e Soagain d(w,A%, w,A*)=d(w,, w,). Sobyin-
duction  d(w,u, wau)=d(w,w,) for all u €& F('). Similarly
d(uw,, uw,) = d(wy, w,) for all u € FR(I'). Let uy, u,, us, u, € F(I') such
that d(uy, us) <o and d(u, u,) <». So d(uiu,, usu) =
d(uiu,, usuz) + d(usuy, usu,) = d(uy, us) + d(u,, u,). The same holds tri-
vially if d(u,, u;) = or d(u,, uy) = .

LemMA 1.3. (i) Let u € Fx(I'), n € Z* such that e(u)>1. Let
u=A¢---Ayr,u"=B{---Bin standard form. Then {a;," , a,} C

{Bi," -~ B}
(i) Letu,v € Fr(I'),n€ Z*. Thend(u,v)=d(u", v") = nd(u,v).

Proof. (i) 1<r=s. Since ulu", u|u" we obtain a =B,
(1=i<r)and « = B.
(i) That d(u",v")= nd(u,v) follows from Lemma 1.2 (v). So we
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show that d(u,v)=d(u",v"). If d(u",v") =, this is trivial. So let
du"v")<ow. Ifu"orv"e€ N({I), then u,v € N¥()and u ~v. So for
some AEl, €8ER", u=A5 v=A°% So duv)=|le-8|=
|ne —nd|=d(u",v"). Next assume e(u"),e(v")>1. Let u"=
Acie-- Ao p"=Ab ... A in standard form with m >1. Let u =
By---Br, v=C?2---C?% in standard form. Then r,s>1, Bj=A,=
C,B=A,=C. If Ai/#A,,then m=m=sn. Sor=s If A, =
A,, then r—n—1=m =ns—n—1. Thus in any case r=sAlso
B =A=C, 1=si=r. For lsi=r—-1, =« and § =p8. Also
¥, = a, and 8, = B,.. Thus 2/, |y, — & |=2",|a, — B,|. This proves the
lemma.
If P € R™™" then let P" denote the transpose of P.

LEmMMA 1.4. Let I' be a nonempty set and let A, --,A,ET,
€, "y €y € R+7 il; Tt ir’ jly o '7].3 € {1, T n}' Suppose that in g;k(r)’

Al Ap=Agp- Ap.

Then there exists P € 2™*" for some m € Z~ such that for any a,," -+, a, €
R*, P(ay," ", a,)" =0 if and only if

(1) A;r‘A‘...Aﬁ.,=A7‘,,...Alax,n

Proof. We prove by induction on r +s. Choose p, ¢ maximal so
that I=p=r,1=q=s andforany a, B withl=a=p, 1=B=¢q, we
have A,=A, and A,=A, Clearly A,=A, and Zf_ ¢, =
2i.,€¢,. Nowclearly p =rifandonlyifq =s. Alsoin thiscase, for any
ay, -+, a, €R, (1) holds if and only if Z;_, a, = Z;.,a,. We can then
trivially choose a 1 X n integer matrix P such that for any a,, - -, @, ER’,
P(ay, -+, a,)" =0 if and only if Z;_, a, = Z;_, a;.

Thus we may assume p <r adn q <s. Then we have

Af‘pn... Af:,: Asiqﬂ...A;\,S.

ip+1 Ja+1

If a;, -+, a, ER’, then (1) holds if and only if
P 9

(2) Z alk = 2 afk
k=1 k=1

and

(3) Aé“’”‘"Aﬁi,z A7’4+|...Az,"

q+1
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We can trivially choose a 1 X n integer matrix P, such that (2) holds if and

only if Py(as, -+, @,)" =0. By our induction hypothesis, we can choose

P, € 9™ for some m such that (3) holds if and only if Py(a, -+, a,)" =

0. LetP= (1};1) Then for any @y, - -, @, ER*, P(ay,* - -, a,)" = 0if and
2

only if both (2) and (3) hold. This proves the lemma.

Lemma 1.5. Let T be a nonempty set and let A,,---,A,ET,
61, Tt €, E R+7 il, Y in jb o 'ajs e {1’ B n}' Suppose that in' "OFR(F)’

Af;]...Af:,z Af{l.. .A/‘:‘S.

Let 8 €R*. Then there exist a,, - - -, a, € 2% such that Z;_,| . — € | <
and

Aﬁ.l... :‘:zAf{""Aﬁ’S.

Proof. Choose P€2™" as in Lemma 14. Let V=
{(Bl""aﬁn)r'(ﬁl’“'a BH)TERHH’ P(ﬁlv""ﬂn)T:O}- (El,"',E")TE Vv
and so V#{0}. Let

W={BB)" (B, B.) €2, P(By,+,B.) =0}

Let w=n—-rank of P. Then dimV over R=pu =dimW over
9. Since V#{0}, we have w >0. W has a basis H,,---,H, over
9. Let H=the n X u matrix [H,,---,H,]. Then rank of H=pu. So
H,, ---,H, are also linearly independent over R. Hence H,,---,H,
form a basis of V and of course H,,---,H, € 2™'. So there exist
8, .8, ER such that (€, -, &) =8H,+---+5,H, Let
Y 7. €2 and set (e, ", a,)" =7y,H,+---+vy,H,. Then clearly
(a, -, a,)" €EW. Also

V2 -l =218~ 15,

Thus for any § € R* we can choose |8, — v, |, p =1, - -, u, small enough
so that |, — € |<8/n, k =1,---,n. For & small enough we then also
have o, €27, k =1, -+, n. This proves the lemma.

THEOREM 1.6. Let {w,,w,} be a word equation in variables
Xy, X.. Let (ay, -+, a,) be a solution of {w,, w,} in F('). Then for
each e €R’, there exists a solution (b,,---,b,) of {w,, wa} in %,(T') such
that 2, d(a,b) <e.
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Proof. Leta, =A% ---Afminstandard form,i=1,---,n. Letw,
start with x, and let w, start with x;, Then correspondingly we have

B”-;.'— B,l'.'
A=Al

tl

Choose o, €27, i=1,---,n, 1=k=m. Let b=Ay - A&, i=
1,-+-,n. Then by, -+, b, € F,([). Also, wi(by, -+, b,)=wxby," -+, b,)
if and only if

) A:!fl"'zA,al”"“

But by Lemma 1.5 we can choose a, s so that (4) holds and |, — Bu | < €
for all relevant i and k. So clearly 2, d(a, b)= 2| ax — Bu | = Me
where M = 2", e(a;). This proves the theorem.

