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PROJECTIVE LATTICES
RALPH FREESE AND J. B. NATION

This paper gives necessary and sufficient conditions for a
lattice to be projective. The conditions are the Whitman con-
dition, and a condition of Jonsson, and two new conditions
explained below.

We begin with several definitions. First, a lattice L is projective if
for any lattices M, N and any lattice homomorphism 4 of L into N and f
of M onto N, there is a homomorphism g of L into M such that
f(g(a))=h(a) for all a € L. This is equivalent to the condition that
there is a homomorphism f of a free lattice FL(X) onto L and a
homomorphism g of L into FL(X) such that f(g(a))=a for all
a€L. The map fog is a retraction, i.e., it is an endomorphism of
FL (X) which is pointwise-fixed on its image. The image of a retraction
is called a retract. 'Thus the class of projective lattices coincides with the
class of retracts of free lattices. Since lattice epimorphisms, in the
categorical sense, are precisely onto homomorphisms, [11, p. 150-151]
the above definition of projective lattices agrees with the categorical one.

If a is an element of a lattice L and U is a finite, nonempty subset of
L such that a = V U, then U is a cover of a. A cover U of a is trivial if
a=uforsomeu € U. If U and V are finite nonempty subsets of L we
write U < V if foreach u € U thereisav € V withu =v. A cover U
of a is called a minimal cover of a if whenever V is a cover of a such that
V< U, then UC V. Welet (W) denote the Whitman condition: for all
a,b,c,d anb=cvd implies eitheranb=c,arb=d, a=cvd, or
b=cvd. Letfbeamapfrom K onto L; then amap g from L into K
is called a transversal of f if f(g(a))=a foralla € L. L is a bounded
homomorphic image of a free lattice if there is a homomorphism f
mapping a free lattice, FL (X), onto L such that {w € FL(X): f(w)= a}
has a least and greatest element for each a € L. This concept originated
with R. McKenzie and a theorem of Jonsson, Kostinsky, and McKenzie
[16, 17] states that a finitely generated lattice is projective if and only if it
is a bounded homomorphic image of a free lattice and satisfies (W).

B. Jonsson, in his studies of sublattices of free lattices, defined D(L)
to be the set of join-prime elements of L (a € L is join-prime ifa =b v ¢
implies a = b ora =c¢). D,.(L)is the set of elements a of L such that
if U is a nontrivial cover of a then there isa V C D, (L) such that V is a
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cover of a and V< U. The set Di(L) is defined dually. Jonsson’s
condition is U,.,D,(L)=L = U,.,Di(L). Although McKenzie’s no-
tion of a bounded homomorphic image of a free lattice and Jonsson’s
condition are quite different in appearance, they are actually the same for
finitely generated lattices. This fact was hinted at by McKenzie in his
limit tables [17], proved for finite lattices by H. S. Gaskill and C. R. Platt
[10], and proved for finitely generated lattices by B. Jénsson and J. B.
Nation [15]. McKenzie’s condition is simpler and more pictorial;
Jonsson’s is internally defined and one can effectively, and even effi-
ciently, decide if a finite lattice satisfies it.

McKenzie’s and Jonsson’s conditions are not the same for lattices in
general. Indeed, w ={0,1,2,---} under its natural ordering has
Dyw) = w, but it is not a bounded homomorphic image of a free
lattice. We shall show that every projective lattice satisfies Jonsson’s
condition.

