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DECOMPOSING MODULES INTO PROJECTIVES
AND INJECTIVES

P. F. SMITH

A ring R is called a right PCI-ring if and only if for
any cyclic right iέ-module C either C = R or C is injective.
Faith has shown that right PCI-rings are either senτiprime
Artinian or simple right semihereditary right Ore domains.
Thus if R, and R2 are right PCI-rings then R = Rλ®R2 is
not a right PCI-ring unless Rx and R2 are both semiprime
Artinian but R has the property that every cyclic right R-
module is the direct sum of a projective right i£-module and
an injective right iϋ-module, and rings with this property
on cyclic right i?-modules will be called right CDPI-rings.
On the other hand, if S is a semiprime Artinian ring then
the ring of 2 X 2 upper triangular matrices with entries in S
is also a right CDPI-ring. The structure of right Noetherian
right CDPI-rings is discussed. These rings are finite direct
sums of right Artinian rings and simple rings. A classifica-
tion of right Artinian right CDPI-rings is given. However
the structure of simple right Noetherian right CDPI-rings is
more difficult to determine precisely and the problem of
finding it reduces to a conjecture of Faith.

1* Introduction* Recall that if X is a nonempty subset of a

ring R (and by a ring we shall always mean a ring with identity
element) then the left annihilator of X is the set of all elements r
of R such that rx = 0 for every element x of X, and is denoted by
l(X). Similarly the right annihilator of X is r(X) = {r eR: xr = 0
for all x in X}. A subset A of R is called a left (respectively right)
annihilator in case A = l(X) (A = r(X)) for some nonempty subset
X of R. A ring R is a Baer ring if and only if for every right
annihilator A in R there exists an idempotent element e such that
A = eR, equivalently for every left annihilator B in R there exists
an idempotent element / such that B = Rf. Examples of Baer rings
can be found in [6]. Baer rings are examples of right PP-rings,
that is rings such that every principal right ideal is projective. On
the other hand, Small [9], Theorem 1, showed that if R is a right
PP-ring and R does not contain an infinite collection of orthogonal
idempotents then R is a Baer ring.

A right CDPI-ring R is a right PP-ring (in fact it is right semi-
hereditary, see [10], Lemma 2.4) and has the property that R/E is
an injective right i2-module for every essential right ideal E of R
(see Corollary 2.2). Rings with this latter property we shall call
right RIC-rings ("RIC" for restricted injective condition). If a ring
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R is a Baer ring, then R is a right CDPI-ring if and only if R/E is
an injective right j?-module for every right ideal E of R with zero
left annihilator (Theorem 2.4). Recall that Osofsky [8] proved that
a ring R is semiprime Artinian if and only if every cyclic right R-
module is injective.

A ring R is a right CEPI-ring provided every cyclic right R-
module is the extension of a projective right i?-module by an injec-
tive right i2-module. The class of right CEPI-rings coincides with
the class of right PP- right RIC-rings (Theorem 2.9) but strictly con-
tains the class of right CDPI-rings since there is an example in [10]
of a right and left Artinian right and left CEPI-ring which is not
a right CDPI-ring.

Let us call a ring R a right PCI-domain provided R is a right
PCI-ring and a domain. Goodearl [5] called a ring R a right Si-ring
in case every singular right iϋ-module is injective. By [10], Corollary
4.8, if R is a right Noetherian right CDPI-ring then R is a right
Si-ring and hence by [5], Theorem 3.11, and [3], Theorems 14 and 17,
R is a finite direct sum A 0 Bι 0 B2 0 0 Bn where A is a right
Artinian right CDPI-ring and for each integer 1 ^ i <; n, the ring
Bi is a right CDPI-ring Morita equivalent to a right Noetherian
simple right PCI-domain, and conversely. The ring A can be char-
acterized as a certain ring (S, M, 0, T) of 2 x 2 "matrices"

s m

0 t

with s in a semiprime Artinian ring S, t in a semiprime Artinian
ring T and m in a certain left S-, right Γ-bimodule M, under the
usual matrix addition and multiplication (Corollary 3.8).

When it comes to the rings Bt (1 <£ i <̂  n) the natural question
which arises is the following one.

Question 1.1. Given a right Noetherian simple right PCI-domain
D, is any ring S Morita equivalent to D a right CDPI-ring?

This question is related to a conjecture of Faith [3], p. I l l , and to
show the connection between them we make the following definitions.
Let m be a positive integer. A ring R is a right FGDPI-ring (right
FGDPIm-ring) if and only if every finitely generated (m-generator)
right iϋ-module is the direct sum of a projective right i?-module and
an injective right i?-module. Right Noetherian semiprime right
FGDPI2-rings are right FGDPI-rings and are left Goldie (Theorem 5.7).
It follows that (see Corollary 4.12) the answer to 1.1 is "yes" if and
only if D is a left Ore domain and this is precisely Faith's conjecture,
and in this case the rings Bt (1 <Z i <Z n) are just the rings Morita
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equivalent to right Noetherian simple right PCI-domains. Recall
that if the ring D is a left Ore domain then Faith [3], Theorem 22
and subsequent remarks, proved that D is a left Noetherian left
PCI-domain and we call such rings Noetherian simple PCI-domains.
Examples of these rings can be found in [2]. Faith's conjecture
can be expressed in yet another way (see Theorems 4.11 and 5.7):

Conjecture 1.2. If D is a right Noetherian simple right PCI-
domain then the ring D2 is a right CDPI-ring where D2 is the com-
plete ring of 2 x 2 matrices with entries in D.