LemmA 1.7. Let A, ---,A, €T, ACT. Suppose o« -, an,
Bl)”"BnER+7 il""’ir? j])...,jSe{]‘,...?n} suCh that Af‘]ll...As":
A% Afand AP+ Ab.= Ab- - AP Lety = a,ifA EA, y, =
ifAEAN, i=1,---,n. Then Aln-- A=A+ Al

Proof. We prove by induction on r +s. Choose p, ¢ maximal such
that for l=pu=p, 1=v=gq, A,=A, and A, =A,. Then

At Al=A% A%
AP  ABy= AR AR,

Since A, = A, for1=pu =p, 1 =v =gq, we obtain
A?/l'l"'A,y’:P:A}ll"l"'Al;q.

Also, if p+q <r+s, then p<r, gq<s and

A"xip-i-l .o .Aai'= Aa’qﬂ .. .Aa,;'
ip+1 g Ja+1 Is 2
8, _ B;

Aip':-rl oo AE',_ qu’z:-l oo A]_BI,S.

By our induction hypothesis we then also have,

A Yiprr o - .A‘y'r= A‘y’qﬂ' e A
Ip+1 Js

i Ja+1

Hence AJu---A}»=A}n---A)s proving the lemma.
We will need the following refinement of Theorem 1.6.

THEOREM 1.8. Let {w,,w,} be a word equation in wvariables



WORD EQUATIONS IN SOME GEOMETRIC SEMIGROUPS 249

Xy, x. Let (ay,---,a,) be a solution of {w,, w,} in Fx('). Then for
each € ER", there exists a solution (c,,- -, ¢,) of {w,, wy} in F,(T) such
that 2, d(a; c;) <€ and so that for any A €T, A appears integrally in
each a; implies A appears integrally in each c..

Proof. Let A={A|AETl, A appears integrally in each
a;}. Choose (by,---,b,) as in Theorem 1.6. Let a, =A% -- A%,
bi=A%---Abfr i=1,--- ninstandard form. Lety, = ay if Ay €A,
Ve =Bx if AL ZEA. Set ¢ =AY---Al, i=1,---,n. Then
¢ € %), d(a,c;)=d(a,b). Let w, start with x, w, start with
x;.  Then correspondingly we have,

% — «
Aill..."‘Ai;I"'

Bi B
A,]I"'zA”’l"'

Then by Lemma 1.7 we also have
Al =AY

So wi(cy,*++, €)= wy(cy, -+, ¢,). This proves the theorem.

Let {w,, w,} be a word equation in variables x,, - -, x,. A solution
(ay, -, a,) of {w,, wo} in Fx(T') is trivial if either there exist u € Fy(T),
k-, k, € Z" such that u* =aq, i =1, n, or if there exist A €T,
a, ,a, ER  such that a, = A* i=1,--, n

THEOREM 1.9. Let {w,, w,} be a word equation in variables
Xy, ", X, Suppose {w,, w,} has only trivial solutions in any free
semigroup. Then {w,, w,} has only trivial solutions in any F(T).

Proof. Let (ai,---,a,) be a solution of {w, w,} in Fr(). By
Theorem 1.6, there exist solutions (b{™, -, b)), m € Z* of {w,, w,} in
%, (') such that d(a,b™”)—>0asm —>»,i=1,---,n. By Theorem 1.1
and our hypothesis, there exist, for each m € Z*, u,, € F,(I'), k(m, i) €
Z*,i=1,---,nsuchthat b™=ui" i=1---n Nowe(b™)=e(a)
foralmeZ*,i=1,---,n. Ifforanyi€{l,---, n}, k(m,i)— », then
by Lemma 1.2 (i), e(u,)=1 for some m € Z*. It then follows easily
(since d(a, b™) <o, j=1,---,n)thate(a;)=1,j=1,---,n and q, ~ a,
for all j,r€{l,---,n}. So we may assume that the k(m,i)s are
bounded for each i=1,---,n. So {(k(m,1),- -, k(m,n))m € Z*} is
finite. Hence we can assume without loss of generality (going to a
subsequence if necessary) that k(m,i)=k(t,i) for all m,t€Z*, i=
1,---,n. Thus there exist k;,---,k, € Z" such that for all m € Z~,
bm™m=uyk i=1,---,n 1If e(u,)=1 for any m, then we are done as
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above. So assume e(u,)>1 for all m € Z*. Now for all m,t € Z",
d(b{, b)) <. So d(u,ul)<w. By Lemma 1.3 (i), d(u., u)<
w. Forme€Z, let u, = A{™"-.- A" in standard form. For any
€ >0, N€ Z", there exist m,t € Z*, m, t = N such that d(b{", b{’) <
e. SobyLemma 1.3 (ii), d(u., u)<e. Sofori=1,---r{a(m,i)isa
Cauchy sequence in R*. Let <(a(m,i))—>a. So o ER
(i=1,---,r). Let a,=B}---B} in standard form. Then by Lemma
13 (i) and the fact that d(a,us)—0 as m —», we obtain that
{ay, "+, a,}C{8, -+, 8} Hence a, o ER'. Let u=

peovA® So u € F(') and clearly d(u,,u)—0 as m — . Let
i€{l,---,n}. Then by Lemma 1.3(i), d(u%,u")=kd(u,u). So
d(uy,u*)—>0. Now d(a,ul)—0. Also by Lemma 1.2, d(a,u")=
d(a,ul)+d(uy,u") for al me€Z*. So d(a,u*)=0 and thus by
Lemma 1.2, a, = u"*, i =1,---,n. This proves the theorem.

ProBLEM 1.10. Generalize Lentin’s theory of principal solutions in
the free semigroup [2] to Fe.

2. The semigroup of designs around the unit disc. For
a,BERY, a<B, let Ly={x|xER,a<|x|<B} Let D=
{(A,a)|a ER*, a >1, A is a closed subset of I,,; for all x € A there
exists a sequence (x,) in A such that x, - x and |x,||#]x] for all
n}. For (A,a)ED, let P(A,a)=A. D becomes a semigroup under
the following multiplication

(A,a)(B,B)=(A U‘aB, ap).

We call © the semigroup of designs around the unit disc. The multipli-
cation above is illustrated in Figure 1. If (A, a)€E€ D, then let (A, a) =
loga. Soforallu,v €D, l(uv)=I(u)+1I(v)and [(u)>0. In D' set
I(1)=0.

REMARK 2.1. Let (A,a)€E®D. Then A=ANI,.
_ Dermirion. Let1=B <y =a. Thenfor(A,a)€D, (A, a)p, =
(B,v/B) where B = (1/B)(A N I;,). Note that (A, @), €D and since
A=A, (A, a),) C(/B)A. Also we define (A, a )y =1.

