PACIFIC JOURNAL OF MATHEMATICS
Vol. 76, No. 1, 1978

DECOMPOSING MODULES INTO PROJECTIVES
AND INJECTIVES

P. F. SmITH

A ring R is called a right PCI-ring if and only if for
any cyclic right R-module C either C = R or C is injective.
Faith has shown that right PCI-rings are either semiprime
Artinian or simple right semihereditary right Ore domains.
Thus if R, and R, are right PCI-rings then R=R, P R, is
not a right PCI-ring unless R, and R, are both semiprime
Artinian but R has the property that every cyclic right R-
module is the direct sum of a projective right R-module and
an injective right R-module, and rings with this property
on cyclic right R-modules will be called right CDPI-rings.
On the other hand, if S is a semiprime Artinian ring then
the ring of 2 X 2 upper triangular matrices with entries in S
is also a right CDPI-ring. The structure of right Noetherian
right CDPI-rings is discussed. These rings are finite direct
sums of right Artinian rings and simple rings. A classifica-
tion of right Artinian right CDPI-rings is given. However
the structure of simple right Noetherian right CDPI-rings is
more difficult to determine precisely and the problem of
finding it reduces to a conjecture of Faith.

1. Introduction. Recall that if X is a nonempty subset of a
ring R (and by a ring we shall always mean a ring with identity
element) then the left annihilator of X is the set of all elements r
of R such that rx =0 for every element 2 of X, and is denoted by
I(X). Similarly the right annihilator of X is r(X) ={reR:a2r =0
for all # in X}. A subset A of R is called a left (respectively right)
annthilator in case A = l(X) (A = r(X)) for some nonempty subset
X of R. A ring R is a Baer ring if and only if for every right
annihilator A in R there exists an idempotent element e such that
A = eR, equivalently for every left annihilator B in R there exists
an idempotent element f such that B= Rf. Examples of Baer rings
can be found in |6]. Baer rings are examples of right PP-rings,
that is rings such that every principal right ideal is projective. On
the other hand, Small [9], Theorem 1, showed that if R is a right
PP-ring and R does not contain an infinite collection of orthogonal
idempotents then R is a Baer ring.

A right CDPI-ring R is a right PP-ring (in fact it is right semi-
hereditary, see [10], Lemma 2.4) and has the property that R/E is
an injective right R-module for every essential right ideal E of R
(see Corollary 2.2). Rings with this latter property we shall call
right RIC-rings (“RIC” for restricted injective condition). If a ring
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R is a Baer ring, then R is a right CDPI-ring if and only if R/E is
an injective right R-module for every right ideal E of R with zero
left annihilator (Theorem 2.4). Recall that Osofsky [8] proved that
a ring R is semiprime Artinian if and only if every cyclic right R-
module is injective.

A ring R is a right CEPI-ring provided every cyclic right R-
module is the extension of a projective right R-module by an injec-
tive right R-module. The class of right CEPI-rings coincides with
the class of right PP- right RIC-rings (Theorem 2.9) but strictly con-
tains the class of right CDPI-rings since there is an example in [10]
of a right and left Artinian right and left CEPI-ring which is not
a right CDPI-ring.

Let us call a ring R a right PCI-domain provided R is a right
PCI-ring and a domain. Goodearl [5] called a ring R a right SI-ring
in case every singular right R-module is injective. By [10], Corollary
4.8, if R is a right Noetherian right CDPI-ring then R is a right
SI-ring and hence by [5], Theorem 3.11,and [3], Theorems 14 and 17,
R is a finite direct sum AP B, P B, P --- P B, where A is a right
Artinian right CDPI-ring and for each integer 1 < ¢ < n, the ring
B, is a right CDPI-ring Morita equivalent to a right Noetherian
simple right PCI-domain, and conversely. The ring A can be char-
acterized as a certain ring (S, M, 0, T) of 2 X 2 “matrices”

B

with s in a semiprime Artinian ring S, ¢ in a semiprime Artinian
ring T and m in a certain left S-, right T-bimodule M, under the
usual matrix addition and multiplication (Corollary 3.8).

When it comes to the rings B, (1 < ¢ < ») the natural question
which arises is the following one.

Question 1.1. Given a right Noetherian simple right PCI-domain
D, is any ring S Morita equivalent to D a right CDPI-ring?

This question is related to a conjecture of Faith [3], p. 111, and to
show the connection between them we make the following definitions.
Let m be a positive integer. A ring R is a right FGDPI-ring (right
FGDPI,-ring) if and only if every finitely generated (m-generator)
right R-module is the direct sum of a projective right R-module and
an injective right R-module. Right Noetherian semiprime right
FGDPI,-rings are right FGDPI-rings and are left Goldie (Theorem 5.7).
It follows that (see Corollary 4.12) the answer to 1.1 is “yes” if and
only if D is a left Ore domain and this is precisely Faith’s conjecture,
and in this case the rings B, (1 <% < n) are just the rings Morita
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equivalent to right Noetherian simple right PCI-domains. Recall
that if the ring D is a left Ore domain then Faith [3], Theorem 22
and subsequent remarks, proved that D is a left Noetherian left
PCI-domain and we call such rings Noetherian simple PCI-domains.
Examples of these rings can be found in [2]. Faith’s conjecture
can be expressed in yet another way (see Theorems 4.11 and 5.7):

Conjecture 1.2. If D is a right Noetherian simple right PCI-
domain then the ring D, is a right CDPI-ring where D, is the com-
plete ring of 2 X 2 matrices with entries in D.