The length of a lattice term (or word) ¢ is the number of times the
symbols v and A occur in t. P. Whitman showed that corresponding to
each element a of a free lattice FL(X), there is a term ¢t of minimal
length representing a, and that ¢ is unique up to commutivity and
associativity. Furthermore, he showed that the term ¢t was closely
connected to the arithmetic of FL (X), by showing that ift =¢,v--- v,
where each ¢, isnot of the form r v s,anda = V U, then{a,, -+, a,} < U,
where a; is the element of FL(X) corresponding to #. It has become
apparent that in the study of projective lattices and sublattices of free
lattices we need to understand not only the equations a = vV U but also
a =V U, that is, the covers of a. In this regard we generalize Whit-
man’s result by showing that for each a € FL(X) there is a finite set,
S(a), of nontrivial, minimal covers of a, such that if U is a nontrivial
cover of a, then thereisa V € S(a) with V< U. S(a) may be formed
as follows. Let ¢ be the term of minimal length corresponding to a, and
let T be the set of elements of FL (X) corresponding to the subterms of
t. Then S(a) is the set of nontrivial, minimal covers of a whose
elements lie in 7. This condition of having a finite set of minimal covers
of a is preserved under retracts, and hence, holds in projective
lattices. This condition and its dual, together with Jénsson’s condition
and (W), characterize countable projective lattices.

In the uncountable case we need a fourth condition. We require
that some epimorphism of a free lattice onto L have an order-preserving
transversal. Any countable lattice satisfies this condition [5], and any
uncountable chain fails it, but satisfies the three other conditions
above. Indeed, Galvin and Jénsson have shown that FL (X) contains no
uncountable chains [9]. This fourth condition is equivalent to the
following more satisfactory condition: for each a € L there are two finite
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subsets A(a)C{c EL:c=a} and B(a)C{c €L: ¢ = a} such that if
a = b, then A(a)N B(b) #J.
The main result of this paper is the following theorem.

THEOREM 1. A lattice is projective if and only if it satisfies each of
the following conditions.

1) (W)

) Uk<ka(L)= L= Uk<a>Dllc(L)

(3) foreach a € L, there is a finite set S(a) of nontrivial covers of a,
such that, if U is any nontrivial cover of a, then V < U for some V € S(a)

(3") the dual of (3)

(4) for each a € L, there are two finite subsets, A(a)C{cEL:c=
a}andB(a)C{c €EL: c = a} suchthat,ifa = b,thenA(a)N B(b)#J.

COROLLARY. A countable lattice is projective if and only if it satisfies
1), 2), (3), and (3').

The first section of this paper shows that (1)-(4) hold in projective
lattice. ‘This is the more difficult part of the proof. The second section
gives the proof that (1)—(4) are sufficient. The third section gives some
examples showing that the above conditions are independent. Other
properties of projective lattices are discussed and shown to be insufficient
to characterize projective lattices. For example, condition (4) of
Theorem 1 cannot be replaced with “L has no uncountable
chains.” Indeed, it is shown that the ordinal sum of two uncountable
free lattices is not projective (although it is a sublattice of a free lattice).

The final section discusses projective distributive lattices and projec-
tive Boolean algebras. A slight generalization of the characterization of
projective distributive lattices of Balbes and Horn [2,4] is given.

The authors would like to thank Professor George Gritzer for some
suggestions which shortened the proofs of Lemma 4 and Theorem 2.

1. Necessity. In this section we show that (1)-(4) hold in
projective lattices. We begin with two lemmas about free lattices, the
first of which was proved in [15]. Let § be the join-closure operator;
that is, if A is a subset of a lattice, then §(A) is the set of all finite,
nonempty joins of elements of A. P is defined dually.

Lemma 1. D, (FL(X))= (PS)P(X).
LEMMA 2. FL(X) satisfies condition (3).

Proof. If a € D|(FL(X)), then a is join-prime and thus has no
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nontrivial covers. In this case we set S(a)=. Now suppose
a € Di(FL(X)), k>0. By Lemma 1, there are finite subsets V;C
Di(FL(X)), i=1,---,r, such that a=A_,(VV) (r=1 is
allowed). Let T ={b € FL(X): for some i €{1,---,r}, and some v €
V, and some U ES(v),be U}U U/, V. It follows from an easy
induction on k that T is finite. Let S(a) be the set of all subsets of T
which are nontrivial covers of a. Since T is finite, S(a) is
finite. Suppose U is a nontrivial cover of a. Then a = Ajl_,(V V)=
v U. From (W) and the fact that U is a nontrivial cover of a, we
conclude that for some i and all v € V, v =V U. If U is a nontrivial
cover of v then, since v € D,_,(FL(X)), there is, by induction on k,
U,eS(v) with U, <U. If v=u for some u € U, we set U, =
{v}. Let Uy= U,ev, U,. Clearly U, < U. Also, since V U, Z v, for each
veEV, vUy=VV,2a. Thus UiCT, U,is a cover of a, and, since
U,< U, U, is a nontrivial cover of a. Hence U, € S(a), proving the
lemma.