Note that [((A, a),,)=logy—logB. Also by Remark 2.1,
(A, @)a = (A, @).

LEMMA 22. (i) Let 1=B8<y<é=a (A a)ED. Then
(Av a')[B.S] = (A’ «a )[3-7](A’ a )[7.5]'
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FIGURE 1. Multiplication in .

(i) Let 1sB=sy<dé=p=a (A,a)ED. Then I((A, a)yy) =
I((A, a)pu). Also 1((A, a)s) = (A, @)e) if and only if B =y and
6 =pu.

Proof. (i))Letx € A,|x||=7y. Then there exists a sequence (x,) of
A such that |[x,|#y for all n and x,—»x. So ANI,;C
(ANL)UMANL,). Soif Ai=ANI, A,=ANI, Ay=ANL,
then A,=A,UA;. Also (A a)g=(1/B)AL8/B), (A a)ay=
((1/B)A., v/B) and (A, a )5 = ((1/y)A;, 8/y). This yields the result.
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(i) This follows by noting that by (i), (A a)s.,=
(A7 a)[ﬁ.v](A7 a)[v.ﬁl(A7 a)[&#]'

Lemma 2.3. Let (A,a), (B,B)ED. Set (C y)= (A, a)B,B).
Then (C’ 7)[1-01] = (A’ a) and (C7 7)[0»7] = (B’ B)

Proof. C=AUaB. SoCNI,, CA. Itfollowsthat CNI,, =
A NI, ByRemark2.1, ®(C, y))=CNIL.,=ANI.,=A. Thus
(CY)ag=(A,a). Now CNI,,CaB. So CNIL,=aBNI,, Thus
O((C, ¥ Yoy) = (1/a)(CNI,.)= (1/a)(@B N1, )= (B N1, =B. It fol-
lows that (C, ¥ ) = (B, B).

LEmMMA 24. Let (A,a)ED, 1=B<y=a and set (B,y/B)=
(A, a)g.- Let x: [1,v/B]— | B, v] be the order preserving homeomorphism
x(x)=px. Then for 1=8<p =v/B, (B,y/B)isu = (A, &)perawy

Proof. B=(1/B)(ANIL,)C(1/B)A.So BN, =1,N({1/B)A =
(1/3)(1)((8),)((#) nA ) It follows that (I)((B’ 'y/B )[&/A]) = (D((A7 a)[x(ﬁ),x(#)])'
Also, x(u)/x(8)= /8 and the result follows.

LEMMA 2.5. Let wuy, - u, (A, 2)ED such that (A a)=
u, - -u, Then there exist oy, -, a, ER" such that 1=y <a,<---<
a, = a and (A, @) og=U, i =1, n

Proof. Clearly we can assume n >1. By Lemma 2.3, there exists
B € (1,a) such that (A, a)ue = Ui, (A, a)ga;= U2 u,. We are now
done by induction and Lemma 2.4.

LeMMA 2.6. D is a cancellative semigroup. Let u,, u,, v;, v, € D
such that u,u, = v,v,. Then exactly one of the following occurs.

1) (w) <l(vy), I(v;) <Il(uy), us|iv, and v,|su,.

i) (o) <Uuy), H(u,) <l(v,), vi|iu, and u,l,v,.

(i) u,= v, and u, = v,.

Proof. Let u,uy,v,0,€ED such that wu,=ov,0,=(A,a). By
Lemma 2.3, there exist 8,y € (1, a) such that (A, @)y = uy, (A, apy =
Ui, (A, @)jga) = U and (A, a);,. = v,.  Suppose [(u;)<I(v;). Then by
Lemma 2.2(ii)), B =vy. So by Lemma 2.2(1), u,|,v,, v,jus. If I(u;)=
I(v), then B =y and so u,= v, u,=v,. We are now done by sym-
metry.



WORD EQUATIONS IN SOME GEOMETRIC SEMIGROUPS 253

LemMa 2.7. Let (A,@)ED, x EA, ||x||=B. Then,

i) IfBe(,a) thenfor l1=y <B<d=a, x € yP(A, a),s)-
(i) IfB =1, then x € P((A, a)us) for all 5 € (1, a].

(i) If B = «a, then x € yP((A, a),.) for all y €1, a).

Proof. () x €A N1, CyP(A, a)ys).

(i) There exists a sequence (x,) in A, [|x,||# 1 for all n such that
X,—>x. Sox€ANI;=D(A, a)us).

(iii) There exists a sequence (x,) in A, ||x, || # « for all n such that
x.,—x Sox€ANL,=yP(A, a)ya)-

DEerINITION.  Let U = {x|x ER?, ||x|[=1}.

(1) Let K=KCU. Then for « ER", a>1, let K¥=(A, a)
where A ={yx|x €K, yE[l,a]}. Let £L={K@K=KC
Ua€R,a>1}. Then CD. Note that K= U NP(K™). So if
K® L®ec% and K®=L®, then K=L and @ = 8. Examples of
elements of £ are given in Figure 2.

(2) Let K€% Then for B ER", (K™)* = K. This is well
defined and agrees with the semigroup definition of power if g € Z*.

(3) Let u,vE€D. Define u~v if either there exist a €D,
i, €Z" such that u =a’, v=a’, or if u,v € ¥ and v = u* for some
a €ER".

REMARK 2.8. (i) K, K®& ¥ Then K@WK® = K,

(i) Let ue¥ B,y€R'" Then (u?) =u”, u?”=ufu" and
[(u?)=Bl(u).

(i) Let u € £ Then there exists unique v € ¥ such that u ~ v
and I(v)=1. If I(u)= v, then v’ = u.

(iv) Letu€eD, veP If u|v, then u €L and u ~ v.

(v) ~ isclearly an equivalence relationon . Ifu €D, v € %,
u~ v, thenu € L. It will follow from Theorem 3.16 that ~ isin fact an
equivalence relation on D.

THEOREM 2.9. Let T be a nonempty finite set. Fori&€ T, j€EZ",
choose u;; €D such that u,,.\|u, forall i€ T, j€ Z"; and I(u;)—0 as
j— for any fixed i€ T. Let (A,a)ED. Assume that for each
BE(,a), jEZ", there exist k € Z*, v,6 €E[1,al, i,p,q € T such that
vy <B <38, k>jand so that either (A, a),s = U or else (A, &)z = Uy
and (A, a)gs = Ug. Then some u,, € £.