We shall call a ring R a Noetherian simple PCI-domain if and
only if R is a right and left Noetherian simple right and left PCI-
domain. Examples of Noetherian simple PCI-domains have been
produced by Cozzens [2]. For any positive integer m a ring R is a
right Noetherian right FGDPIm-ring if and only if R is a finite
direct sum i φ A θ ΰ z θ θ ^ where A is a right Artinian
right FGDPIw-ring and for each integer 1 <; i <; n the ring Bt is a
simple right and left Noetherian ring Morita equivalent to a
Noetherian simple PCI-domain (see Corollary 5.8). There is a cor-
responding structure theorem for right Noetherian right FGDPI-
rings. We have not been able to find explicitly the structure of
right Artinian right FGDPIm-rings (m an integer greater than 1) or
right Artinian right FGDPI-rings.

We mention one further interesting fact about semiprime rings.
If R is a semiprime ring then the following statements are equivalent:

( i ) R is a right Noetherian right FGDPI2-ring,
(ii) R is a left Noetherian left FGDPI2-ring,
(iii) R is a right Noetherian right FGDPI-ring, and
(iv) R is a left Noetherian left FGDPI-ring (see Corollary 5.9).

Note also that if R is a right Noetherian right FGDPI2-ring then R
is a left Si-ring and in particular R is left hereditary (see Corollary
5.10).

2* Right CDPI-rings. In this section we first look at charact-
erizations of right CDPI-rings, we then examine the relationship
between right CEPI-rings and right RIC-rings and finally we gene-
ralize the theorem of Osofsky mentioned in the Introduction.

LEMMA 2.1 (See [10], Lemma 5.1). A ring R is a right GΌPI-
ring if and only if for every right ideal E of R there exists an
idempotent element e [such that E is contained in the right ideal
eR and the right R-module eR/E is injective.

COROLLARY 2.2. Let R be a right CDPI-ring and E be a right
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ideal of R with zero left annihilator. Then the right R-module
R/E is injective.

If X is a nonempty subset of a ring R then by rl(X) we shall
mean r(l(X))9 the right annihilator of the left annihilator of X.
The proof of the next result is an easy adaptation of the proof of
[10], Lemma 5.7.

LEMMA 2.3. Let R be a Baer ring. Then R is a right CDPI-
ring if and only if rl(E)/E is an injective right R-module for each
right ideal E of R.

THEOREM 2.4. Let R be a Baer ring. Then R is a right CDPI-
rίng if and only if R/E is an injective right R-module for each
right ideal E of R with zero left annihilator.

Proof. In view of Corollary 2.2 we need prove only the suffici-
ency. Suppose that R is a ring such that R/E is injective for every
right ideal E with l(E) = 0. Let A be a right ideal of R. Since
R is a Baer ring there exists an idempotent element a of R such
that rl(A) = aR. Let B = {reR: are A}. Since a is idempotent it
follows that A = aA and hence A Q B. Then aR = rl{A) Q rl(B).
But (1 - a) RQBQrl(B) and hence Rrl(B). Thus l(B) = 0 and by
hypothesis R/B is injective. Since the mapping φ: R/B —* a R/A
defined by <p(r + B) — ar + A (reR) is an jR-isomorphism it follows
that aR/A is injective. By Lemma 2.1 R is a right CDPI-ring.

COROLLARY 2.5. Let R be a ring which does not contain an
infinite collection of orthogonal idempotent elements. Then R is a
right CDPI-ring if and only if R is a right PP-ring and R/E is
an injective right R-module for every right ideal E of R with zero
left annihilator.

Proof. The necessity is a consequence of Corollary 2.2 and [10],
Lemma 2.4. The sufficiency follows by the theorem and [9], Theorem
1.

An immediate consequence of Corollary 2.5 is the next result.

COROLLARY 2.6. Let R be a semiprimary ring. Then R is a
right CDPI-ring if and only if R is a right PP-ring such that R/E
is an injective right R-module for every right ideal E of R with
zero left annihilator.

COROLLARY 2.7. Let R be a ring which does not contain an
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infinite direct sum of nonzero right ideals. Then R is a right
CDPI-ring if and only if R is a right nonsingular ring such that
R/E is an injective right R-module for every right ideal E of R
with zero left annihilator.

Proof. The necessity follows by Corollary 2.2 and [10], Lemma
2.4. Conversely, suppose that R is a right nonsingular ring such
that R/E is an injective right jβ-module for each right ideal E with
1{E) = 0. Since R is right nonsingular it follows that R is a right
RIC-ring. Also by [4], Lemma 1.4 and Theorem 2.3 (iii), R is a
right Goldie ring. By [10], Corollary 4.3 and Lemma 4.4, R is a
right PP-ring. Finally by Corollary 2.5 R is a right CDPI-ring.

Next we consider briefly right CEPI-rings. Let £ be a right
ideal of a right CEPI-ring R. There exists a right ideal F of R
containing E such that F/E is protective and R/F is injective. Since
F/E is projective there exists a right ideal G of R such that E Π
G = 0 and F — E($G. Moreover, G = F/E is projective. We have
proved:

LEMMA 2.8. A ring R is a right CEPI-ring if and only if for
every right ideal E of R there exists a projective right ideal G of
R such that E (Ί G = 0 and R/(E 0 G) is an injective right R-
module.

In [10], Lemma 2.4, we proved that a right CEPI-ring is a right
semihereditary right RIC-ring. Now we have the following result.

THEOREM 2.9. A ring R is a right CEPI-ring if and only if
R is a right PP- right RIC-ring.

Proof. As we have just remarked the necessity is proved in
[10], Lemma 2.4. Conversely, suppose that R is a right PP-right
RIC-ring. Let E be a right ideal of R. By Zorn's lemma there
exists a maximal collection S of nonzero elements xλ (λ e A) of R such
that if H = Σ xλR then H = 0 ^ xλR and E Π H = 0. Since R is a
right PP-ring, H is projective. Let a be a nonzero element of i?.
If a $ S then either aR Π H Φ 0 oτ E f) (aR ® H) ̂  o. it follows
that E © i ί is an essential right ideal of i?. Since iϋ is a right
RIC-ring, the right iϋ-module R/(E® H) is injective. By Lemma 2.8
R is a right CEPI-ring.