We shall call a ring R a Noetherian simple PCI-domain if and
only if R is a right and left Noetherian simple right and left PCI-
domain. Examples of Noetherian simple PCI-domains have been
produced by Cozzens [2]. For any positive integer m a ring R is a
right Noetherian right FGDPL,-ring if and only if R is a finite
direct sum AP B P B, P ---D B, where A is a right Artinian
right FGDPI,-ring and for each integer 1 <4 < n the ring B, is a
simple right and left Noetherian ring Morita equivalent to a
Noetherian simple PCI-domain (see Corollary 5.8). There is a cor-
responding structure theorem for right Noetherian right FGDPI-
rings. We have not been able to find explicitly the structure of
right Artinian right FGDPI,-rings (m an integer greater than 1) or
right Artinian right FGDPI-rings.

We mention one further interesting fact about semiprime rings.
If R is a semiprime ring then the following statements are equivalent:

(i) R is a right Noetherian right FGDPIL-ring,

(ii) R is a left Noetherian left FGDPL-ring,

(iii) R is a right Noetherian right FGDPI-ring, and

(iv) R is a left Noetherian left FGDPI-ring (see Corollary 5.9).
Note also that if R is a right Noetherian right FGDPL-ring then R
is a left SI-ring and in particular R is left hereditary (see Corollary
5.10).

2. Right CDPI-rings. In this section we first look at charact-
erizations of right CDPI-rings, we then examine the relationship
between right CEPI-rings and right RIC-rings and finally we gene-
ralize the theorem of Osofsky mentioned in the Introduction.

LEmMA 2.1 (See [10], Lemma 5.1). A ring R is a right CDPI-
ring if and only if for every right ideal E of R there exists an
idempotent element e 'such that E is contained in the right ideal
eR and the right R-module eR/E s injective.

COROLLARY 2.2. Let R be a right CDPI-ring and E be a right
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ideal of R with zero left amnihilator. Then the right R-module
R/E is injective.

If X is a nonempty subset of a ring R then by 7I(X) we shall
mean 7(I(X)), the right annihilator of the left annihilator of X.
The proof of the next result is an easy adaptation of the proof of
[10], Lemma 5.T7.

LEMMA 2.3. Let R be a Baer ring. Then R is a right CDPI-
ring if and only +f rl(E)/E is an injective right R-module for each
right ideal E of R.

THEOREM 2.4. Let R be a Baer ring. Then R is a right CDPI-
ring if and only if R/E is an inmjective right R-module for each
right ideal E of R with zero left annihilator.

Proof. In view of Corollary 2.2 we need prove only the suffici-
ency. Suppose that R is a ring such that R/E is injective for every
right ideal F with I(E) = 0. Let A be a right ideal of R. Since
R is a Baer ring there exists an idempotent element a¢ of R such
that 7l(4) = aR. Let B={reR:arc A}. Since ¢ is idempotent it
follows that A = a4 and hence A S B. Then aR = ri(A) < ri(B).
But 1 — a) RS B ri(B) and hence Rrl(B). Thus I(B) =0 and by
hypothesis R/B is injective. Since the mapping ¢: R/B—a R/A
defined by @(» + B) = ar + A (r € R) is an R-isomorphism it follows
that aR/A is injective. By Lemma 2.1 R is a right CDPI-ring.

COROLLARY 2.5. Let R be a ring which does mot contain an
infinite collection of orthogonal idempotent elements. Then R is a
right CDPI-ring if and only +f R is a right PP-ring and R/E is
an injective right R-module for every right ideal E of R with zero
left annihilator.

Proof. The necessity is a consequence of Corollary 2.2 and [10],
Lemma 2.4. The sufficiency follows by the theorem and [9], Theorem
1.

An immediate consequence of Corollary 2.5 is the next result.

COROLLARY 2.6. Let R be a semiprimary ring. Then R is a
right CDPI-ring +f and only +f R is a right PP-ring such that R/E
18 an tnjective right R-module for every right ideal E of R with
zero left annihilator.

COROLLARY 2.7. Let R be a ring which does not contain an
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infinite direct sum of monzero right ideals. Then R 1is a right
CDPI-ring if and only if R s a right nonsingular ring such that
R/E is an injective right R-module for every right ideal E of R
with zero left annthilator.

Proof. The necessity follows by Corollary 2.2 and [10], Lemma
2.4. Conversely, suppose that R is a right nonsingular ring such
that R/F is an injective right R-module for each right ideal E with
I(F) = 0. Since R is right nonsingular it follows that R is a right
RIC-ring. Also by [4], Lemma 1.4 and Theorem 2.3 (iii), R is a
right Goldie ring. By [10], Corollary 4.3 and Lemma 4.4, R is a
right PP-ring. Finally by Corollary 2.5 R is a right CDPI-ring.

Next we consider briefly right CEPI-rings. Let E be a right
ideal of a right CEPI-ring R. There exists a right ideal F of R
containing E such that F/E is projective and R/F' is injective. Since
F/E is projective there exists a right ideal G of R such that EN
G=0and F= E®G. Moreover, G = F/E is projective. We have

proved:

LEMMA 2.8. A 7ing R is a right CEPI-ring if and only if for
every right ideal E of R there exists a projective right ideal G of
R such that ENG =0 and R/(EDG) is an injective right R-
module.

In [10], Lemma 2.4, we proved that a right CEPI-ring is a right
semihereditary right RIC-ring. Now we have the following result.

THEOREM 2.9. A ring R ts o right CEPI-ring if and only if
R is a right PP- right RIC-ring.

Proof. As we have just remarked the necessity is proved in
[10], Lemma 2.4. Conversely, suppose that R is a right PP-right
RIC-ring. Let K be a right ideal of R. By Zorn’s lemma there
exists a maximal collection S of nonzero elements z, (A € 4) of R such
that if H= 3, xR then H= @ xR and ENH=0. Since R is a
right PP-ring, H is projective. Let @ be a nonzero element of R.
If a¢S then either aRNH %0 or EN(aRP H)+ 0. It follows
that E@ H is an essential right ideal of R. Since R is a right
RIC-ring, the right R-module R/(E P H) is injective. By Lemma 2.8
R is a right CEPI-ring.