Proof. Let U={x|x €R’ ||x|=1}. Let|T|=n. We prove by
induction on n. So assume that the theorem is true for nonempty sets of
order less than.n (possibly none). We assume that the conclusion of the
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FIGURE 2. Examples of elements of &.

theorem is false and obtain a contradiction. For x € U, let P, =
{yx|y €ER*}and J, =P, NI,,. ThenlJ, =P, NI, First weclaim that
it suffices to show that foreachx € U,J, CA orJ,NA =. Insucha
case, first let J,C A. Then since A is closed, J,C A. Next let
J.NA=. We claim that ;N A =. For, let y€J, NA. Then
[y|=1 or @. So there exists a sequence (y,) in A NI, such that
y.—>y. Let y,=r x,rn€(1,a), x, EU. Then x,—x. Since y, €
J.. N A, we obtain J,, CA. So ((a +1){2)x, € A for all n. Since A is
closed and x, — x, we get ((@ +1)/2)x € A, contradicting the fact that
J.NA=¢. We have thus shown that for all x€EU, J,NA =T or
T, CA. So letting K=A NU we see that K is closed and that
(A,a)= K®“€ £ Then of course some u;, € ¥, a contradiction. This
establishes our claim.

So let x € U such that J,Z A. Then J,\A is nonempty and open
in J. So there exist B,y €(1,a) such that B<y and I,,NJ, C
J\A. Let € (B,y) and let j € Z*. Then there exist k EZ", u,v €
[1,a], i,p,q € T such that u <& < v, k >j and so that either (A, @), =
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u, orelse (A, a)s = U and (A, a ), = U, If j is large enough (and
hence I(u.), I(u,x), I(u,) small enough), we obtain that u,v € (B, y).
Hence by Lemma 2.4, (A, a);,, satisfies the hypothesis of the theorem
for the same T. We now claim that for each i € T, there exists j € Z",
such that u,, [(A, @);s,. Suppose not. Then foranyj € Z*, u,; doesn’t
come into consideration in the above argument. Son >1 and (A, a);,,
satisfies the theorem with T\{i} in place of T. So by our induction
hypothesis some u, €%, a contradiction. So our claim is
established. Since u;;.,|u;; for all relevant i, j, we see that there exists
r€Z* such that foral i€ T, jEZ*, j>r, u;|(A, a)py

We now assume J, N A# J and obtain a contradiction. So let
a€J.NA, |al=8 Sod€(l,a) Thereexistk EZ*, u,v€E[l,al,
i,p,q € T such that u <8 < v, k >r and so that either (A, a),.,;= Uy Or
else (A, @)pus;= Upx and (A, @)= Ugr. But u, Uy, Ugi | (A, @) s, SO
in any case (A, a5 (A, @), and (A, a)i.] (A, @), By Lemma 2.5,
there exist &,&ERT such that &P((A, a)ps) U EDP(A, a)s.) C
®((A, a)p,) ByLemma 2.7(i), a € u P((A, a)..). Since (A, @)y, =
(A, )5 (A, @), there exists £ € R such that a € &P((A, a),,s) or
a € &EQ((A, a)s.y). So  for some  EERY,  fa€P((A a)g,) =
1/BY(ANIL,)CA/B)(ANI,).SoBéa€ ANI, Buta€lJ, andso
Béa € P, But ||Béall€[B,y]C (1, ). So Béa€EANJ, NI, con-
tradicting the fact that I, NJ, CJ.\A. This contradiction completes
the proof of the theorem.

3. Word equations in . Let I' be a nonempty
set. Define Fp('|D) = Fe(I') and F('|T)= F([). If ACT, A#J,
A #T, then let Fx(I'| A) denote the subsemigroup of (') generated by
Fr(T\A) and F(A). Let w € Fx(I'). Then forany ACT, w € F(I'|A)
if and only if each A € A appears integrally in w.

Let ¢: =D, ACT, such that ¢(I'\A)C % Then ¢ extends
naturally to a homomorphism ¢: F(I'|A)—D. In fact let weE
Fe(T|A), w=Af---Ay in standard form. So A, € A implies € €
Z*. Define ¢(w)=¢(A)" - ¢(A,) This makes sense, since for
uce Y ee€R’, uisdefined. Using Remark 2.8(ii), it is easily seen that
¢ is a homomorphism. We call ¢ the natural extension of ¢ to
F(T|A).

Let (uy,---,u,) be a solution in Fx(I') of a word equation
{w,w}. Let A={A|A€ETl, A appears integrally in each
Uy U,}. Then wuy, -~ u, € Fp(T|A). Let ¢:T—D such that
e(T\A)C &% Let ¢ be the natural extension of ¢. Let a, = ¢ (u),
i=1,---,n. Then (a;, -, a,) is a solution of {w,,w,} in D. We say
that (a,, - -, a,) follows from (uy,---, u,).
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REMARK 3.1. In the above notation suppose there exists A;C T,
¢: T— D such that ¢(T'\A,)C £ Let ¢ be the natural extension of ¢ to
Fo(T|A). Suppose u;,---,u, € F(l|A) and a =4d), i=
1,---,n. Then (ay, """, a,) follows from (u,,---,u,). This is because
the above implies that A;,C A and so '\ACTI'\A, C % Also it is clear
that the natural extension of ¢ to Fr(I'|A) is the restriction of ¢ to
Fe(T|A).

Even though we are only interested in word equations, it will be
convenient to introduce the concept of a constrained word equation.

DErFINITION. Let wi=wi(xy, ", X,), Wy = Wwy(Xy, ", X,) €
F(x1,-",x,). Let T,,---, T, denote s disjoint nonempty subsets of
{x,,* -+, x,}. Choose «a, ER" corresponding to each k€T, j=
1,--+s Let M={(x, )|k ET,}. We call & ={w,, w,;M,,---, M.}
a constrained word equation in variables x,,---,x,. We allow the
possibility that m = 0, in which case & is the word equation {w,, w,}. If
1=i=n and i€ T, for every j, 1 =j =s, then we say that x; is a free
variable of &f. Otherwise x, is a constrained variable. If m =0, then x;
is free 1=i=n). Leta, - --,a,€D. Then (a,---,a,)is a solution
of o if the following conditions are satisfied.

1) wiai, - a.)=wyay, -, a,).

(2) (%, ) E M, implies that a, € £ and l(a,)=a, j=1,---,s.

(3) Let (x,a)EM,, (x,00)EM, Then a; ~a, if and only if
p=4q
Similarly if ay, - -, a, € Fx(I'), then we say that (a,,- -, a,) is a solution
of o if (1), (2) and (3) above are satisfied with £ replaced by N (T').