Finally in this section we give the following generalization of
Osofsky's theorem [8].
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THEOREM 2.10. A ring R is semiprime Artinian if and only
if R is a right self-injective right RIC-ring.

Proof. The necessity is a consequence of Osofsky's theorem.
Conversely, let R be a right self-injective right RIC-ring. Since R
is right self-injective, given any right ideal A of R there exists an
idempotent element e of R such that A is an essential submodule
of the right ideal eR. Since R is a right RIC-ring it follows that
eR/A is injective. By Lemma 2.1 R is a right CDPI-ring. Let C be
a cyclic right ϋJ-module. There exists a projective module P and an
injective module Q such that C = P 0 Q. Since P is therefore cyclic
it follows that P is isomorphic to a direct summand of R and hence
P is injective. Thus C is injective. Thus every cyclic right iϋ-module
is injective and R is semiprime Artinian by Osofsky's theorem [8].

3* Semiprimary right CDPI-rings* Right CDPI-rings are right
RIC-rings (see [10], Lemma 2.4). In addition, by [10], Lemma 2.5
and Theorem 4.1, semiprimary right RIC-rings are right Si-rings.
Also, by [5], Proposition 3.5, semiprimary right Si-rings are left
Si-rings. Thus we have the following result.

LEMMA 3.1. Semiprimary right CDPI-rings are right and left
Si-rings.

Let R be a right Si-ring. By [5], Proposition 3.3, R is right
hereditary. If in addition R is semiprimary then R is a Baer ring
by [9], Theorem 1. Noting this fact, the next result of this section
is proved by adapting the proof of [10], Theorem 5.13.

LEMMA 3.2. A ring R is a semiprimary (right) Si-ring if and
only if R is semiprime Artinian or there exist semiprime Artinian
rings S and T and a left S-, right T-bimodule M such that M is a
faithful left S-module and R is isomorphic to the ring (S, M, 0, T).

For the remainder of this section we shall fix the following
notation: S and T are semiprime Artinian rings, M is a left S-,
right T-bimodule (not necessarily faithful as a left S-module) and R
is the ring (S, M, 0, T). That is, R consists of all "matrices"

Vs m
(s, m, 0, t) =

_U

with s in S, m in M and t in T, addition and multiplication in R
being the usual matrix addition and multiplication. For each non-
empty subset X of M let Ann5 (X) denote the annihilator of X in
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S; that is, Ann5 (X) = {s e S: sX = 0}. Let I = Ann^ (Λf) and let q
be the central idempotent element of <S such that / = Sq. The right
socle of R will be denoted by A. It can easily be checked that
A = (I, M, 0, T) and A is an essential right ideal of R. By [5],
Proposition 3.1, R is a right Si-ring and in view of Lemma 3.2 we
can take R as a typical semiprimary right Si-ring. The Jacobson
radical of R will be denoted by J. Clearly J = (0, M, 0, 0). Moreover
A — J(&eR where e is the idempotent (q, 0, 0, 1) of R (here 1 is the
identity element of the ring Γ). Note that eJ = 0 and recall that
A = π {i£: JJ is an essential right ideal of R}.

LEMMA 3.3. Let R be a semiprimary right Si-ring with
Jacobson radical J and let X be a right R-module. Then X is in-
jective if and only if given any homomorphism <p: J~+X there exists
an element x of X such that φ(j) — xj for every element j of J.

Proof. The necessity is an immediate consequence of Baer's
criterion for injectivity (see for example [1], Lemma 18.3). Converse-
ly, suppose that X has the stated property. By Lemma 3.2 we can
suppose without loss of generality that in the above notation R =
(S, M, 0, T). Let Z = Z{X) be the singular submodule of X. Since
R is a right Si-ring it follows that Z is injective and hence there
exists a submodule Y of X such that I = 2 φ 7 . Note that Y is
nonsingular. Let E be an essential right ideal of R and φ: E~+Y
be an jβ-homomorphism. Let a be the restriction of φ to J. By
hypothesis there exists an element x of X such that a(j) = xj (j e J).
If x = z + Vι where zeZ, yxeY9 then clearly a(j) = # j (i e J). Let
y2 be the element φ{e) of F, where e = (q, 0, 0, 1) as above. Let y
be the element ^(1 — e) + 2/2β of Γ. If a e A then α = j + er for
some elements j of J and r of iϋ and

φ(a) = cp(j) + φ(e)er = 2/J + #2er = ya .

Thus 9?(α) = ya(aeA). Now let δeΐ?. Since A is an essential sub-
module of E there exists an essential right ideal K of R such that

A. For any element k of ϋΓ, 9(6)A; = φ(bk) = 2/6Λ and hence
- !/&)*? = 0. It follows that (φ(b) - yb)K = 0. Since Γ is non-

singular it follows that φ(b) — yb. Hence φ(b) = 2/6(6 € JK), and by
Baer's criterion Y, and hence X, is injective.

It is clear from the proof of Lemma 3.3 that in Lemma 3.3 we
can replace J be the right socle A.