Finally in this section we give the following generélization of
Osofsky’s theorem [8].
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THEOREM 2.10. A ring R is semiprime Artinian if and only
if R s a right self-injective right RIC-ring.

Proof. The necessity is a consequence of Osofsky’s theorem.
Conversely, let R be a right self-injective right RIC-ring. Since R
is right self-injective, given any right ideal A of R there exists an
idempotent element ¢ of R such that A is an essential submodule
of the right ideal eR. Since R is a right RIC-ring it follows that
eR/A is injective. By Lemma 2.1 R is a right CDPI-ring. Let C be
a cyclic right B-module. There exists a projective module P and an
injective module @ such that C = P@ Q. Since P is therefore cyclic
it follows that P is isomorphic to a direct summand of R and hence
P is injective. Thus C is injective. Thus every cyclic right R-module
is injective and R is semiprime Artinian by Osofsky’s theorem [8].

3. Semiprimary right CDPI-rings. Right CDPI-rings are right
RIC-rings (see [10], Lemma 2.4). In addition, by [10], Lemma 2.5
and Theorem 4.1, semiprimary right RIC-rings are right SI-rings.
Also, by [5], Proposition 3.5, semiprimary right SI-rings are left
Sl-rings. Thus we have the following result.

LEMMA 8.1. Semiprimary right CDPI-rings are right and left
SI-rings.

Let R be a right SI-ring. By [5], Proposition 3.3, R is right
hereditary. If in addition R is semiprimary then R is a Baer ring
by [9], Theorem 1. Noting this fact, the next result of this section
is proved by adapting the proof of [10], Theorem 5.13.

LEMMA 3.2. A ring R is a semiprimary (right) SI-ring if and
only if R is semiprime Artinian or there exist semiprime Artinian
rings Sand T and o left S-, right T-bimodule M such that M is a
faithful left S-module and R is isomorphic to the ring (S, M, 0, T).

For the remainder of this section we shall fix the following
notation: S and T are semiprime Artinian rings, M is a left S-,
right T-bimodule (not necessarily faithful as a left S-module) and R
is the ring (S, M, 0, T). That is, R consists of all “matrices”

0 1) = s mJ
(S’m) b —{O t

with sin S, m in M and ¢t in T, addition and multiplication in R
being the usual matrix addition and multiplication. For each non-
empty subset X of M let Anng (X) denote the annihilator of X in
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S; that is, Anng(X) = {s€S:sX =0}. Let I = Anng(M) and let ¢
be the central idempotent element of S such that I = Sq. The right
socle of R will be denoted by A. It can easily be checked that
A= (I, M0, T) and A is an essential right ideal of R. By [5],
Proposition 3.1, R is a right SI-ring and in view of Lemma 3.2 we
can take R as a typical semiprimary right SI-ring. The Jacobson
radical of R will be denoted by J. Clearly J = (0, M, 0, 0). Moreover
A = JPeR where e is the idempotent (g, 0, 0, 1) of R (here 1 is the
identity element of the ring 7). Note that eJ = 0 and recall that
A = N{E: E is an essential right ideal of R}.

LEMMA 3.3. Let R be a semiprimary right SI-ring with
Jacobson radical J and let X be a right R-module. Then X s in-
jective if and only if given any homomorphism @:J— X there exists
an element x of X such that ¢(3) = xJ for every element j of J.

Proof. The necessity is an immediate consequence of Baer’s
criterion for injectivity (see for example [1], Lemma 18.3). Converse-
ly, suppose that X has the stated property. By Lemma 3.2 we can
suppose without loss of generality that in the above notation R =
(S, M, 0, T). Let Z = Z(X) be the singular submodule of X. Since
R is a right SI-ring it follows that Z is injective and hence there
exists a submodule Y of X such that X = Z@ Y. Note that Y is
nonsingular. Let E be an essential right ideal of R and ¢: E— Y
be an R-homomorphism. Let a« be the restriction of ¢ to J. By
hypothesis there exists an element x of X such that a(j) = x5 (j € J).
If ¢ =2+ y, whereze Z, y,e Y, then clearly a(j) = 9.7 (eJ). Let
9, be the element ¢(e) of Y, where e = (g, 0, 0, 1) as above. Let y
be the element y,(1 —e) + y,e of Y. If ac A then a« = J + er for
some elements j of J and » of R and

p@) = p(j) + pe)er = y.j + y.er = ya .

Thus @(a) = ya(a € A). Now let be E. Since A is an essential sub-
module of E there exists an essential right ideal K of R such that
bK < A. For any element k& of K, ¢(b)k = ¢(bk) = ybk and hence
(p(d) — yb)k = 0. It follows that (p(b) — yb)K = 0. Since Y is non-
singular it follows that ¢(b) = yb. Hence ¢(b) = yb(be E), and by
Baer’s criterion Y, and hence X, is injective.

It is clear from the proof of Lemma 3.3 that in Lemma 3.3 we
can replace J be the right socle A.