DEerFINITION.  Let of = {w,, w,; My, - -, M} be a constrained word
equation in variables x,, - - -, X,.
(1) Letw =(ay,--+,a,),v=(b,---,b,)besolutions of & in D, Fy

respectively. (Note that then for each constrained variable x;, I(a,)=
I(b)). Then we say that u follows from v (as solutions of &) if w
follows from » as solutions of the word equation {w,, w}.

(2) A solution u of & in D is resolvable if it follows from a
solution of & in Fx(') with |T'| = r + s = n where r is the number of free
variables of .

(3) o isresolvable in D if every solution of & in D is resolvable.

Lemma 3.2. Let wy,w,€ F(x1,--*,x,). Let ay- - -,a,€N({T)
such that a;~a, for all i, j. Suppose Il(w(a,- ", a,))=
I(WZ(al’ Y an))- Then Wl(al, Y an) = Wz(al, T an)-

Proof. For some A€Tl, a =A% a=Ia), i=1,---,n Let



WORD EQUATIONS IN SOME GEOMETRIC SEMIGROUPS 257

I(wi(ay, -, a,))=1l(wyay,--,a,))=pB. Then clearly wi(a,,- -, a,)=
A P = w2(a17 Y an)'

Lemma 3.3. Let ay,---,a, €%, by,--+,b, EN([). Suppose that
a, ~ a; implies b;~ b; for i,j €{1,---,n}. Assume further that l(a;) =
I(b),i=1,---,n. Letw, w,€E F(xy,"+,x,) such that wi(a,,"*+,a,)=
wiy(ay, -+, a,). Then wi(by, -+, b,) = wy(by, -, b,).

Proof. We prove by induction on length of ww, in
F(x1,--+,x,). We can assume without loss of generality that each x;
appears in w,w,. Let w,=x, - x, w,=Xx;,---x,. So

ail..'aiszajl...ailza.

Choose p, ¢ maximal so that I=p=s,1=q=t;forl1=k =p, a,~ a,
and for 1=k =gq, a,~ a,. Now a,|.a; or a;|;a;,. So by Remark 2.8(iv),
a,~a, Letu=a, --a,andv=a,---a, Thenu,v€ L. Alsoa=
ub = vc forsome b,c €D'. Firstassume p=s. Thenb=1. Ifq#¢,
then a,.|u and so a,.,~u ~ a, a contradiction. So q =t Then
a, ~ a; for all i,j. Hence b, ~ b; for all i, j. Since /(b)) = I(a;) for all i,
we obtain that [(wi(by, -+, b,))=Il(wi(a,, "+, a,))=l(wiay, ", a,))=
I(wy(by, -+, b,)). We are then done by Lemma 3.2. Similarly we are
done if g=1t So assume p <s and g <t We claim that u =
v. Otherwise, by symmetry, let v = uv,, v,€ L. Then b = v,c. Since
a,. b, we see that a,. . [|v, or vfa,.. So a,,~v,~a, a
contradiction. So u =v and b =c. Thus

L e A R A U

By our induction hypothesis,

b”...bizbj"'bj and b, - b, =b,

ip 9 ip+1 Ja+1

- b,

So b,--b, =b;---b, and we are done.

LEmMA 3.4. Let o ={wi, wy; M,,--+, M.} in variables x,,---,x,.
Suppose for some wi, Wy, Wws, We & F(X1, ", X,), W= W3Ws, W, = WsWs
such that wy and w; involve only constrained variables. Let (ay,- -, a,)
be a solution of & in D. Suppose wi(a, -, a,)= ws(a,, -, a,). Let
B ={ws, we; My, - -, M.} in variables x,,---,x,. Then (a,,"*-,a,) is a
solution of B. If (a,,- -, a,) is resolvable as a solution of B, then it is
resolvable as a solution of .
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Proof. Note that the free and constrained variables of & and B are
the same. Clearly w.(a:, "+, a,) = ws(ai,"**,a,) and so (a,,- -+, a,) is a
solution of B. Let (b;, -+, b,) be a solution of B in Fx(T') from which
(a,--+,a,) follows. It suffices to show that wyb, -+, b,)=
wa(bi, -+, b,). Let x; be a variable appearing in w;ws. Then x, is
constrained and so a; € %, b€ N'(I') and I(a;) = [(b;). For the same
reason if x;, x, appear in w;ws, then a; ~ a, if and only if b, ~ b,. So by
Lemma 3.3, ws(by, -+, b,)= ws(by,---, b,). Since (b, -, b,) is a solu-
tion of B, wiby, -, b.)=webi, -, b). So  wyby,--,b)=
wa(by, - * *, ba).

LemMA 3.5. Let o ={w, wy; M, -+, M} in variables x,,- -, X,
Then A is resolvable in 9.

Proof. Let (ay, -+, a,) be asolution of f in ®. Letc = a if x; is
a free variable, and otherwise let ¢; € & such that ¢; ~ a;, I(c,) = 1. Then
for constrained x; we have a; =c¢!. LetI'={A, - A,} where A, =
A; if and only if i =j or x, x; are constrained and a, ~a. Then
IT| = r+ s where r is the number of free variables of &f. Let b, = A, if x;
is free and otherwise let b, = A|“). Then (b;,---,b,) is a solution of
o. Let A={A;|x; is free}. Then b € Fr(|A), i=1,---,n Let
¢: =D be given by ¢ (Ai)=c¢, i =1,---,n. Then ¢ is well defined
and ¢("A)C ¥ Let ¢ be the natural extension of ¢ to
Fe(T|A). Then ¢(b)=a, i=1,---,n. So (a,---,a,) follows from
(bla Y bn)

LEMMA 3.6. Any constrained word equation without free variables is
resolvable in D.

Proof. Let of ={w,, wy; M}, -+, M.} in variables x,,- -, x, with all
variables being constrained. Let (a;,---, a,) be a solution of & in
D. So each a,€Z. Choose ¢, €E¥ so that ¢, ~a, I(c)=1. So
a;=c/®. LetI'={A,---,A,} with A, = A, if and only if a, ~ a. So
IT|=s Let by=A{“, i=1,---,n. By Lemma 3.3, (b,,---,b,) is a
solution of /. Define p:I'=>D by ¢(Ai)=c,i=1,---,n. Then ¢ is
well defined and ¢(I')C #. Let ¢ be the natural extension of ¢ to
Fx(’). Then ¢(b)=a, i=1,---,n. So (a, -, a,) follows from
(by, -+, by).