In view of Corollary 2.6 interest centres on right ideals of R
with zero right annihilator. Let E be a right ideal of R. Let F =
{a e S: (a, 0, 0, 0)eE}. Then F is a right ideal of S and there exists
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an idempotent element / of S such that F — fS. If / is the element
(/, 0, 0, 0) of R then fR = (fS, fM, 0, 0). If N is the T-submodule
(1 - f)M then M = fMφN and E = fR®E, where JBi is the right
ideal .£7 n (0, iSΓ, 0, T). For, if r = (a, δ, 0,c)eE with α in S, & in Λf
and c in JΓ then (α, 0, 0, 0) = (a, 6, 0, c)(l, 0, 0, 0) e E and hence a = /α
and r — fr e Ex. Now JEΊ = (2^ Π J) φ C for some right ideal C con-
tained in E19 Let Z) = {t e T: (0, #, 0, t) e C for some element # of
ikf}. Then D is a right ideal of T and there exists an idempotent
element g of T such that D = gT. Let m be an element of Msuch
that c = (0, m, 0, g) 6 C. For any element cx of C it can easily be
checked that cx — ccx e C Π J = 0. It follows that c is an idempotent
element of J? and C = cR. In particular c idempotent implies that
m = mg. Thus there exists a T-submodule X oί N such that £7
consists of all "matrices" (fa, fb + x + mt, 0, gt) with a in S, b in
M, a? in X and έ in Γ. Now suppose that l(E) = 0. It can easily be
checked that if e is an idempotent element of S such that Anns(x) = Se
then X = (1 — f)X implies that e(l — f)eSe and

belongs to Z(J&). Thus e(l - /). = 0 and g = 1. But e(l - /) = 0
implies that e = ef and Sβ C S/. This gives the following result
after a little checking.

LEMMA 3.4. A right ideal E of the above ring R has zero left
annihilator if and only if there exists a T-submodule X of M, an
idempotent element e of S such that Se = Ann5 (X), an idempotent
element f of S such that Se ξZ Sf, and an element m of M such that
E consists of all "matrices" (fa, fb + x + mt, 0, t) with a in S, b in
M, x in X and t in T.

LEMMA 3.5. If X = Ann3f (Ann^ (X)) for every T-submodule X
of M then R is a right CDPI-ring.

Proof. By Ann^ (Ann^ (X)) we mean the set of elements m of
M such that Ann5 (X)m = 0. In the notation of the previous lemma
let E be the right ideal of all "matrices" (fa, fb + x + mt, 0, t) with
a in S, b in M, x in X and t in T. Let s e Ann^ (fM + X); then
sfM = sX = 0. But sX = 0 implies that a — se and hence sf = sef =
se = a. It follows that sM = 0 and hence Ann^ (fM + X) = Ann5 (M).
By hypothesis /Λf + X = Ann,, (Ann^ (/Λf + X)) = M. It follows that
the ideal (0, M, 0, T) is contained in E. Let 9?: J-+R/E be an i?-
homomorphism. If 6 = (0, 0, 0, 1) then j = i& for every element j
of /and it follows that φ = 0. By Corollary 2.6 and Lemmas 3.2-3.4
J? is a right CDPI-ring.



DECOMPOSING MODULES INTO PROJECTIVES AND INJECTIVES 255

In particular if S = M = T then R is a right CDPI-ring. This
special case was proved in [10], Theorem 5.15. Another special case
is when M is a simple right Γ-module and again R is a right CDPI-
ring. This corresponds to the Jacobson radical J of R being a
minimal right ideal (see [10], Theorem 5.9). We can express Lemma
3.5 in terms of J as follows.

COROLLARY 3.6. Let R be a semiprimary right Si-ring such
that F = JΠ rl(F) for every right ideal F contained in the Jacobson
radical J of R. Then R is a right CDPI-ring.

THEOREM 3.7. In the above notation let R be the semiprimary
right Si-ring (S, M, 0, T). Then R is a right CDPI-ring if and
only if for every T-submodule X of M such that Anns (X) = Ann5 (M)
and every T-homomorphism φ: M-+ M/X there exists an element a
of S such that φ(m) — am + X for all m in M.

Proof Suppose first that R is a right CDPI-ring. Let X be a
T-submodule of M such that Ann^ (X) — Ann<? (M) — Sq and φ\ M—>
MIX a T-homomorphism. Let V be a set of coset representatives
of Xin Mand define a mapping τ: M —» Vby φ(m) — τ(m) + X (meM).
Let E be the right ideal (Sq, X, 0, T). It can easily be checked that
l(E) = 0 and thus, by Corollary 2.2, RjE is an injective right R-
module. Define φ: J->R/Eby φ(Q, m, 0, 0) = (0, τ(m), 0,0) + E (me M).
Since φ is an i?-homomorphism there exists an element r = (a, b, 0, c)
of R such that φ(j) = rj + E (j eJ). It can easily be checked that
this gives ψ(m) = am + X (meM).

Conversely, in the notation of Lemma 3.4 let E be the right
ideal of R consisting of all "matrices" (fa, fb + x + mt9 0, t) with a
in S, b in M, x in X and t in T. Let Y be the Γ-submodule fM + X
of M and let H be the right ideal consisting of all "matrices"
(0, y + mt, 0, t) with y in Γ and t in T. By [5], Proposition 3.3, R
is right hereditary. Thus to prove that R/E is an injective right
jβ-module it is sufficient to prove that R/H is an injective right
i2-module because H £ E (see [1], Exercise 18.10).

Let a:J-+R/H be an i?-homomorphism, where again J is the
Jacobson radical of R. If p = (0, 0, 0, 1) then p is an idempotent
element of R and J — Jp. It follows that if K is the right ideal
containing H such that Im a = K/H then K is contained in the ideal
(0, M, 0, Γ). For each element x of M choose an element xM of M
and an element xT of T such that α(0, £, 0, 0) = (0, x", 0, xτ) + iJ.
Since a is a homomorphism we note the following three facts.