In view of Corollary 2.6 interest centres on right ideals of R
with zero right annihilator. Let E be a right ideal of B. Let F =
{ae8S:(a, 0,0,0)e E}. Then F'is a right ideal of S and there exists
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an idempotent element f of S such that F = fS. If fis the element
(£,0,0,0) of R then fR = (fS, fM,0,0). If N is the T-submodule
(1— f)M then M =fM@ N and E = fR® E, where E, is the right
ideal EN (0, N, 0, T). For, if » = (a,b,0,¢c)c £ with ¢ in S, b in M
and ¢ in T then (a, 0,0, 0) = (a, b, 0, ¢)(1, 0, 0, 0) € E and hence a = fa
and r — freE. Now E, = (E.NJ)@C for some right ideal C con-
tained in E,.. Let D={teT:(0,¥,0,¢t)cC for some element y of
M}. Then D is a right ideal of T and there exists an idempotent
element g of T such that D = gT. Let m be an element of M such
that ¢ = (0, m, 0, g) e C. For any element ¢, of C it can easily be
checked that ¢, — cc,eCNJ =0. It follows that ¢ is an idempotent
element of R and C = ¢R. In particular ¢ idempotent implies that
m = mg. Thus there exists a 7T-submodule X of N such that E
consists of all “matrices” (fa, fb + « + mt, 0, gt) with @ in S, b in
M, xzin X and ¢t in T. Now suppose that I(F) = 0. It can easily be
checked that if ¢ is an idempotent element of S such that Anng(x)==Se
then X = (1 — f)X implies that ¢(1 — f) e Se and

(el — f), —el — fIm, 0,1 — g)

belongs to I(E). Thus el — f) =0 and g=1. But e — f)=0
implies that ¢ = ¢f and Se & Sf. This gives the following result
after a little checking.

LEMMA 3.4. A right ideal E of the above ring R has zero left
annihilator if and only if there exists o T-submodule X of M, an
tdempotent element e of S such that Se = Anng (X), an idempotent
element f of S such that Se = Sf, and an element m of M such that
E consists of all “matrices” (fo, fb + x + mt, 0, t) with a in S, b in
M, v in X and t in T.

LEMMA 3.5. If X = Ann, (Anng (X)) for every T-submodule X
of M then R i3 a right CDPI-ring.

Proof. By Ann, (Anng (X)) we mean the set of elements m of
M such that Anng(X)m = 0. In the notation of the previous lemma
let E be the right ideal of all “matrices” (fa, fb + x + mt, 0, t) with
ain S, bin M,  in X and ¢ in T. Let s€Anng(fM + X); then
sfM = sX = 0. But sX = 0 implies that s = se and hence sf = se¢f =
se = s. It follows that sM = 0 and hence Anng (fM + X) = Anng(M).
By hypothesis fM + X = Ann, (Anng (fM + X)) = M. It follows that
the ideal (0, M, 0, T) is contained in E. Let @:J— R/E be an R-
homomorphism. If b= (0,0,0,1) then j = jb for every element j
of J and it follows that ¢ = 0. By Corollary 2.6 and Lemmas 3.2-3.4
R is a right CDPI-ring.
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In particular if S = M = T then R is a right CDPI-ring. This
special case was proved in [10], Theorem 5.15. Another special case
is when M is a simple right T-module and again R is a right CDPI-
ring. This corresponds to the Jacobson radical J of R being a
minimal right ideal (see [10], Theorem 5.9). We can express Lemma
3.5 in terms of J as follows.

COROLLARY 3.6. Let R be a semiprimary right SI-ring such
that F = J N rl(F) for every right ideal F contained in the Jacobson
radical J of R. Then R is a right CDPI-ring.

THEOREM 3.7. In the above notation let B be the semiprimary
right SI-ring (S, M, 0, T). Then R is a right CDPI-ring if and
only if for every T-submodule X of M such that Anng(X) = Anng (M)
and every T-homomorphism @: M — M|/X there exists an element a
of S such that p(m) = am + X for all m in M.

Proof. Suppose first that R is a right CDPI-ring. Let X be a
T-submodule of M such that Anng (X) = Anng (M) = Sq and ¢: M —
M/X a T-homomorphism. Let V be a set of coset representatives
of X in M and define a mapping 7: M — V by ¢(m) =t(m) + X (m e M).
Let E be the right ideal (Sq, X, 0, T). It can easily be checked that
I(F) =0 and thus, by Corollary 2.2, R/E is an injective right R-
module. Define @: J— R/E by (0, m, 0, 0)=(0, t(m), 0, 0)+ E (m € M).
Since @ is an R-homomorphism there exists an element » = (@, b, 0, ¢)
of R such that @(j) =rj + E (jeJ). It can easily be checked that
this gives p(m) = am + X (m € M).

Conversely, in the notation of Lemma 8.4 let E be the right
ideal of R consisting of all “matrices” (fa, fb + 2 + mt, 0, t) with a
inS,bin M, xin X and ¢ in 7. Let Y be the T-submodule fM + X
of M and let H be the right ideal consisting of all “matrices”
0,y + mt, 0,t) with ¥ in Y and ¢ in T. By [5], Proposition 3.3, R
is right hereditary. Thus to prove that R/E is an injective right
R-module it is sufficient to prove that R/H is an injective right
R-module because H = E (see [1], Exercise 18.10).

Let a: J— R/H be an R-homomorphism, where again J is the
Jacobson radical of R. If »p =(0,0,0,1) then p» is an idempotent
element of R and J = Jp. It follows that if K is the right ideal
containing H such that Im @ = K/H then K is contained in the ideal
(0, M, 0, T). For each element x of M choose an element ¥ of M
and an element 2”7 of T such that «(0, x, 0, 0) = (0, %, 0, ) + H.
Since @ is a homomorphism we note the following three facts.

(1) There exist elements y, in Y and ¢, in T such that 0* =
Y, + mt,, 07 =i,
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(ii) For all elements z,, 2, in M there exist elements y, in Y
and ¢ in T such that (x, + 2)* — a¥ — 2 =y, + mt, (@, + 2)" —
af —xl =t,.