LemmA 3.7. Let o ={w,,w,; My, -, M,} in variables x,,- -, x,.
Let wi€ F(x1,- -+, x,) and let B = {wyw,, wiw,; My, - - -, M,} in the same
variables. Let (a,,-- -, a,) be a solution of B. Then (a,,---,a,) is a
solution of . If (ai,- -+, a,) is resolvable as a solution of o, then it is
resolvable as a solution of 3.
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Proof. This follows by noting that in ® as well as in any Fx(T'), the
solutions of & and % are the same.

LemMma 3.8. Let &f ={w,, w,; M,,--+, M.} in variables x,,- -, x,.
Suppose x, is a free wvariable not occuring in w,w, Let B =
{w,, wy; My, -+ -, M,} in variables x,, - - -, x,. If B is resolvable in D, then
so is A.

Proof. Let (a,,- -+, a,) be a solution of & in D. Then (ay -, a,)
is a solution of @ in ©. So (a, -, a,) follows from some solution
(by, -+, b,) of B in F(T') with |T'|=r + s where r is the number of free
variables of 9. Correspondingly there exist ACT, ¢: I'— D such that
by, -+, b, € Fr(T|A), ¢(T\A)C &£ and the natural extension ¢ of ¢ to
Fo(T|A) satisfies ¢(b)=a, i =2,---,n. Let b, & Fx(') and set [, =
ru{p}, A,=AUf{b}. Then (b, ---,b,) is a solution of & in
(). Extend ¢ to ¢, by setting ¢,b)=a,. Then
by, by, -+, b, € Fr([1|A)), ¢:(T'\A)) C £ and the natural extension ¢, of
¢, to F(T'y|A) satisfies ¢(b)=a,i=1,---,n. So (a,,---,a,) follows
from (b, -+, b,), |T:| = r + 1+ s and the number of free variables of o is
r+1.

LEmMA 3.9. Let A ={w,wy; M, -, M} in variables
X1t X Suppose (a,, -+, a,)is asolutionof s in D. Assume that for
some i# j, x; and x; are free variables and a; = a,, Let wi(x,, -+, x,)=
WXy, X, X Xen, t 0, %), t=1,2. Then x; does not appear in
wiws. Let B ={wi,wy;M,,---, M} in variables x,,---,x,. If B is
resolvable in D, then the solution (a,,---,a,) of o is resolvable in D.

Proof. Clearly (ay, - - -, a,) is also a solution of %. Let (b;,- -, b,)
be a solution of B in Fi(I') from which (a,,---,a,) follows. Then
w=(by, ", b-1,b,b., -, b,) is also a solution of & and (a," -, a.)
follows from w.

LemMMA 3.10. Let A ={w,, wy; My, -+, M,} in variables x,,- - -, x,.
Let (ay, -, a,) be a solution of f in D. Suppose that for some i, x, is free
and a, €% If a ~a, for some (x,0)EM, then let M,=
M, U{(x, I(a.))}, M;= M, for q# p and set B ={w, w; Mi,---, My} in
variables x,,- -+, x,. If a;# a; for any constrained variable x; then set
B ={w, wa; My, - -+, M, {(x,, [(a))}} in variables x,,- - -, x,. Then B has
lesser number of free variables than . If B is resolvable in D then so is
the solution (a,," - -, a,) of 4.

Proof. Let r be the number of free variables of &/. Then & has
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r—1 free variables. Clearly (a;, ", a,) is also a solution of 8. Let
(ai, -+, a,) follow from a solution (b;,---,b,) of B in Fx(I') with
IT|=(r—1)+(s+1)=r+s Then clearly (b, -, b,) is also a solution
of & and hence the result follows.

LEmmA 3.11. Let o ={w;,ws; My,---,M,}. Let u=(ay, -, a,)
be a solution of of in D. Suppose (x,a)E M,. Assume a, = a’a’, for
some a',a’l€D. Introduce new variables x', x" and set

’
w!(xla Y xi-la x:’a x,ily xi+ls T xn)

1"

= WXy, 0 Xic, XX Xy, * 7 0, X))

Eg(xb”"xt—hxi’x/i,axiﬂy"')xn)’ = 172

Let Mj=M; for j# k, M;={(x},1(a}), (x,1(a))}UMN(x; a:)}). Let
B={wi,ws;M{,--+, MY} in variables x, - -, x;_, X1, X", Xix1,* * *, X.. Then
B has the same number of free wvariables as . Also v=
(a, - ai-,ai,a’, @, 0, a,) is a solution of B.  If v is resolvable in D
then so is .

Proof. Let r be the number of free variables of &/ (and hence
A). First note that since a/, a’/|a, a}~ a’{~ a. It is then obvious that
v is a solution of @B. Let v follow from a solution
(b, by, bl b, bisyy e -+, by) of B in Fe(T') with [T|=r+s. Let b =
bib" and let ¢ = (by, -+, bi_t, by by, - -+, b,). It is then clear that £ is a
solution of & and that u follows from &

LeEmMA 3.12. Let o ={w,, w,; My, -+, M.} in variables x,," - -, X,.
Let u = (ay, ", a,) be a solution of f in . Suppose i# |, x; is a free
variable and a; = aa) for some a;€D. Introduce a new variable
xj. Let

w:(xlv Y x/—b x;’a xj+17 Y xn)
— ! DY
= Wl(xl, Cr oy Xm1 XiX gy Xk ) xn)

E F(X1, *y Xjmt, Xy Xpu1y " 5 X0 ), t=1,2.

Let B ={wi,wy; M, -+, M,} in variables x\," - -, X,_1, X |, Xj+1," * *, X.. Then
v=(a, ", a-1,a}, ., """, a,) is a solution of B. If v is resolvable then
S0 is .

Proof. Let r be the number of free variables of & (and hence % ). It
is clear that v is a solution of #. Let v follow from a solution
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(by, -+, b1, b}y bysy, ==, b,) of B in Fe() with [I|=r+s Let b=
bb). Then & =(by, -, b1, b, b1, -+, b,) is a solution of & and u
follows from 6.

Let r € N and consider the following:

Every constrained word equation in less than r free

(*)

variables (possibly none) is resolvable in D.

LemmA 3.13. Assume (*). Let & ={w, wy;---} in variables
X1," X, Assume A has exactly r free variables and that w, and w, start
with different variables, at least one of which is free. Then & is resolvable

in ®.