( i ) There exist elements y0 in Y and tp in T such that 03f =
0T = ί0.
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(ii) For all elements x19 x2 in M there exist elements yL in Y
and tx in T such t h a t {xί + x2)

M — xf — x% = yλ + mtlf (x± + α?a)
Γ —

xl — xl = ίιβ

(iii) For all elements a? in ikf and c in Γ there exist elements y2

in Y and £2 in T such that (arc)* — xMc = y2 + mt2, {xc)τ — xτc = £2.
Define β: M-+ M/Y by /3(x) = (cĉ  — mxτ) + F for every element x
of ikf. By (i), (ii) and (iii) β is a Γ-homomorphism. But Y = /Λf + X
implies that Anns (IT) = Ann^ (M). Therefore by hypothesis there
exists an element ^ of S such that /3(#) = stx + Y (xeM). Let s be
the element (s19 0, 0, 0) of R. Then for each element j of J there
exists an element x of M such that i = (0, x, 0, 0) and hence a(j) =
(0, x*, 0, α^+iΓ = βj+fl". Thus a(j) = s i + ί f (i e J). By Corollary 2.6
and Lemmas 3.2-3.4 R is a right CDPI-ring. This proves the theorem.

Combining Lemmas 3.1, 3.2 and Theorem 3.7 we have:

COROLLARY 3.8. A ring R is a semiprimary right CDPI-ring
if and only if R is semiprime Artinian or there exist semiprime
Artinian rings S and T and a left S-, right T-bimodule M such that
M is a faithful left S-module and for every Tsubmodule X of M
such that Anns (X) = 0 and T-homomorphism φ:M—>M/X there
exists an element a of S with φ{m) — am + X for every m in M, and
R is isomorphic to the ring (S, M, 0, T).

COROLLARY 3.9. In the above notation let R be the semiprimary
right Si-ring (S, M, 0, T). Suppose that R is a right CDPI-ring.
Then there does not exist a left S-, right T-sub-bimodule X of M and
a nonzero T-submodule Y of M such that Ann5 (X) = Ann5 (ikf),
X Γl Y — 0 and Y can be embedded in X.

Proof Suppose that M contains a sub-bimodule X and a sub-
module Y with the given properties. Let X1 be a T-submodule of X
such that there is a Γ-isomorphism φ: X1-^Y. Since T is semiprime
Artinian there exists a Γ-submodule N of M such that M = X1 0
7 φ N. Define a: Λf-> M/X by a{xx + y + n) = φfa) + X for all xx

in Xίf y in Y and n in N. If R is a right CDPI-ring then by the
theorem there exists an element s of S such that for each element
α?i of Xlf φ(xx) + X = a(x,) = s^ + X It follows that φfa) eXf]
Y = 0 for each element ^ of Xly a contradiction. Thus R is not a
right CDPI-ring.

COROLLARY 3.10. Suppose that S and T are simple rings and
the above ring R — (Sf M, 0, T) is a right CDPI-ring. Then M is
a simple left S-, right T-bimodule.
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Proof. Let X be a nonzero left S-, right T-sub-bimodule of M.
Since S is simple it follows that Anns (X) = Ann^ (M) = 0. If Y is
a simple T-submodule of M then F can be embedded in X, because
T is simple and simple right T-modules are isomorphic. By Corollary
3 . 9 I n Γ ^ 0 and hence Y £ X. It follows that X = M.

We can express Corollary 3.10 in the following form.

COROLLARY 3.11. Let R be a semiprimary right CDPI-ring with
Jacobson radical J. If R contains precisely two maximal ideals then
J is a minimal ideal of R.

4* Category equivalence* Let R be a ring and A, B be right
iu-modules. A monomorphism φ: A —• B is called essential if and only
if Im φ is an essential submodule of B\ that is, Im φ n C Φ 0 for
every nonzero submodule C of B. The first lemma in this section
is elementary and well known but we shall include its proof for
completeness.

LEMMA 4.1. A right R-module C is singular if and only if

there exists an exact sequence Q-*A~+B~+C-^0 of right R-modules
such that a: A —> B is an essential monomorphism.

Proof. Suppose that C is singular. For each element c of C
let Rc = R and let F = φ ^ Rc. Let π: F-+C be the canonical projec-
tion. For each element c of C there exists an essential right ideal
Ec of R = Rc such that cEc = 0. Let E = ©,, # c . Then E is an
essential submodule of F and i? £ Ker π. If iΓ = Ker π and i: K-> F

is inclusion then 0 —> If —*F —•C-̂ O is an exact sequence such that
i is an essential monomorphism. Conversely, suppose that there

exists an exact sequence 0-^A-^J3—>C-^0 of right ϋί-modules such
that a is an essential monomorphism. Let ceC and let b be an ele-
ment of B such that β(b) — c. It can easily be checked that Ker β =
Im a is an essential submodule of B implies that G = {r e R: br e
Ker β} is an essential right ideal of R. Also, cG = £(&)(? = /S(6G) = 0.
It follows that C is singular.

COROLLARY 4.2. A right R-module C is a finitely generated
singular module if and only if there exists an exact sequence

0 —> A ^+ B-^C -»0 o/ rigr&ί R-modules such that B is finitely
generated and a: A-> B is an essential monomorphism.

LEMMA 4.3. A ring R is a right RIC-ring if and only if every
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finitely generated singular right R-module is injective.

Proof. The sufficiency follows from the fact that if E is an
essential right ideal of R then R/E is a cyclic singular right R-
module. Conversely, suppose that R is a right RIC-ring. Let n be
a positive integer and X a right jβ-module generated by elements
xlf x2, , xn. If n = 1 there is nothing to prove. Suppose that
n > 1 and let Y = xjt + x2R + + xn-γR. Then 7 is a singular
module. If Y is injective then there exists a submodule Z of X
such that X = 7 φ JZ". It follows that Z is a cyclic singular module
and hence Z is injective. Thus X is injective. The result follows
by induction on n.