An easy induction shows that the set T constructed above is
contained in D,_,(FL(X)). Thus if U € S(a), a € D,(FL(X)), then
U C D_(FL(X)). This fact will be used in Lemma 4. Also note that
we can delete the nonminimal members of S(a) and the resulting set still
satisfies (3).

LemmA 3. If L is a projective lattice, then L satisfies (3).

Proof. Let f: FL(X)— L be an epimorphism, and g: L — FL(X)
be a homomorphism such that f(g(a))=a for all a € L. For each
a€L,let S(a)={U CL: U is a nontrivial cover of a and U C f(V) for
some V € S(g(a))}. Let U be an arbitrary nontrivial cover of a. Then
g(U) is a nontrivial cover of g(a). Hence there is a V € S(g(a)) with
V <g(U). Consequently, f(V) covers a and f(V)<f(g(U))=
U. Since U is a nontrivial cover of a, the above implies that f(V) is a
nontrivial cover of a. Hence f(V)€ S(a), proving the lemma.

Lemma 4. If L is projective, then U, ,D,(L)= L.

Proof. Let f: FL(X)— L be an epimorphism, and g: L — FL(X)
be a homomorphism such that f(g(a)) = a, for all a € L. By induction
on k, we shall show that for all b € F = FL(X)

(*) beD,(F) and gf(b)=b imply f(b)€ D.(L).

The lemma follows from this, since if a € L, then we may choose
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b=g(a). Then g(f(b))=g(f(g(a))=g(a)=>b. Hence a € D,(L),
where k is such that g(a) € D, (F).

Suppose b € D, (F) and g(f(b))=b. Let U be a cover of
f(b). Then g(U) is a cover of g(f(b)). Since g(f(b))= b, g(U) is a
cover of b. If g(u)=b for some u€ U, then u=f(g(u)=
f(b). Hence, if U is a nontrivial cover of f(b), then g(U) is a nontrivial
cover of b. In particular, if b € Di(F) then f(b) &€ D,(L). Now sup-
pose that U is a nontrivial cover of f(b). It follows from Lemma 3 that
there is a minimal, nontrivial cover U’ of f(b) with U’ < U. Then g(U")
is a nontrivial cover of b, and by Lemma 2 there is a U, € S(b) with
U,<g(U’). Now f(Uy) is a cover of f(b) and f(U,)<f(g(U"))=
U'. Since U’ is minimal U'Cf(U,). Thus U,<g(U")C
gf(Uy). Hence U, < g(f(U,)).

Let Uy={uy,---,u}. Since U,<g(f(U,)), there is a function o
from {1, - -, r} into itself such that u; = g(f(u,(;))), j =1,---,r. Applying
f, we obtain f(u;) = f(g(f(4,(;))) = f(u.y). Consider the sequence 1=
o’(1), o(1), *(1), o’(1),---. Forsome s <t, o*(1)=o'(1) and 1, o (1),
o*(1),--+,0°(1) are distinct. Then

o) = f(Uero0) = -+ = f(Uorry) = f(Uor)-

Hence all of these inequalities must be equalities. Thus

Uy = 8 (f (o)) = 8 (f (o))
and similarly,
Uiy = 8 (F(Uoror))s 5 U1y = 8 (F(Uor11))
and moreover
fu) = fuop) = furw) = - - - = furg).