Proof. Let (aj,---,a,) be a solution of & in D. Assume
(a,, -+, a,) is not resolvable. We will obtain a contradiction. Let
T = {i|x, is a constrained variable}. So by (*) and Lemma 3.8, each free
variable occurs in w,w, Let x, appear m{ times in w,w,, =
1,---,n. Then mPEN for i€ET and mP€ Z"* for iZT. Let u=
wiwy(a, "+, a,). So u is a word in ay, -, a, with a, appearing m{"
times,i=1,---,n. Nowlet AV=of wi=w, wi=w, xV=x, a?¥=
a, i=1,---,n. We will construct a sequence of constrained word
equations = {w{, wl);---} in variables x{*,-- -, x* with solutions
(a®,--+,a¥) in D such that the following properties are true for all
kez".

(I)  The constrained variables of &/ are exactly x*, i € T. Also
fori€T, a=al".

(II) wuisawordin al®, -, al¥ with a*) appearing m® times. If
k>1 then mPzm&* ™ i=1,--- nand S, m®P >3, m&™D,

(II1) If k >1, then a*™is a word in a{,---,a®, i=1,--- n

(IvV) 1If k >1, then a®|;al* ™", i=1, -+, n

(V) w{ and w{ start with different variables, at least one of
which is free.

(VD) (a®,---,a¥%) is not resolvable.

Clearly &/ satisfies (I) to (VI). We proceed by induction. So
having constructed o, 1=j = k, satisfying (I) to (VI), we proceed to
construct “™". Let w¥=x®... w®=x®...  Sop# q and either
x, or x, is free. We have correspondingly

©) a¥ o= q®. .

First consider the case that ¥ = a{. If both x{ and x{" are free, then
by applying first Lemma 3.9, and then Lemma 3.8 and (*), we see that
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(af,---,al’) is resolvable, a contradiction. Next assume x& is
constrained. Then x{ is free and a’€ £. Then by Lemma 3.10 and
(*), (@, - - -, al) is resolvable, a contradiction. So l(a®)# I(a¥). By
symmetry, assume [(a{’) <l(a{’). Then a¥|;a’. First suppose x* is
constrained. Then x{ is free and a{’€ £. We then get a contradic-
tion as above. So x{ is free. Now a®=a®a’" for some
af’PeD. Set alV=a® for i#q. Clearly a*"a®, i=
1,--+,n. Alsosinceq& T, a®”=al**Vfori €T. Trivially, each a® is
awordin a{**",--- a%". Sowuisawordin a** --- a*". Let a**
appear m{*" times in this word. Then m&*™"=m® for i#p and
mE=mP+mPzmP+mP>m®. SoSr, m*H>3 m®. Now
the left hand side of (5) must include more than just a (as I[(a®) <

I(@a$)). So let the left side of (5) be a®a®---. If t#gq, then (5)
becomes
(6) agk*'l)...:agk‘”)..., t;é q.

If t = q, then (5) becomes
(7) a;k+l)a$ik+1).‘_= af,k-H)"', p#q'

Now introduce a new variable x{*"” and set x**"=x® for i# q. If (6)
holds, then correspondingly let w{ V= x**V... WD = x &b If (7)
holds, then correspondingly let w{*" = x{*Ox D .. W= xE...
Now applying Lemma 3.12 and then Lemma 3.7 we can construct a
constrained word equation V= {w{*D w{*D; ...} in variables
x ¢ - x %Y such that (a*V, - - -, a$*") is an unresolvable solution of
A*D. Also a close examination of the construction shows that the
constrained variables of & **" are exactly x**", i € T. This completes
the induction step of our construction.

Now by (II), 2., m*— o as k - . So at least one m*¥— . So
[(a®¥)—0. Let K={i|l(a®)—0}. By I), TNK ={. There exists
€ ER" such that for iZ K, l(a®)>¢€ for all k € Z*. Choose k large
enough so that I(a¥)<e. Let a=a®. Then by (IIl), for all « € Z*,
a>k, ais a word in a!, i€ K. Let P,={a®|i€K}. Let a=
(A,¢). Then by Lemma 2.5, for each a € Z%, a >k, there exist
&, " & such that 1=§<¢§<---<§,=¢ and for j=1,---,m,
(A, €)1 € P.. So we see that the hypothesis of Theorem 2.9 is
satisfied. Soa®@ € L forsomei €EK,a € Z*. Thensince TN K =,
x™ is a free variable of /. So by Lemma 3.10 and (*), (a{”, - -, a") is
resolvable, contradicting (VI). This completes the proof of
Lemma 3.13.

THEOREM 3.14. Every constrained word equation is resolvable in .
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Proof. Let r €N and assume (*). We must show that every
constrained word equation with r free variables is resolvable. Let

& = {w,, wy; - - } in variables x,, - - -, x, with r free variables. We prove
by induction on length of w,w, in F(x,, - -, x,) that & is resolvable. Let
T = {i|x; is constrained}. Let (a;," -, a,) be a solution of & in D. If

w; and w, start with the same variable, then by our induction hypotheses,
Lemma 3.7 and Lemma 3.5, we are done. So let w,, w, start with
different variables. If some free variable does not appear in w,w, then
since (*) holds, we are done by Lemma 3.8. So assume that each free
variable occurs in wyw,. If either w; or w, starts with a free variable,
then we are done by Lemma 3.13. So assume that both w, and w, start
with constrained variables. Let Wi =X, X, and w, =
X, -x,. Choose p, ¢ maximal so that 1=p=m, 1=q =t and for
1=a=p 1=B=q we have i,,jy € T. Clearly,

(8) a,: - a, = a“ te a]',.
By symmetry assume that [(a;,---a,)=1[(a, - a;). Choose a minimal
suchthat l1=a =q and l(a,---a,)=(a, - -a,). Thena, =a)a’, for

some a € ¥, aj,€ L' such that

a,-a,a, if a>1
) a, - a, =
a) if a=1.

First consider the case af,=1. Then aj,=a, and a,---a,=
a,---a, Nowby(8),p=m if and only if &« =t and in such a case we
are done by Lemma 3.6. Soletp <m, a <t Butnow we are done by
Lemma 3.4 and our induction hypothesis on [(w,w,) in F(x,," -, x,).
So we are left with the case aj,#1. Then p<m and x,,, is

free. Also by (8), (9) we have
(10) a,. o =a .

Now as in Lemma 3.11 introduce new variables x/,, x,. Corresponding
to (10),let wi=x,,,---and w,=x7_---. Now an application of Lemma
3.11 followed by Lemma 3.4 (because of (9)) yields a constrained word
equation B ={wi, wj,---} with same free variables as & (though the
total number of variables is n + 1) such that (10) represents a solution of
A and the resolvability of B implies the resolvability of (a,, - - -, a,). Also
in this construction, x,,,, is free and x, is constrained. So by Lemma 3.13,
A is resolvable. So (ay, - -, a,) is resolvable and our proof of Theorem
3.14 is complete.
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COROLLARY 3.15. Every word equation is resolvable in .