(iii) For all elements z in M and ¢ in T there exist elements y,
in Y and %, in T such that (z¢)” — x%c = y, + mt,, (xc)* — x"¢c = t,.
Define B8: M— M]/Y by Bx) = (& — mz™) + Y for every element =z
of M. By (i), (ii) and (iii) 8 is a T-homomorphism. But ¥ = fM + X
implies that Anng(Y) = Anng(M). Therefore by hypothesis there
exists an element s, of S such that B(x) = sx + Y (xe M). Letsbe
the element (s, 0,0,0) of R. Then for each element j of J there
exists an element ¢ of M such that 5 = (0, z, 0, 0) and hence a(j) =
0, 2,0, 2")+H =sj+H. Thus a(j)=sj+H (j€J). By Corollary 2.6
and Lemmas 3.2-3.4 R is a right CDPI-ring. This proves the theorem.

Combining Lemmas 3.1, 3.2 and Theorem 3.7 we have:

COROLLARY 3.8. A ring R is a semiprimary right CDPI-ring
of and only if R is semiprime Artinian or there exist semiprime
Artinian rings S and T and o left S-, right T-bimodule M such that
M is a faithful left S-module and for every T-submodule X of M
such that Anng(X) =0 and T-homomorphism ¢: M — M/X there
exists an element a of S with p(m) = am + X for every m in M, and
R s isomorphic to the ring (S, M, 0, T).

COROLLARY 3.9. In the above notation let R be the semiprimary
right SI-ring (S, M, 0, T). Suppose that R is a right CDPI-ring.
Then there does mot exist a left S-, right T-sub-bimodule X of M and
a mnonzero T-submodule Y of M such that Anng(X) = Anng (M),
XNY=0and Y can be embedded in X.

Proof. Suppose that M contains a sub-bimodule X and a sub-
module Y with the given properties. Let X, be a T-submodule of X
such that there is a 7T-isomorphism ¢: X, — Y. Since T is semiprime
Artinian there exists a T-submodule N of M such that M = X, P
Y@ N. Define a: M — M/X by a(x, + y + n) = ¢(x,) + X for all z,
in X, vy in Y and % in N. If R is a right CDPI-ring then by the
theorem there exists an element s of S such that for each element
2, of X, o)+ X = ax,) =sx, + X. It follows that o(x)e XN
Y = 0 for each element x, of X,, a contradiction. Thus R is not a
right CDPI-ring.

COROLLARY 3.10. Suppose that S and T are simple rings and
the above ring R = (S, M, 0, T') is a right CDPI-ring. Then M is
a stmple left S-, right T-bimodule.
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Proof. Let X be a nonzero left S-, right T-sub-bimodule of M.
Since S is simple it follows that Anng(X) = Ann, (M) =0. If Y is
a simple T-submodule of M then Y can be embedded in X, because
T is simple and simple right T-modules are isomorphic. By Corollary
3.9 XNY=0 and hence Y < X. It follows that X = M.

We can express Corollary 3.10 in the following form.

COROLLARY 3.11. Let R be a semiprimary right CDPI-ring with
Jacobson radical J. If R contains precisely two maximal ideals then
J 15 a minimal rdeal of R.

4, Category equivalence. Let R be a ring and A4, B be right
R-modules. A monomorphism ¢: A — B is called essential if and only
if Ime is an essential submodule of B; that is, Imp N C # 0 for
every nonzero submodule C of B. The first lemma in this section
is elementary and well known but we shall include its proof for
completeness.

LEMMA 4.1. A right R-module C is singular if and only iof

there exists an exact sequence 0 — A LB LA C — 0 of right R-modules
such that a: A — B is an essential monomorphism.

Proof. Suppose that C is singular. For each element ¢ of C
let R, = R and let FF = @, R.. Let w: FF— C be the canonical projec-
tion. For each element ¢ of C there exists an essential right ideal
E, of R=R, such that ¢E,=0. Let F =@ E,, Then E is an
essential submodule of F and E Z Kern. If K = Kerx and 7: K— F

is inclusion then 0 — K - F 5 C — 0 is an exact sequence such that
4 is an essential monomorphism. Conversely, suppose that there

exists an exact sequence 0 — A LB i C — 0 of right R-modules such
that a is an essential monomorphism. Let ¢€C and let b be an ele-
ment of B such that B8(b) = ¢. It can easily be checked that Ker 8 =
Im a is an essential submodule of B implies that G = {reR:bre
Ker 8} is an essential right ideal of R. Also, ¢G = B8(b)G = B(bG) = 0.
It follows that C is singular.

COROLLARY 4.2. A right R-module C is a finitely generated
singular module if and only if there exists an exact sequence

0-A45BEC 0 of right Rmodules such that B is finitely
generated and a: A — B is an essential monomorphism.

LEMMA 4.3. A ring R is a right RIC-ring if and only if every
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finitely generated singular right R-module is tnjective.

Proof. The sufficiency follows from the fact that if F is an
essential right ideal of R then R/E is a cyclic singular right R-
module. Conversely, suppose that R is a right RIC-ring. Let = be
a positive integer and X a right R-module generated by elements
X, Ly **°, £, L1f m =1 there is nothing to prove. Suppose that
n>1and let Y=a2R+ xR+ -+ +2,,R. Then Y is a singular
module. If Y is injective then there exists a submodule Z of X
such that X = Y@ Z. It follows that Z is a cyclic singular module
and hence Z is injective. Thus X is injective. The result follows
by induction on n.

COROLLARY 4.4. Amny ring Morita equivalent to a right RIC-
ring s itself a right RIC-ring.

Proof. By Corollary 4.2 since category equivalence preserves
exact sequences, finitely generated modules and essential monomor-
phisms (see [1], Propositions 21.4, 21.6(5) and 21.8(2)).

THEOREM 4.5. A 7ring R is a rihgt CEPI-ring if and only if
every finitely generated right R-module is the extension of a projec-
tive right R-module by an injective right R-module.