Hence f(Uy—{u1, Uoqy, * * *, Us=1qy}) still covers f(b). These arguments
show that if we let Uy ={u € U,: u = g(f(u))}, then f(Uy) is a cover of
f(b). By the remark following Lemma 2, U, C D,_,(F). By induction
we have f(u)€ D,_(L) for each u € U;. Since f(U,)< U, f(Up)<
U. Hence f(b) € D,(L), completing the proof.

These lemmas show that a retract of a lattice satisfying (2) and (3)
again satisfies (2) and (3). It is interesting that there are lattices which
satisfy (2) which have retracts that do not satisfy (2).

LemMA 5. FL(X) satisfies (4).
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Proof. 1f a € FL(X) let var(a)C X be those variables occurring in
the cannonical (shortest) expression for a. If a € D, (FL(X))—
D,-(FL(X)) and b € D(FL(X))— D-,(FL(X)) set

A(a)=((PS)P(vara))N1/a
B(b)= ((SP)'S(varb))N b/0

where in general 1/a is the set of all elements greater than or equal to a,
even if the lattice does not have a 1; a/0 is defined dually.

We show by induction on the pair (k, /) that if a = b in FL(X) then
A(@)NB((b)#J. We leave the <case k=1=0 to the
reader. Suppose k =0 and / >0. Then a € D(FL (X)) in join-prime
and b=V, AU, U CD|(FL(X)), by the dual of Lemma 1. Thus
a =AU, for some i. Hence a =u for all u € U. However, U, C

-1(FL(X)). Hence by induction there is a ¢, € A(a) N B(u). Since
¢, Zza for each u€ U, ¢c=Ac,=Za Since A(a) is meet-closed,
c € A(a). Since var(u)Cvar(b), B(u)=(SP)"'S(varu)C
(SP)"'S(varb). It follows that ¢ = A ¢, is in B(b).

Now suppose k >0, [ >0. Then

>3

(AV)=

1 i

< 3

a:

1

(AU)=b.

By (W) either there is an i such that for all v € V,, v = b, or the dual
situation holds. In the former case induction yields that there is a
¢, EA()NB(). Let c=V(c,:v€EV,). Then c€ A(a)N B(b).
The proof of the lemma is completed by duality.

THEOREM 2. Condition (4) of Theorem 1 holds in a lattice L if and

only if '
(*) there is a homomorphism f from a free lattice F onto L and an

order preserving map g: L — F such that f(g(a))= a for all a € L.

Proof. We leave it for the reader to show that if (*) holds for some
homomorphism of a free lattice onto L, it holds for all such
homomorphisms. Thus in proving the theorem we shall take X =
{x,:a€ L} and f: FL(X)— L to be the extension of f(x,)= a.

Suppose L satisfies (*). For a €L set A(a)=f(A(g(a))) and
B(a)=f(B(g(a))). f a=b in L, then g(a)=g(b). Hence
A(g(a))NB(g(b))#J. Thus A(a)NB(b)#J.

Now suppose that L satisfies (4). We arrange L into a well-
ordered, doubly indexed sequence as follows. Choose apw€ L. Let ag,
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Ao, "', on  be  A(aw)UB(aw)U{an} in some order. Let
Aonits " Aonsm D€ A(ao) UB(ao)—{aw, " ", ao.}. Continuing in this
way we obtain a countable or finite sequence g, o, Ao, . If this
exhausts L, we stop. Otherwise, choose a,, € L —{aw, ao;,"**}. Now
repeat the above process with a,, except, of course, omit any element
which has occurred previously. Eventually, we obtain L =
(ay: @ <y,i<u,) for some ordinals y and u, = w. This sequence has
the property that if b € A(a) U B(a), then either b comes before a in
the sequence, or, at worse, only finitely many places after a. Define
inductively g: L — FL(X) by

8(au) = {Xe. A N{g(a0j): ] <i, a0 > au}
AN{g(ag): B <a,j < ps a5 € A(au)}}
VA{g(ay):j <i, Gy < au}v
V{g(ag): B <a,j <pp a5 € B(a.)}.