COROLLARY 4.4. Any ring Morita equivalent to a right RIC-
ring is itself a right RIC-ring.

Proof. By Corollary 4.2 since category equivalence preserves
exact sequences, finitely generated modules and essential monomor-
phisms (see [1], Propositions 21.4, 21.6(5) and 21.8(2)).

THEOREM 4.5. A ring R is a rihgt GEPI-ring if and only if
every finitely generated right R-module is the extension of a projec-
tive right R-module by an injective right R-module.

Proof. The given condition is clearly sufficient for R to be a
right CEPI-ring. Conversely, suppose that R is a right CEPI-ring.
Let n be a positive integer and X be a right i2-module generated
by elements xίf x2, , xn. If n = 1 there is nothing to prove and
so we suppose that n > 1. Let Y — xjt + xjt + + xn-ιR* Sup-
pose there is a submodule A of Y such that A is projective and
Y/A is injective. Since X/Y is cyclic and R is a right CEPI-ring it
follows that there exists a submodule B of Xsuch that 7 £ £ , B/Y
is projective and XJB is injective. Now consider B/A. Since Y/A
is injective there exists a submodule C of B such that Aζ^C and
B/A = (Y/A) 0 (C/A). Since C/A = B/Y is projective and A is pro-
jective it follows that C = A 0 (C/A) is projective. Moreover,
β/C = Y/A is injective and hence X/C = (B/C) 0 (X/B) is injective.
The result follows by induction on n.

COROLLARY 4.6. Any ring Morita equivalent to a right CEPI-
ring is itself a right CEPI-ring.

Proof. By the theorem since category equivalence preserves
exact sequences, finitely generated modules, projective modules and
injective modules (see [1], Propositions 21.4, 21.6(2) and 21.8(2)).
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It is interesting to compare Theorem 2.5 with the next result.

THEOREM 4.7. A ring R is a right Si-ring if and only if every
right R-module is the extension of a projective right R-module by
an injective right R-module.

Proof. Suppose that every right ϋϊ-module is the extension of
a projective module by an injective module. In particular, this
means that R is a right CEPI-ring. By [10], Lemma 2.4, R is right
nonsingular. Let X be a singular right iϋ-module. There exists a
submodule Y of X such that Y is projective and XjY is injective.
Suppose that Y Φ 0 and let y be a nonzero element of Y. Since Y
is projective there exists a homomorphism φ: Y-+R such that φ(y)Φθ.
But there exists an essential right ideal E of R such that yE = 0
and hence <p(y)E = 0. This contradicts the fact that R is right non-
singular. Thus Y = 0 and X is injective. It follows that R is a
right Si-ring.

Conversely, suppose that R is a right Si-ring. Let A be a right
ϋ?-module and Sΐ the collection of cyclic submodules of A. By Zorn's
lemma there is a maximal collection 23 of members of 9ί whose sum
is direct. Let A be an index set and xλ elements of A such that 23
is the collection of submodules xλR(X e A). Let B — φ ^ xλR. The
choice of B ensures that B is an essential submodule of A. Since R
is a right Si-ring it follows that R is right hereditary (see [5],
Proposition 3.3) and hence B is projective. Moreover A/B is a
singular right iϋ-module and is injective because R is a right Si-ring.
It follows that every right iϋ-module is the extension of a projective
module by an injective module.

COROLLARY 4.8. If R is a right Noetherian right RIC-ring
then every right R-module is the extension of a projective right R-
module by an injective right R-module.

Proof. By the theorem and [10], Theorem 4.1.

In particular Corollary 4.8 tells us that any right Noetherian
right CDPI-ring R has the property that every right iϋ-module is
the extension of a projective module by an injective module.

Next we consider right FGDPI-rings. The proof of Corollary 4.6
gives immediately:

LEMMA 4.9. Any ring Morita equivalent to a right FGDPI-ring
is itself a right FGDPI-ring.
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Before examining the relationship between right FGDPI-rings
and right CDPI-rings we first introduce some notation. Let R be a
ring, n a positive integer and Rn the complete ring of n X n matrices
with entries in R. Let (r^) denote the n x n matrix whose (i, j)th
entry is the element ri3- or R. For any right i2-module X let X{n)

denote the right i2-module I © I φ © I ( % copies). Then Xn)

can be made into an ϋ^-module by defining:

Jfe = l fc = i , Σ

where xi e X and r ί5 e i? (1 ̂  ί, j ^n). Let ei5 denote the matrix unit
in Rn with 1 in the (i, i)th position and zeros elsewhere. For any
right ^-module Y, Yen is a right .ft-inodule. It is easy to check
that for any right iϋ-module X the right i2-modules X and X{n)eιt

are isomorphic. Recall the following result.

LEMMA 4.10 (See [7], Corollary 2.3). With the above notation,
a right Rn-module X is projective (respectively injective) if and only
if the right R-module Xen is projective (respectively injective).

THEOREM 4.11. Let n be a positive integer. A ring R is a right
FGDPIn-ring if and only if Rn is a right CDPI-ring.

Proof. Suppose that Rn is a right CDPI-ring. Let X be a right
j?-module generated by elements xί9 x29 — ,xn. If Y = Xw then Y
is the cyclic right ^-module (xl9 x2, , xn)Rn. There exists a projec-
tive right Rn-moάule P and an injective right J?w-module Q such that
F = P φ Q . Then Yen = (Pen) 0 (Qen), as i2-modules. Since the
right iϋ-modules X and Yen are isomorphic it follows that X is the
direct sum of a projective module and an injective module by Lemma
4.10. Thus R is a right FGDPI^-ring.