Proof. The given condition is clearly sufficient for R to be a
right CEPI-ring. Conversely, suppose that R is a right CEPI-ring.
Let n be a positive integer and X be a right R-module generated
by elements x,, %, +++, 2,. If m =1 there is nothing to prove and
so we suppose that n > 1. Let Y=2R + 2,R + +--- + «,_,R. Sup-
pose there is a submodule A of Y such that A is projective and
Y/A is injective. Since X/Y is cyclic and R is a right CEPI-ring it
follows that there exists a submodule B of X such that Y £ B, B/Y
is projective and X/B is injective. Now consider B/A. Since Y/A
is injective there exists a submodule C of B such that A £ C and
B/A = (Y/A)@® (C/A). Since C/A = B/Y is projective and A is pro-
jective it follows that C = A (C/A) is projective. Moreover,
B/C = Y/A is injective and hence X/C = (B/C) @ (X/B) is injective.
The result follows by induction on nu.

COROLLARY 4.6. Any ring Morita equivalent to a right CEPI-
ring s itself a right CEPI-ring.

Proof. By the theorem since category equivalence preserves
exact sequences, finitely generated modules, projective modules and
injective modules (see [1], Propositions 21.4, 21.6(2) and 21.8(2)).
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It is interesting to compare Theorem 2.5 with the next result.

THEOREM 4.7. A ring R is a right SI-ring if and only if every
right R-module is the extension of a projective right R-module by
an injective right R-module.

Proof. Suppose that every right R-module is the extension of
a projective module by an injective module. In particular, this
means that R is a right CEPI-ring. By [10], Lemma 2.4, R is right
nonsingular. Let X be a singular right R-module. There exists a
submodule Y of X such that Y is projective and X/Y is injective.
Suppose that Y == 0 and let ¥ be a nonzero element of Y. Since Y
is projective there exists a homomorphism ¢: Y — R such that ¢(y)+~0.
But there exists an essential right ideal E of R such that yE =0
and hence ¢(y)E = 0. This contradicts the fact that R is right non-
singular. Thus Y =0 and X is injective. It follows that R is a
right SI-ring.

Conversely, suppose that R is a right SI-ring. Let A be a right
R-module and U the collection of cyclic submodules of A. By Zorn’s
lemma there is a maximal collection B of members of ¥ whose sum
is direct. Let 4 be an index set and z; elements of A such that B
is the collection of submodules x,R(A€4). Let B=@,x;R. The
choice of B ensures that B is an essential submodule of 4. Since R
is a right Sl-ring it follows that R is right hereditary (see [5],
Proposition 3.3) and hence B is projective. Moreover A/B is a
singular right R-module and is injective because R is a right SI-ring.
It follows that every right R-module is the extension of a projective
module by an injective module.

COROLLARY 4.8. If R s a vight Noetherian right RIC-ring
then every right R-module is the extension of a projective right R-
module by an injective right R-module.

Proof. By the theorem and [10], Theorem 4.1.

In particular Corollary 4.8 tells us that any right Noetherian
right CDPI-ring R has the property that every right R-module is
the extension of a projective module by an injective module.

Next we consider right FGDPI-rings. The proof of Corollary 4.6
gives immediately:

LEMMA 4.9. Any ring Morite equivalent to a right FGDPI-ring
18 itself a right FGDPI-ring.
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Before examining the relationship between right FGDPI-rings
and right CDPI-rings we first introduce some notation. Let R be a
ring, n a positive integer and R, the complete ring of n X » matrices
with entries in R. Let (r;;) denote the n X » matrix whose (¢, 5)th
entry is the element »,; or R. For any right R-module X let X™
denote the right R-module XP X P --- @ X (n copies). Then X
can be made into an R,-module by defining:

n n n
(@4 Ty = ooy X,)(735) = <1¢21 L ks kZ‘L TpTray =" °y kZ xk"'kn) ,
= = =1

where ;€ X and r,; € R 1 =14, J<n). Lete; denote the matrix unit
in R, with 1 in the (¢, j)th position and zeros elsewhere. For any
right B,-module Y, Ye, is a right R-module. It is easy to check
that for any right R-module X the right R-modules X and X™e,
are isomorphic. Recall the following result.

LEMMA 4.10 (See [7], Corollary 2.3). With the above notation,
a right R,-module X is projective (respectively injective) if and only
if the right R-module Xe, s projective (respectively imjective).

THEOREM 4.11. Let n be a positive integer. A ring R is a right
FGDPI,-ring if and only +f R, 1s & right CDPI-ring.

Proof. Suppose that R, is a right CDPI-ring. Let X be a right
R-module generated by elements x, 2, +-+, 2,. If Y= X™ then Y
is the eyclic right R,-module (z,, #,, ---, ,)R,. There exists a projec-
tive right R,-module P and an injective right R,-module @ such that
Y=P@HQ. Then Ye, = (Pe,) P (Qe,), as R-modules. Since the
right R-modules X and Ye, are isomorphic it follows that X is the
direct sum of a projective module and an injective module by Lemma
4.10. Thus R is a right FGDPI,-ring.

Conversely, suppose that R is a right FGDPI,-ring. Let A = aR,
be a cyclic right R,-module. Then Ae¢, = aR,e, = D.7_, ae,,R is an
n-generator right R-module. By hypothesis there exists a projective
right R-module B and an injective right R-module C such that
Ae, = BC. Now R, = R,¢,,R, implies that Ae R, = AR,¢e,R, = A
and hence A = (BR,) + (CR,). Since B = Be,, and C = Ce,, it follows
that

BR, = kzj‘ Be,, and CR, = :ﬁ“ Ce,, .
It can easily be checked that BN C = 0 implies that (BR,) N (CR,) = 0.

That is A = (BR,) @ (CR,). Moreover, (BR,)e,, = Band (CR,)e,, = C.
By Lemma 4.10 BR, is a projective right R,-module and CR, is
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an injective right R,-mudule. It follows that R, is a right CDPI-
ring.