(Empty joins or meets are simply omitted.) Straightforward inductions
show that g is a transversal of f and that g is order-preserving.

Finally, note that every countable lattice satisfies (4) (cf. [5]). If
L ={a, a,,- - -} thenset A(a,)={a;: i =n and a; = a,} and define B(a,)
dually.

2. Sufficiency. The proof of the sufficiency is essentially the
same as [15]. We sketch the details here. Let f be a homomorphism of
a free lattice onto a lattice L which satisfies (1)-(4). By Theorem 2, f
has an order-preserving transversal g. Define g, =g and

gea(a)=g(a)n A{V g (U): U € S(a)}

By an easy induction, if a € D((L), then gi(a)=g.(a) for all m =
k. Hence the sequence {g¢(a), g.(a), -} is eventually constant. Let
g-(a) denote this final value. Since g is order-preserving, each g, and
g-isalso. Furthermore, g_, preserves joins. To see this let a and b be
incomparable elements of L and choose k large enough so that g, (a) =
g-(a), g(b)=g-(b), and gi(avb)=g_(avb). Since{a, b} is a nontri-
vial cover of a v b, there is a U,€ S(a v b) with U,<{a,b}. Thus
V g (Uy)=gc(a)v g (b), from the monotonicity of g,. Examining the
definition of gi..(a v b) we see that g (avb)=g.(avb)=Vg(Uy)=
g (a)vg(b)=g-(a)vg-(b). Thusfrom the monotonicity of g_, we see
that g_(avb)=g-(a)vg-(b).

Since L satisfies (W), every nontrivial cover of a A b is a nontrivial
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cover of a or of b. Hence for each U € S(a Ab) thereisa U'E€ S(a)U
S(b) with U’'< U. With the aid of this, the reader can show that if g
preserves meets then g_ does also.

The proof may now be completed as follows. Let g~ be the map
defined dually to g.. Let h =(g7)-. By the dual of the above remarks
g~ preserves meets, and hence h does also. The above remarks also
show that h preserves joins. Hence h is a homomorphism of L into
FL(X). It is easy to check that h is a transversal of f.

3. Examples and discussion. We first give some conditions
which hold in projective lattices and present some examples showing that
none of these new conditions can replace any of (1)-(4) in Theorem
1. The first condition is a weak form of relative pseudo-
complementation.

(5) for each a,b € L,a <b implies there is a unique c¢ such that
a =b ac and such that a = b rd implies d =c.

(6) for each a €L, there is a n(a) < w such that a = vV U implies
there isa U'C U, |U'|=n(a) with a=Vv U".

(7) foreach a € L, there is a unique antichain U such thata = V U
and a =V V implies U< V.

(8) L has no uncountable chains.

Condition (7) is, of course, Whitman’s canonical joins [18,
19]. Condition (6) and (8) hold in all sublattices of free lattices, as was
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shown by Jonsson [13]. Condition (7) is equivalent to the conjunction of
(6) and the dual of (5) (cf. [14]). A famous, unsettled conjecture of
Jonsson states that a finite lattice is a sublattice of a free lattice if and only
if it satisfies (W), (5), and the dual of (5). The infinite analogue of this
conjecture is false. The lattice L,, diagrammed in Figure 1, is finitely
generated and satisfies (1) and (3)~(8) and their duals, yet fails (2). In
particular, (2) cannot be replaced by (5) in Theorem 1. The details of
the construction of L, are given in [15].

The lattice L,, diagrammed in Figure 2, satisfies (1), (2), (4)—(8), and

Fig. 2 Fig. 3

their duals, but fails (3). Hence L, is not projective. It is, however, a
sublattice of a free lattice since it is a sublattice of L,, diagrammed in
Figure 3, which is projective by the corollary to Theorem 1. This shows
that (1) and (2) alone, are not sufficient to characterize countable
projective lattices, even though, by the theorem of Jonsson, Kostinsky,
and McKenzie, they do characterize finitely generated projective lattices.