Conversely, suppose that R is a right FGDPIw-ring. Let A = aRn

be a cyclic right ^-module. Then Aen = aRnen = Σί=i c^eklR is an
^-generator right iϋ-module. By hypothesis there exists a projective
right iϋ-module B and an injective right iϋ-module C such that
Aen = S 0 C . Now i?% = RnenRn implies that AenR% = AβneujBΛ = A
and hence A = (BRn) + (CRn). Since 2? = J5eu and C = Cen it follows
that

BRn = Σ ^ l f c and CRn = Σ Cβlfc .
fc=l A ; = l

It can easily be checked that Bf)C = 0 implies that (BRn) Π (C22 J = 0.
That is A = (JBJBJ φ (CSJ. Moreover, (BRn)en = 5 and (CRn)elx = C.
By Lemma 4.10 Bi?% is a projective right i2w-module and Ci2% is
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an injective right it^-mudule. It follows that Rn is a right CDPI-
ring.

COROLLARY 4.12. A ring R is a right FGDPI-ring if and only
if Rn is a right CDPI-ring for every positive integer n.

It is interesting to contrast Theorem 4.11 with the next result.

THEOREM 4.13. Let R be a right CDPI-ring and e be an idem-
potent element of R such that R = ReR. Then the subring eRe of R
is a right CDPI-ring.

Proof. Let S denote the ring eRe and let / be a right ideal of
S. If J is the right ideal IR of R then J £ eR since I = el. By-
hypothesis there exist right ideals F and G of R such that JQ
F £ eR, J £ G £ eR, F/J is a projective right .K-module, G/J is an
injective right ^-module and eR/J = (F/J) 0 (G/J). Since eR/G = F/J
is projective there exists a right ideal H of R such that eR = G 0 H.
Then Ge and He are right ideals of S, S = (Ge) 0 (He) and hence
S/(Ge) is a projective right S-module. Moreover, eR = F + G,
Ff] G = J together imply S = (Fe) + (Ge) and (Fe) Π (Ge) = Je = Ii2e =
Ie.Be - /. Thus S/J is the direct sum ((Fe)/I) 0 ((Ge)/I) of the right
S-modules (Fe)// and (Ge)//. Also, (Fe)/I = S/(Ge) is a projective
right S-module. It remains to prove that (Ge)/I is an injective right
S-module. Note that G = GR = GReR - GeR. Thus it is sufficient
to prove the following result.

LEMMA 4.14. Let R be a ring and e be an idempotent element
of R such that R = ReR. Let A £ B be right ideals of the ring
S = eRe and A = AR, B = BR. If B/A is an injective right R-
module then B/A is an injective right S-module.

Proof. Let C be a right ideal of S and φ: C -» B/A an S-homo-
morphism. Let V be a set of coset representatives of A in B and
define a mapping a:C-*V by α(c) + A = φ(c) (eeC). Define <p:

* B/A by

for all positive integers n and elements ct of C and rt of i? (1 ̂  i ^ %).
Clearly ^ is independent of the choice of V. Suppose n is a positive
integer, rt 6 R and ct 6 C (1 ̂  i ^ n) and

r, = 0
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For any element x of R,

n

Σ CiβViXe — 0
i=ί

and hence

Σ φ(Ci)ertxe = 0 .
t = l

That is, for all x in i?,

Σ α(Ci)β î»β e A .
1 = 1

Since R = ReR it follows that 1 e ReR and hence

cjer^ G Aΐ? = A .

Thus <? is well defined and clearly <p is an JJ-homomorphism. By
hypothesis there exists an element b of B such that φ(r) — br + A
(reC). It follows that bee Be = BRe = Sβiϊβ = 5. Let ceC. Then
c = cβ = ec and φ(c) = a(c) + A — a(c)e + A and ψ{c) = α(c)e + A —
be Λ- A— bee Λ- A. This implies that α(c)β — 6βc e A Π S = A and hence
9?(c) = δec + A. Thus 9>(c) = δβc + A (c eC). It follows that B/A is
an injective right S-module. This completes the proof of Lemma
4.14 and hence also of Theorem 4.13.

5* Right FGDPI-rings* Let R be a semiprime right Goldie
ring. Goldie [4], Theorems 4.1 and 4.4, proved that R has a (clas-
sical) right quotient ring Q and Q is semiprime Artinian. Levy [7],
Theorem 5.3, proved that if R has the additional property that every
finitely generated torsion-free right iϋ-module is a submodule of a
free right iϊ-module then Q is the left quotient ring of R and hence
by [4], Theorem 4.4, R is a left Goldie ring. In actual fact to prove
that Q was the left quotient ring of R all Levy needed was the fact
that every 2-generator right ϋί-submodule of Q is contained in a free
right i?-module. Thus we can state Levy's result in the following
form.

LEMMA 5.1. Let R be a semiprime ring Goldie ring with right
quotient ring Q sueh that every ^-generator right R-submodule of Q
is contained in a free right R-module. Then R is a left Goldie ring.

Next we restate [7], Theorem 6.1, as follows.

LEMMA 5.2. Let R be a semiprime right and left Goldie right
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{and left) semihereditary ring. Then every finitely generated right
R-module X is the direct sum of its singular submodule Z(X) and
a projective R-submodule P.

COROLLARY 5.3. Let R be a semiprime right and left Goldie
ring. Then R is a right FGDPI-ring if and only if R is a right
RIC-ring.

Proof. The necessity follows by [10], Lemma 2.4. Conversely,
suppose that R is a right RIC-ring. Let X be a finitely generated
right iϋ-module with singular submodule Z. By [10] Corollary 4.3
and Lemma 4.4, R is right semihereditary. By Lemma 5.2 there
exists a projective submodule P of X such that X = Z 0 P. By
Lemma 4.3 Z is injective. It follows that R is a right FGDPI-ring.

