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POSITIVE SOLUTIONS OF ELLIPTIC EQUATIONS

WILLIAM F. MOSS AND JOHN PIEPENBRINK

1. Introduction. Let Ω be a domain (open, connected, possi-
bly unbounded) in Rn and, as usual, let x = (xι , , xn) denote a point in
Rn with norm | x | = {x\ + 4- JC*)1/2. Using the summation convention,
let L denote the partial differential operator defined by

(1.1) Lu= - aij{x)uXιXI + k(x)uXι + c(x)u.

The coefficients of L are assumed to be real functions defined on Ω and
aif = aμ.

If the dij are continuously differentiate in Ω, L may be written in
the form

(1.2) Lu = - (αiy(jcK)x, + 6,(*K + Φ ) u ,

where b> = k+Σΐ=ιdaij/dxj. In this form L is symmetric (formally
self-adjoint) if 5,(JC) = 0, i = 1 , , n.

In a recent paper [1] Allegretto established the following
result. Here [r] denotes the integer part of the number r.

THEOREM 1.1. Suppose that
(A) L is symmetric and the ai} are in class Cm + 1(Ω) while c is in

Cm(Ω), where

m = 3[[3+n/2]/2J,

(B) L is elliptic in Ω, that is, (αiy (JC )) is positive definite for each x E Ω,
(C) ί/iere is α number R > 0 swcΛ ί/mί Ω Π {| JC | > i? } is connected,

and
(D) /or eυery bounded domain D with D C Ω Π {|x | > R}

inf

(1.3) φ E

Then there exists a positive solution of Lu = 0 in ΩΓi{\x\>R}.

If L is viewed as an operator on L2(D) with domain Co(D), then
hypothesis (D) states that the smallest generalized eigenvalue of L is
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greater than zero, or equivalently, that the smallest eigenvalue of the
Friedrichs extension of L is greater than zero. If the left hand side of
(1.3) equals zero, D is called a nodal domain for L by I. Glazman, W.
Allegretto and others.

Theorem 1.1 is interesting for two reasons. First, as Allegretto
points out, it represents an extension of a property that is clearly valid for
the corresponding ordinary differential operator, and at the same time
clarifies the oscillation theory of symmetric, second order, elliptic
operators. Second, it answers a question posed by one of the authors in
[11]. There it was shown that a result such as Theorem 1.1 would
imply that the finiteness of the number of negative eigenvalues of a
self-adjoint realization of L in L2(Ω), here Ω = R", is invariant under
perturbation of the coefficients by smooth functions with compact
support. Diagrammatically we have the implications finite negative
spectrum Φ hypothesis (D) holds for R sufficiently large, and
Lu = 0 has a positive solution in {| x \ > R} Φ finite negative spectrum.
The first is found in Glazman's book [5], while the second is proved in
[11]. Theorem 1.1 supplies the link that makes for a closed chain of
implications. It should be mentioned that the second implication was
employed in [12] to unify and extend some older criteria on the potential
c(x) that ensured finite negative spectrum for L = - Δ + c{x).

The following result extends Theorem 1.1 to the general nonsym-
metric case and at the same time weakens the smoothness required on
the coefficients of L.

THEOREM 1.2. Let L be defined by (1.1) and let the coefficients of L
be defined in a domain G C R". Assume that

(a) L is elliptic in G,
(b) the coefficients of L are locally Holder continuous in G,
(c) for every bounded domain D with D C G the only solution in class

C2(D)nC°(D)toLu =0inD,u =0onD (the boundary of D) is u = 0 .
Then there is a positive solution v of the equation Lv = 0 defined on G.

Allegretto's proof of Theorem 1.1 leaned heavily on the theory of
symmetric quadratic forms in Hubert space. As such it required that L
be symmetric. Our proof of Theorem 1.2 seems simpler and more
direct. The method is a fairly straight forward application of Serrin's
version of the Harnack inequality for positive solutions of second order,
elliptic equations (see [13]). We also note that the smoothness required
in Theorem 1.2 is mild and consonant with modern existence theories for
elliptic boundary value problems. Thus it represents a distinct sharpen-
ing of Theorem 1.1 even in the symmetric case.
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In Theorem 1.1 °° is the only possible point at which L may
degenerate or the coefficients of L become unbounded. In Theorem 1.2
any boundary point may have this property. There is no significant
difference here. Assuming L is symmetric and that (a) and (b) hold, (c)
is equivalent to (D) with ίlΠ{\x\>R} replaced by G. This will be
discussed further in §3. Hypothesis (D) is more easily used in
the Hubert space context, while (c) is best adapted for our proof of
Theorem 1.2.