Jonsson and Galvin proved (8) by defining a ~ b in FL (X) if there is
an automorphism o of FL(X), generated by a permutation of X, with
o(a)=b. Roughly speaking, a ~ b means a and b are the same word
but with the letters changed. They showed that this equivalence rela-
tion has only countably many classes, and each class is an antichain (no
two elements are comparable). Thus FL(X), and any sublattice of
FL(X), is a countable union of antichains. This implies (8). It is
actually stronger than (8): there is a partially ordered set with no
uncountable chains, which is not a countable union of antichains, [6] p.
5. We give some examples which show that neither (8) nor the stronger
condition mentioned above can replace (4) in Theorem 1.

For a partially ordered set P, let FL(P) denote the free lattice
generated by P, i.e., FL(P) is defined by the universal property that any
order-preserving map from P to a lattice L can be uniquely extended to a
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homomorphism of FL(P)to L.! A thorough study of these lattices was
carried out by R. A. Dean, who showed that they satisfy many of the
properties of free lattices. For, example, one can decide if a =b in
FL(P), by making the same reduction as Whitman’s procedure for
FL(X). This reduction leads to inequalities of the form p =gq, p,
q € P. The only difference is that in FL(X), x =y ifandonly if x = y;
whereas in FL(P), p = q if and only if this holds in P. In particular,
FL(P) satisfies (W), the elements of P are join- and meet-prime in
FL(P), and FL (P) has canonical joins and meets (condition (7) and its
dual). Using these facts it is not hard to modify the proof of Theorem 1
to prove the following result.

THEOREM 3. For any partially ordered set P, FL (P) satisfies (1), (2),
and (3).

LemMma 7. FL(P) satisfies (4) if and only if for each p € P there are
two finite sets A(p) C{q EP: q=p}and B(p) C{q € P: q = p} such that
if p=qin P, then A(p)NB(q) # .

Proof. Suppose FL (P) satisfies (4). For each a € FL(P) thereis a
finite subset P, of P such that a is in the sublattice generated by P,. Let
var(a) be such aset. Let A(a)and B(a) be the sets given by (4). For
pEP, let A'(p)={qEP:q=p and gqEvar(a) for some
a € A(p)). B'(p) is defined dually. Suppose p =q in P. Then, by
(4), thereisan a € A(p) N B(q). Using the fact that p is join-prime and
q is meet-prime, a routine induction on the complexity of a shows that
there is an r Evar(a) with p=r=gq. Hence A'(p)NB'(p) # <.

Conversely, suppose P satisfies the condition of the lemma. Let
X ={x,: p € P} and let f: FL(X)— FL(P) be the map extending the
map f(x,) = p. Exactly as in the proof of Theorem 2, we can arrange P
into a doubly indexed sequence, and, with the aid of this sequence, we
can find an order-preserving map g: P — FL(X) such that f(g(p)) = p,
forall p € P. By the universal property of FL (P), g can be extended to
a homomorphism from FL(P) into FL(X). Clearly this extended map
is a transversal of f. Thus by Theorem 2, FL (P) satisfies (4).

CoroLLARY. For any partially ordered set P, FL(P) is a projective
lattice if and only if for each p € P there are two finite subsets A(p)C
{gEP:q=p} and B(p)={q €E P: q = p} such that if p =q in P, then
A(p)NB(g)#D.