COROLLARY 4.12. A ring R is a right FGDPI-ring if and only
if R, ts & right CDPI-ring for every positive integer n.

It is interesting to contrast Theorem 4.11 with the next result.

THEOREM 4.13. Let R be a right CDPI-ring and e be an idem-
potent element of R such that R = ReR. Then the subring eRe of R
18 o right CDPI-ring.

Proof. Let S denote the ring ¢Re and let I be a right ideal of
S. If J is the right ideal IR of R then J < ¢R since I =el. By
hypothesis there exist right ideals F' and G of R such that J &
FCZeR, JZ G < eR, F/J is a projective right R-module, G/J is an
injective right R-module and e¢R/J = (F/J) @ (G/J). Since eR/G = F|J
is projective there exists a right ideal H of R such that eR = G & H.
Then Ge and He are right ideals of S, S = (Ge) @ (He) and hence
S/(Ge) is a projective right S-module. Moreover, e¢R = F + G,
FNG = J together imply S = (Fe) + (Ge) and (Fe) N (Ge) = Je = IRe =
IeRe = I. Thus S/I is the direct sum ((Fe)/I) P ((Ge)/I) of the right
S-modules (Fe)/I and (Ge)/I. Also, (Fe)/I = S/(Ge) is a projective
right S-module. It remains to prove that (Ge)/I is an injective right
S-module. Note that G = GR = GReR = GeR. Thus it is sufficient
to prove the following result.

LEMMA 4.14. Let R be a ring and e be an idempotent element
of R such that R = ReR. Let A B be right ideals of the ring
S =¢eRe and A= AR, B= BR. If B/A is an injective right R-
module then B/A is an injective right S-module.

Proof. Let C be a right ideal of S and ¢: C — B/A an S-homo-
morphism. Let V be a set of coset representatives of A in B and
define a mapping a:C—V by alc) + A= g() (ceC). Define 3:
CR — B/A by

(ﬁ(g cm-) = EZZ aleer; + A

for all positive integers » and elements ¢; of Cand », of R (L1 <1 < ).
Clearly @ is independent of the choice of V. Suppose n is a positive
integer, 7,¢ R and ¢;eC (1 <1 < n) and

n
e =0 .
i=1
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For any element 2 of R,
g c.er,xe = 0

and hence

;:‘{ @(cerxe = 0.
That is, for all # in R,

g alc)erxec A .
Since R = ReR it follows that 1€ ReR and hence

g{ alc)er,c AR = A .

Thus @ is well defined and clearly @ is an R-homomorphism. By
hypothesis there exists an element b of B such that &(r) = br + A
(reC). Tt follows that be € Be = BRe = BeRe = B. Let ceC. Then
¢ =ce=cecand p(c) = alc) + A= alc)e + A and H(c) = alc)e + A =
bc + A =bec+ A. This implies that a(c)e —becc ANS = A and hence
@(c) = bec + A. Thus @(c) = bec + A (ceC). It follows that B/A is
an injective right S-module. This completes the proof of Lemma
4.14 and hence also of Theorem 4.13.

5. Right FGDPI-rings. Let R be a semiprime right Goldie
ring. Goldie [4], Theorems 4.1 and 4.4, proved that R has a (clas-
sical) right quotient ring @ and @ is semiprime Artinian. Levy [7],
Theorem 5.3, proved that if R has the additional property that every
finitely generated torsion-free right R-module is a submodule of a
free right R-module then @ is the left quotient ring of R and hence
by [4], Theorem 4.4, R is a left Goldie ring. In actual fact to prove
that @ was the left quotient ring of R all Levy needed was the fact
that every 2-generator right R-submodule of @ is contained in a free
right R-module. Thus we can state Levy’s result in the following
form.

LEMMA 5.1. Let R be a semiprime ring Goldie ring with right
quotient ring Q such that every 2-generator right R-submodule of @

18 contained in a free right R-module. Then R is a left Goldie ring.

Next we restate [7], Theorem 6.1, as follows.

LEMMA 5.2. Let R be a semiprime right and left Goldie right
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(and left) semihereditary ring. Then every finitely generated right
R-module X is the direct sum of its singular submodule Z(X) and
a projective R-submodule P.

COROLLARY 5.3. Let R be a semiprime right and left Goldie
ring. Then R is a right FGDPI-ring if and only if R is a right
RIC-ring.

Proof. The necessity follows by [10], Lemma 2.4. Conversely,
suppose that R is a right RIC-ring. Let X be a finitely generated
right R-module with singular submodule Z. By [10] Corollary 4.3
and Lemma 4.4, R is right semihereditary. By Lemma 5.2 there
exists a projective submodule P of X such that X = Z@ P. By
Lemma 4.3 Z is injective. It follows that R is a right FGDPI-ring.

Let R be a semiprime right Noetherian ring with right quotient
ring @ and suppose @ is a finitely generated right R-module. Let
@ be a regular element of R and consider the ascending chain
a ' RCaRZa*RZ --- of R-submodules of @. Since Q is a
Noetherian right R-module there exists a positive integer n such
that "R = ¢ " 'R. Then a ' = ¢ "b for some element b of R and
hence 1 = ab = ba. It follows that R = Q.

LEMMA 5.4. Let R be a prime right Noetherian right FGDPI,-
ring. Then R is a left Goldie ring.