2 Pre l iminary l e m m a s . The proof of Theorem 1.2 uses the
maximum principle, the Harnack inequality, and the Schauder existence
theory. The first two of these are stated in the following lemmas. For
the Schauder existence theory the reader is referred to Miranda [10]. In
Lemmas 2.1 and 2.2 L is given by (1.1) and the coefficients of L are
defined on a domain D in Rn.

LEMMA 2.1. Assume that
(i) there is a positive constant μ such that ai](x)ξiξ] ^ μ, x E D,

\ξ\=h
(ii) flβ and bh i = 1 , , n, are bounded in D and c ^ 0 in D. If

u E C\D\ Lu^O in D, and there exists x0ED such that iniGu = u(x0) ̂
0, then u = constant.

COROLLARY. IfuE C2(G), Lu^0inG,u^0 in G and w ̂  0, then
u >0 in G.

With u(jc0) ^ 0 replaced by U(JC0) < 0, this is a well known result due
to E. Hopf [6]. In case W(JCO) = O, the boundary point principle of G.
Giraud [4] can be applied (see also [10], pp. 6-7 and [2], pp. 150-152).

The following extension of the classical Harnack inequality for
positive harmonic functions is due to Serrin [13].

LEMMA 2.2. Suppose there exist positive constants μ and M and a
continuous, nondecreasing function φ with

i Φ(s)
ds

S

such that for x,y E D
(i) ^ ^ (
(ii) (Σf=1^
(iii) 0 l φ
(iv) |αi/(x)
Then for any bounded domain Do D0CD, there is a constant

K = K(μ, M, φ, D0,D) so that for each positive solution u ofLu = 0 in D,
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(2.1) K*u(y)^u(x)^Ku(y), x,yED0.

It is interesting to note that Serrin's proof uses only the maximum
principle and a suitable parametrix, and that Serrin showed in case n-2
that hypothesis (iy) is unnecessary. We shall not be concerned with this
refinement. What will be important here is the following.

COROLLARY. Replace (iii) by
(iii)' There is a υ in C\D) so that v>0 and Lv^O on D.
Then (2.1) still holds, where K may depend on v as well as the other

parameters.

For the proof set u = u/v and apply Serrin's theorem with L and u
replaced by L and u. L is defined by

Lu = - axμXxXi + (bi - la^Jv)^ + (Lv/v)u.

Since Lu = 0, it follows that Lw = 0 since Lu = Lu/v. Thus there is a
constant K such that

From the definition of u we can easily see that (2.1) holds if we set

max v

mm v
Do

We now apply the Schauder existence theory to prove

LEMMA 2.3. Suppose the hypotheses of Theorem 2.1 hold. Then
for every bounded domain F with F C G and F sufficiently smooth, there is
a solution v E C\F) to Lu = 0 in F which is positive on F.

Proof. According to hypothesis (b) the coefficients of L are Holder
continuous in_F. Let a = a(F) denote the minimum of the Holder
exponents in F of the coefficients of L. We assume that F is sufficiently
smooth so that F E C2+a. Then the Schauder existence theory shows
that there exists a function

vEC2+a(F)

(2.2) Lv = 0 in F

v = 1 on JF.

More specifically, a result of Boboc and Mustata [3] showsjhat there
is a positive constant γ = y(F) such that if u E C2(F)ΠC°(F% then
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This estimate can be used in conjunction with the classical Schauder
estimate up to the boundary to prove the existence of solutions to
Dirichlet problems such as (2.2) (see, for example, [10], p. 166, 36, II).

Now we claim that v is positive. First, v ^ 0 on F for otherwise let
O denote some connected component of {JC E F : V(X) < 0}. Then v < 0
in O, Lv = 0 in O, v = 0 on O, a contradiction to (c). But since v ^ 0
on F,

(2.3) - aijVXιXl + btVXi + c+v = c~v g 0 on F,

where c+(x) = max{c(jt),0} and C"(JC) = C + (JC)- C(JC), SO that the corol-
lary to Lemma 2.1 implies that υ > 0 on F.

3. Proa/ 0/ Theorem 2.2. There exists a sequence of bounded
domains in Rn with analytic boundaries such that Gk C Gk+1 C Gk+1 C G,
fc = 1,2, , and G = Π x

k=ιGk (see, for example [7]Lρρ. 317-319). Let
ak denote the minimum of the Holder exponents in Gk of the coefficients
of L. Furthermore, let uk denote the positive solution to

ukEC2+°'(Gk)

Luk = 0 in Gk

uk = 1 on Gk

which exists according to Lemma 2.3.