This notation and terminology differs from that of Dean [7] and Dilworth [8], where the term
“completely free lattice generated by P’ is used.
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Let P, be the partially ordered set consisting of two antichains C and
D such that for all c € C and d € D, ¢ = d, and D is finite. Let P, be
similar to P, except now C is uncountable and D is infinite. Let
P,= C UE, where C is an uncountable antichain and E is isomorphic to
the dualof w,and c = e forallc € C ande € E. Let P;be P,U{r}such
thatforc€ Candd € D,c =r =d. Let P, be the partially ordered set
consisting of the atoms and coatoms of the Boolean algebra 2. Of
course, FL (P,) is the ordinal sum of two free lattices, one of them finitely
generated. FL(P,) is the ordinal sum of two infinitely generated free
lattices, one of them uncountable. FL(P;) is FL(P,) with a ‘““middle”
element adjoined. FL(P,) is a free lattice with a copy of the dual of w
on top if it. Using the corollary we can see that FL (P,) and FL (P;) are
projective, but that FL(P,), FL(P,) and FL(P,) are not. To see that
FL (P,)is projective, let A(c)= D U{c}, B(c)={c}, A(d)={d}, B(d)=
{d} for all c€C, d € D. For FL(P;) let A(c)={c,r}, B(c)={c},
A(r)={r}=B(r), A(d)={d}, and B(d) = {d, r}.

To see that FL(P,) is not projective, suppose sets A (p) and B(p)
exist as in the corollary. Then A (c) consists of finitely many elements
of D and possibly ¢ itself. Let C={c € C:|A(c)|=i}. Then C=
U,..C. Since C is uncountable, there is a k such that C, is
uncountable. Since D is infinite, there are k + 1 distinct elements,
d, " ,d, in D. Since B(d,)U---UB(d,.,) is a finite set, C;=
C. —(B(d)U - - U B(di.,)) is still infinite. If ¢ € Ci, then c =d, i =
1, k+1. Thus A(c)NB(d)#J. By the definition of Cj,
c# B(d,). This forces d € A(c), i=1,---,k+1, countradicting
|A(c)|=k. A similar argument can be employed to show that FL (P,) is
not projective. In this case we define C, ={c EC: x € A(c)NE im-
plies x = e}.

For i =0,1,2,3,4, FL(P,) is a countable union of antichains, and
hence, contains no uncountable chain. For i =0,1,2,3, this is obvious
from the descriptions of FL (P,) given above; for FL (P,), one can modify
the arguments of Galvin and Jénsson [9]. These examples show that
condition (4) of Theorem 1 cannot be replaced by (8), or even the
stronger condition of being the countable union of antichains. If P is
the partially ordered set of [6] p. 5 cited above, then FL(P) has no
uncountable chains by Theorem 1 of [20]. This gives a counter-example
to (8) but not the stronger condition mentioned above.

Although FL (P,) is not projective, P, is isomorphic to a subpartially
ordered set of a free lattice, since P,CP; and FL(P;) is
projective. Similarly P, is embeddable in a free lattice. (In fact it is not
hard to show that FL(P,) and FL(P,) are both sublattices of a free
lattice.) Arguments similar to those above show that FL(P,) is not
projective. We shall show that P, is not even order-embeddable in a free
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lattice. Let P,={a, :i €I} U{b; :i € I} where [I|=N,, and a, <b, for
all i and j with i#j. Suppose P, is order-embedded into a free lattice,
FL(X). Let G be the group of those automorphisms of FL (X ) induced
from permutation of X. Define an equivalence relation on I by i ~j if
there is a o € G such that o(a;) = a; and o(b;) = b; (cf. [9]). Intuitively,
i ~ j means that @, and q; may be represented with the same lattice term
except for a change in the variables, and the same statement holds for b,
and b; with the same change of variables. With the aid of this, the
reader can show that the relation ~ has only countably many
classes. Consequently, one of these classes, I, must be
uncountable. Of course, P,={a;:i € I't U{b; :i € I'} is isomorphic to
P,. Thus, if P, is order-embeddable into FL (X), then there exist u and
vE FL(X) and o, € G, i € I, such that a; = 0:(v) and b, = o:(u).

Let x,---,x, be the distinct variables which occur in either the
canonial form of u or of v. Consider the largest integer k such that for
some i € I and uncountably many j € I

l{Ui(x1)7 Y U-i(xn)} N {aj(xl)’ RS o;(x,,)}] =k.