Let {w,, w,} be a word equation in variables x,,---,x,. A solution
(a,*+,a,) in D of {w,,w,} is trivial if either there exist u €D,
ki, -+, k, € Z" such that a, =u*, i =1,--- n or if there exist a € &,
ay, -, a, ER" such that a* =aq;, i =1,---,n. Then Theorem 1.9 and

Corollary 3.15 imply the following.

THEOREM 3.16. Let {w,, w,} be a word equation in variables
X1, *, X, having only trivial solutions is any free semigroup. Then
{wi, wo} has only trivial solutions in D.

4. An approximation theorem for ©. For the definition
of a pseudo-metric, see for example [5; p. 129]. Consider the following
properties for a function ¢: D x D —R* U{0}.

(a) ¢ is a pseudo-metric on D.

(b) For any u;, u, €D, e €R", there exists § € R* such that for all
v, 0ED, e(u,v,)< 8, i =1,2, implies ¢ (U u,, v,v,) <e.

(c) Foranyu€ %, ¢(u,u’)—0as 6 —1.

If the above hold, then it is easy to see that for all u;, -, u, €D,
€ €ER", there exists § € R* such that for any v, -+, 0, €D, ¢ (u, v;) < §,
i=1,---,m implies ¢ (U;*** Uy, 0, V,) <E€.

Using Corollary 3.15, Theorems 1.1 and 1.8, we obtain the following

THEOREM 4.1. Let ¢ satisfy (a), (b) and (c) above. Let
(a, -+, a,) be a solution in D of a word equation {w,, w,}. Then for
every € €ER’, there exists a strongly resolvable solution (b,,---,b,) of
{wy, wo} in D such that ¢(a, b)<e i=1,--- n

DEFINITION. Let p be the pseudo-metric on compact subsets of R’
given by p(A,B)=m(A\B UB\A) where m denotes the Lebesgue
measure. Let A be pseudo-metric on © given by A((A, a), (B,B))=
P(A’B)+,a —Bl

THEOREM 4.2. Let (ay,--+,a,) be a solution in ® of a word
equation {w,, w,}. Then for every € € R, there exists a strongly resolvable
solution (by, - -+, b,) of {wy, wo} in © such that A (a;, b;)<ei=1,--- n.

Proof. By Theorem 4.1 we must show that A satisfies (a), (b) and
(c). First note that p satisfies the following.

1. p(AUB,CUD)=p(A,C)+p(B,D).

2. p(aA,A)—>0 as a—1 and A is fixed.
Now let (A}, a;), (A,, @), (By, B), (B2, B2) ED. Then (A}, 1) (A, a;) =
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(Al UaiA,, aIaZ) and (Bb Bl)(B27 Bz) = (Bl U B:B,, BIBZ)' So
p(AiUa,A;, B;UBIB,)=p(Ay, By) + p(anAy, B1A) + p(BiA,, BiB)).

/ -~

Let (A, a;), (A a,) be fixed and suppose A((Aj, ay), (B, B1)—0,
A(A, @), (B,, B:))—0. Then p(A;,B)—0, Bi—>a;, Bi—a,
p(A,;, By)—0. So p(A;Ua,A,, B, UB,B,)—0 and B,8,— a;a,. Thus
A((A,, a)) (A, @), (B, B1)(B2, B2))— 0. This establishes (b). Next let
K=KcU={x|x€R}|x|[=1}, aBER', 1<a<pB. Then
SKONDO(K@)C I, So for a fixed, A(K®,K®)—0 as 8 — a. This
establishes (c). (a) is of course trivial and the theorem is proved.

5. Word equations of paths. In this section let n € Z* be
fixed and let 92, denote the groupoid of paths in R" mentioned in the
problem at the end of [4]. Also let *, =, fi, 5 have the same meaning as
in [4). Let &%, denote the set of lines in 9,. Let £%={f*|f € ¥} and
let 2¥={f*|f€ P} So D% is 4 semigroup. We start off with an
analogue of Theorem 2.9.

THEOREM 5.1. Let T be a nonempty finite set. Fori €T, j€ Z",
choose f,, € D, such that f..|if,, for all i€ T, j€ Z* and I(f,;)—0 as
j— o forany fixedi € T. Letf€ %,. Assume that for each B € [0,1],
JEZ", there exist a,y €[0,1], i € T such that « <y, B €|[a,y] and
fion=fi;. Then some f,, € £\.

Proof. The second part of the proof of [4; Theorem 2.1] shows that
there exist w,v €[0,1], w <v such that f,, €%, Choose B E
(n, v). For any j € Z*, there exist @,y €[0,1], i € T such that a <,
B €la, y] and fi.,;=f,. We can choose j big enough (and hence I(f;;)
small enough) so that we must have a« > u, y <v. Thenf, =f., € £.

For a € %, a ER", let a® denote the line in £* in the same
direction as a but with length al(a). Let u,v € 1. Then define
u ~ v if either there exist a € 9%, i,j € Z* such that u = a', v = a’ or if
u,v € £* and v = u* for some « € R*. Because of Theorem 5.1, we
can repeat §3 (including all the definitions) with ® replaced by 9% and £
replaced by £7. We then obtain the following theorem which answers
affirmatively a problem posed at the end of [4].

THEOREM 5.2. Every word equation is resolvable in D 7.
Using Theorem 1.9, we now obtain,

THEOREM 5.3. Let {w,, w,} be a word equation which has only
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trivial solutions in any free semigroup. Then {w,, w,} has only trivial
solutions in 97}.

For continuous f: [0,1]—>R", let ||f]| = sup.cpy [l f(?)]-

DerINITION.  For u,v € 9%, let n(u,v)=inf{|f—g||f,.§ € D\ f=
u,g =v}

Then 1 can be shown to have the following properties:

(a) m is a pseudo-metric on 9P7.

(b) For any u,u, € 9%, e ER’, there exists § € R* such that for
all v, 0, € D%, n(u,v,)<8, i =1,2 implies 7 (uuy, v,0;)<E€.

(c) For any u € £%, n(u,u’)—0as § > 1.

As in §4, Theorems 1.1, 1.8 and 5.2 easily imply the following.

THEOREM 5.4. Let (a,,--',a,) be a solution in 9% of a word
equation {w,, w,}. Then for every € € R", there exists a strongly resolvable
solution (by, - -+, b,) of {w,, w,} in D% such thatn(a, b)<ei=1,---, m.

Note added in the proof. Problem 1.10 has-recently been solved by
the author.
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