Proof. Let @ be the right quotient ring of R. In view of
Lemma 5.1 it is sufficient to prove that every 2-generator right R-
submodule of @ is contained in a free right R-module. Let X be a
2-generator right R-submodule of @. By hypothesis there exists a
projective R-submodule P of X and an injective R-submodule I of
X such that X = P@ I. Suppose that I+ 0. For any regular ele-
ment ¢ of B we have I = Ic (see [7], Theorem 3.1). Since I is
torsion-free, for all elements x of I and regular elements ¢ of R
there exists a unique element x of I such that T¢c = x. By defining
¢ =17 for all x in I and ¢ regular in R we can make I into a
right @-module. Since I = 0 and @ is simple Artinian it follows that
I contains a simple right Q-module. Since @ is simple Artinian all
simple right Q-modules are isomorphic. Because I is a finitely
generated right R-module it follows that @ is a finitely generated
right R-module. As our remarks above show, in this case R =@
and hence R is left Goldie. Now suppose that @ = RB. Then I =0,
X = P and hence X is contained in a free right R-module. Thus
every 2-generator right R-submodule of @ is contained in a free
right R-module. By Lemma 5.1 R is a left Goldie ring.
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LEMMA 5.5. Let S and T be subrings of a ring R such that
R=S@GT. Let n be a positive integer. Then R s a 7right
FGDPIL,-ring +f and only if S and T are both right FGDPI,-rings.

Proof. Suppose that R is a right FGDPI,-ring. Let X be an
n-generator right S-module. We can make X into an wm-generator
right R-module by defining x(s + ¢t) = s for all x in X, s in S and
t in 7. By hypothesis there exists a projective right R-module P
and an injective right R-module I such that X =P@ I It can
easily be checked that P is a projective right S-module and I is an
injective right S-module. It follows that S is a right FGDPI,-ring.
Similarly T is a right FGDPI,-ring.

Conversely, suppose first that n» = 1; that is, S and T are both
right CDPI-rings. Let E be a right ideal of R = S@ T. Then there
exists a right ideal E, of S and a right ideal E, of T such that
E=E®@E, Since S and T are right CDPI-rings there exist
idempotent elements ¢, of S and ¢, of T such that E, C ¢S, E, < ¢,T,
A = (¢,S)/E, is an injective right S-module and B = (¢,T)/FE, is an
injective right 7T-module. The Abelian group C = A@ B can be
made into a right R-module by defining (a, b)(s + t) = (as, bt) for all
ein A, bin B, sin S and ¢t in T. If f=e¢ + ¢ then f is an
idempotent element of R and E & fR. Moreover, (fR)/E is isomor-
phic to the right R-module C. If F is a right ideal of R then
F=F @®F, for some right ideals F, of S and F, of T, and it can
easily be checked that any R-homomorphism ¢: F'— C can be lifted
to an R-homomorphism @: R — C. Thus C is injective. It follows
that R is a right CDPI-ring. Now suppose that n» is any positive
integer and S and T are both right FGDPI,-rings. By Theorem 4.11
the matrix rings S, and 7T, are right CDPI-rings. But clearly
R,=8S,@ T, and the above argument shows that R, is a right
CDPI-ring. By Theorem 4.11 R is a right FGDPI,-ring.

It is clear that one consequence of Lemma 5.5 is the following
result.

COROLLARY b5.6. Let S and T be subrings of a ring R such
that R=S@®T. Then R is a right FGDPI-ring if and only if
both S and T are right FGDPI-rings.

THEOREM b5.7. Let R be a semiprime vright Noetheriam ring.
Then the following statements are equivalent.

(i) R is a right FGDPI,-ring.

(ii) R is a right FGDPI-ring.

(iii) R 1s a left Goldie right RIC-ring.
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(iv) R is a finite direct sum AP B, P B, D --- P B, where A
s a semiprime Artinian ring and for each 1 <t = n the ring B,
s a simple right and left Noetherian ring Morita equivalent to a
Noetherian simple PCI-domain.

Proof. (ii) = (i) is clear. (iii) = (ii) is a consequence of Corollary
5.8. (iv) = (iii) is a consequence of [5], Theorem 3.11. It remains
to prove (i) = (iv). Suppose that R is a right FGDPI,-ring. By [5],
Theorem 3.11, R is a finite direct sum AP B, P B, P - -- @ B, where
A is semiprime Artinian and B; is a simple right Noetherian ring
Morita equivalent to a right Noetherian simple right PCI-domain
D, for each 1<% <n. By Lemmas 5.4 and 5.5 the ring B, is a
left Goldie ring for each 1 =<7 <n. Thus, foreach 1=¢=<mn, D,
is left Goldie and hence a Noetherian simple PCI-domain by [3],
Theorem 22 and subsequent remarks. It follows that B, is left
Noetherian (1 <4 £ n). This proves (iv).

COROLLARY 5.8. For any positive integer m o ring R is a right
Noetherian right FGDPI, -ring if and only if R ts a finite direct
sum ADBDBD--- DB, where A is a right Artinian right
FGDPI, -ring and the ring B; 1s a stmple right and left Noetherian
ring Morita equivalent to & Noetherian simple PCI-domain for each
151 m.

Proof. By the theorem and Lemma 5.5.

COROLLARY 5.9. Let R be a semiprime ring. Then the follow-
ing statements are equivalent.

(i) R is a right Noetherian right FGDPIL,-ring.

(ii) R s a left Noetherian left FGDPIL-ring.

(iii) R s & right Noetherian right FGDPI-ring.

(iv) R s a left Noetherian left FGDPI-ring.

Proof. By the theorem, Lemma 5.5 and Corollary 5.6.

COROLLARY 5.10. Let R be a right Noetherian right FGDPIL-
ring with Jacobson radical J. Then the ring R/J is a left Noether-
san left FGDPI-ring. Moreover R is a left SI-ring and in parti-
cular R s left hereditary.

Proof. By Corollary 5.8 R/J is a right Noetherian right FGDPI,-
ring and by Corollary 5.9 R/J is a left Noetherian left FGDPI,-ring.
In §1 we noted that right Noetherian right CDPI-rings are right
SI-rings. Also by [5], Proposition 3.5, right Artinian right SI-rings
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are left SIl-rings. The result follows by [5], Theorem 3.11 and
Proposition 3.3.
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