Let iybe such an i and let I' C I be those j’s for which the above equation
holds. If we let y, = 0(x1), " ", Y. = 0W(X.), then o;(x,)= 0,0 (y.), t =
1,---,n: Let 7,=00,; and r=o0,u), s=o,(v). Then =(r)=
o;(u). We make two additional reductions. First, there is an uncount-
able subset I"” of I' such that

{Yb T yn}n{ﬂ'(yl)’ ) Ti(yn)}={yl’ T yn}n{Ti(yl)" ) Ty(yn)}

for each i, j&€I" Thus, we may assume {y,- -, y,}N
{r(yD), ()} =1{ys, ", )}, for each i€I". Let h:{l,--- k}
—{1,---,n}bedefinedby y, = 7.(yue), t =1, -+, k, i €I". Thatis, h;(¢)
is the position where y, occurs in 7,(y,)," -+, 7.(y.). Again, there is an
uncountable subset I"” of 1" such that h, = h; for each i, j € I”. Hence,
we may assume that h;(t)=tt=1,--- k, i €I". By the definition of k,
there are i and j in I", i#j, such that {n(y), -, n(y.)}N
{7}()’1), ) 71'()"!)} = {)’1, ) yk}' Thus,

{Ti(yl)’ Y Ti(Yn)} = {)’1, Tt yk7 zk+17 Y Zn}
and

{T](yl)’ Y 1'.l(yﬂ)} = {)’1, ) yk’ Zk/+l, ) Z:I}

where {z{s, 5z Ny, """ Yoo Zesr, ", 2o} =&, Now let f be the
endomorphism of FL (X) extending the map f(z{.) = Zis, - * -, f(21) = Zmy



PROJECTIVE LATTICES 105
and f(x)=x for all x € X —{z/.,,- -, z,}. Now

@@y ya)) = f(m(y), 7)) = F(r(ys, -+ Yo 2ian 2, 20))
= r(yl’” 5 Yo Zi+15 "Zn) = Ti(r(yl’” "yn))'

On the other hand, it is easy to see that f(7:(s))= 7.(s). Since i#j,
7.(s)=7,(r) and thus 7.(s)=f(r(s)) = f(7;(r)) = 7.(r). But 7.(s) and
7,(r) are images under the automorphism 7o,=o0, of v and u,
respectively. However, since 4 and v are incomparable, this implies
7.(s) and 7,(r) are incomparable, a contradiction.

4. Projective distributive lattices. The definition of pro-
jective distributive lattices is analogous to that of projective lattices
except, of course, distributive lattices are used. Since epimorphisms are
not onto in the category of distributive lattices, this definition is different
from the categorical one (cf. [3], where the term weakly projective is
used). Projective distributive lattices have been characterized by Balbes
and Horn [2], [4]. The following theorem is a slight improvement of
their theorem.

THEOREM 4. A distributive lattice L is projective if and only if every
element of L is a finite join of join-irreducible elements and a finite meet of
meet-irreducible elements, the meet of two join-irreducible elements is
join-irreducible, and L satisfies condition (4) of Theorem 1.

Proof. It was shown in [3], that this theorem holds if (4) is replaced
by the condition that there is a homomorphism of a free distributive
lattice FD (X) onto L, which has an order-preserving transversal. By an
argument similar to the proof of Theorem 2, one can see that this latter
condition is equivalent to (4).

The conditions of Theorem 1 are related to conditions of Theorem
4. For example, in a distributive lattice U D,(L)= D,(L). Thus
U D,(L)= L holds in a distributive lattice if and only if every element of
L is a finite join of join-irreducibles (which are the same as the
join-primes in a distributive lattice).The condition (W) implies that the
join-irreducibles of L are closed under finite meets. Furthermore, in a
distributive lattice condition (3) of Theorem 1 holds if and only if
D,(L)= L. Also note the examples of the last section can be modified
so as to apply to the distributive case.

Finally, we point out that condition (4) alone characterizes projec-
tive Boolean algebras. Thus this result, which will be presented in a
subsequent note, generalizes the result of Halmos [12] that every
countable Boolean algebra is projective.
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