Now choose x0E Gλ and let vk = uk/uk(x0). Next, apply the corol-
l a r y t o L e m m a 2 . 2 w i t h D o = Gk,D = Gk+U v = υk+ι a n d u = vhl^
k +1. Then there are positive constants mk and Mk so that

mk Su/(jc)gMk, x E Gk, /gfc + 1.

According to the Schauder estimates plus_Ascoli's theorem, {vι}ι^k+ί has a
subsequence which converges in C2+otk(Gk). By a diagonalization pro-
cess a subsequence of {ϋk}ksi is obtained which converges uniformly on
every compact subset of G to a function v E C2+°k(Gk), k = 1,2 , , with
Lw=0 in G. Also mk^v^Mk on Gk and υ(jco)=l. Thus the
desired positive solution exists.

In §1 we stated that assuming L is symmetric and (a) and (b) hold, (c)
is equivalent to (D) with Ω Π {| x \ > R} replaced by G. To see that (c)
implies (D) let D be a domain as in (D) and let F be a bounded, smooth
domain with D C F C F C G. By Lemma 2.3 there is a function v E
C\F\ υ > 0 on F and Lv = 0 in F Let φ E Co(D) and set φ =
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φ/υ. Then φ E Cl(D). Applying Green's theorem several times we
obtain

JD
ί

JD

Hence

where

mint;2

2

and C is the constant in Friedrichs' inequality which depends only on D
and not on φ (see, for example, [9], p. 290).

To see that (D) => (c), again let D and F be domains as
above. Consider L as an operator on L2(F) with domain Co(F), and
choose a nonnegative function /f̂ O in Co(F). Then the equation
Lu = f has a unique generalized solution v in Hι

0(F). Following
Allegretto and others, it can be shown that / S O implies v^O a.e. in
F. Since for smooth F,

{u E C2 + α(F): u = 0 on F} C /^(F) (α may depend on F),

it follows that the Dirichlet problem

wEC 2 + α (F)

(3.1) Lu = f in F

M = 0 on F

has at most one solution. But this implies existence according to the
general Schauder theory (see [10], p. 166, 36, II), so that v can be
identified with the solution to (3.1). Since v satisfies (2.3), the corollary
to Lemma 2.1 implies that v>0 on F. But then the generalized
maximum principle (see [10], p. 163, 35, IX) implies that the problem
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Lu =0 in D, u = 0 on D has at most one solution in class C2(D)Π
C\D).

4. Conclusion. An example in Allegretto's paper ([1], p. 324)
has led us to formulate the following corollary of Theorem 1.2.

COROLLARY. Consider the operator L defined by

- L =

where p is nonnegative and continuous on Rn. If p^O, then L has a
nodal domain in R2.

Proof We can assume without loss of generality that p is locally
Holder continuous. Otherwise, choose such a p with 0 S p g p and
pΦ 0. Then by comparison of quadratic forms, the existence of a nodal
domain for - Δ - p implies the same for L.

Now by Theorem 1.2 if no nodal domain existed, we could find a
positive v G C2(R2) with Lv = 0. But then Δϋ- = -pυ ^ 0 and v > 0
would imply by Liouville's theorem that υ = constant. But then p = 0
would necessarily follow.

There is a direct computational proof of this corollary. By transla-
tion of coordinates, we may assume that pQc) g p0 for | x \ ^ r0, where p0

and r0 are positive constants. It suffices to produce a nodal domain for
the equation

(4.1) Δw+p(r)u=0, r = |x | ,

where p (r) is continuous and 0 g p (| JC |) ^ p (x) for all x and p (r) = p0 for
0 ^ r ^ r 0 . If φ(r) is the solution to the initial value problem

(4.2) Φ"(r) + ±φ'(r) + p(r)φ(r) = 0, r > 0

φ(0)=l, Φ'(0) = 0,

then υ ( x ) = φ ( | x | ) i s a regular solution of (4.1). We prove that there is
an i? >0 such that φ(R) = 0. Thus υ(x) = φ(\x |) satisfies (4.1) and
{ | J C | < I ? } is a nodal domain for (4.1). There will then be a nodal
domain for L contained in {| x \ < R}.

Since r = 0 is a regular singular point for (4.2), we can compute the
series
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which is valid at least for 0 S r < r0. Clearly, we can find an ru 0 < rλ < r0

so that φf(r1)<0. Now if φ(r)>0 for all r>0, φ would satisfy the
inequality

Integrating, we have

Thus

0<φ(r)^φ(rλ)+ a log^, r^

A contradiction arises for sufficiently large r.
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