Let R be a semiprime right Noetherian ring with right quotient
ring Q and suppose Q is a finitely generated right ϋί-module. Let
a be a regular element of R and consider the ascending chain
a~ιR C a~2R Q a~dR £ of ϋ?-submodules of Q. Since Q is a
Noetherian right iϋ-module there exists a positive integer n such
that a~nR — a~n~ιR. Then a'""1 = a~nb for some element b of R and
hence 1 = ab — ba. It follows that R — Q.

LEMMA 5.4. Let R be a prime right Noetherian right FGDPI--
Then R is a left Goldie ring.

Proof. Let Q be the right quotient ring of R. In view of
Lemma 5.1 it is sufficient to prove that every 2-generator right R-
submodule of Q is contained in a free right j?-module. Let X be a
2-generator right iZ-submodule of Q. By hypothesis there exists a
projective JS-submodule P of X and an injective iϋ-submodule I of
X such that X = P © I. Suppose that IΦ 0. For any regular ele-
ment c of R we have I = Ic (see [7], Theorem 3.1). Since I is
torsion-free, for all elements x of I and regular elements c of R
there exists a unique element x of I such that xc — x. By defining
xc~γ = x for all x in I and c regular in R we can make I into a
right Q-module. Since I Φ 0 and Q is simple Artinian it follows that
I contains a simple right Q-module. Since Q is simple Artinian all
simple right Q-modules are isomorphic. Because I is a finitely
generated right iϋ-module it follows that Q is a finitely generated
right i?-module. As our remarks above show, in this case R — Q
and hence R is left Goldie. Now suppose that Q Φ R. Then 7 = 0 ,
X = P and hence X is contained in a free right .β-module. Thus
every 2-generator right iϋ-submodule of Q is contained in a free
right .R-module. By Lemma 5.1 R is a left Goldie ring.
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LEMMA 5.5. Let S and T be subrings of a ring R such that
R = S φ I7. Let n be a positive integer. Then R is a right
FGDPIn-ring if and only if S and T are both right FGΏPIn-rings.

Proof. Suppose that R is a right FGDPI^-ring. Let X be an
^-generator right S-module. We can make X into an ^-generator
right ϋN-module by defining x(s + t) = xs for all x in X, s in S and
t in T. By hypothesis there exists a protective right i2-module P
and an injective right j?-module I such that I = P φ J . It can
easily be checked that P is a protective right S-module and I is an
injective right S-module. It follows that S is a right FGDPI^-ring.
Similarly T is a right FGDPI-ring.

Conversely, suppose first that n = 1; that is, S and T are both
right CDPI-rings. Let £ be a right ideal of R = S 0 T. Then there
exists a right ideal E1 of S and a right ideal E2 of T such that
.27 = 2?! © ί?2 Since S and T are right CDPI-rings there exist
idempotent elements eγ of S and e2 of Γ such that E1 Q exS, 2£2 £ β2Γ,
A = (e1S)/Eι is an injective right S-module and B = (e2T)/E2 is an
injective right T-module. The Abelian group C = A 0 B can be
made into a right i?-module by defining (a, b)(s + ί) = (as, 6ί) for all
α in A, b in 5, s in S and ί in Γ. If / = ex + β2 then / is an
idempotent element of R and E £ /B. Moreover, (fR)/E is isomor-
phic to the right iϋ-module C. If F is a right ideal of ϋ? then
F ^ ^ φ ^ for some right ideals F, of S and F2 of T, and it can
easily be checked that any i?-homomorphism φ: F-^C can be lifted
to an iZ-homomorphism ψ\ R^C. Thus C is injective. It follows
that R is a right CDPI-ring. Now suppose that n is any positive
integer and S and T are both right FGDPIw-rings. By Theorem 4.11
the matrix rings Sn and Tn are right CDPI-rings. But clearly
Rn = SΛ 0 Γw and the above argument shows that Rn is a right
CDPI-ring. By Theorem 4.11 R is a right FGDPI%-ring.

It is clear that one consequence of Lemma 5.5 is the following
result.

COROLLARY 5.6. Let S and T be subrings of a ring R such
that R = S 0 T. Then R is a right FGDPI-ring if and only if
both S and T are right FGDPI-rings.

THEOREM 5.7. Let R be a semiprime right Noetherian ring.
Then the following statements are equivalent.

( i ) R is a right FGDPI2-ring.
(ii) R is a right FGDPI-ring.
(iii) R is a left Goldie right RIC-ring.



DECOMPOSING MODULES INTO PROJECTIVES AND INJECTIVES 265

(iv) R is a finite direct sum A 0 Bx 0 J52 0 0 Bn where A
is a semiprime Artinian ring and for each 1 ̂  i ^ n the ring Bt

is a simple right and left Noetherian ring Mprita equivalent to a
Noetherian simple PCI-domain.

Proof (ii) => (i) is clear, (iii) => (ii) is a consequence of Corollary
5.3. (iv) => (iii) is a consequence of [5], Theorem 3.11. It remains
to prove (i) => (iv). Suppose that R is a right FGDPI2-ring. By [5],
Theorem 3.11, R is a finite direct sum A 0 Bλ 0 B2 0 0 Bn where
A is semiprime Artinian and Bt is a simple right Noetherian ring
Morita equivalent to a right Noetherian simple right PCI-domain
Di for each 1 <> i <Z, n. By Lemmas 5.4 and 5.5 the ring Bt is a
left Goldie ring for each 1 <; i <̂  n. Thus, for each 1 ̂  i ^ n, Dt

is left Goldie and hence a Noetherian simple PCI-domain by [3],
Theorem 22 and subsequent remarks. It follows that Bt is left
Noetherian (1 ̂  i S n). This proves (iv).

COROLLARY 5.8. For any positive integer m a ring R is a right
Noetherian right FGDPIm-ring if and only if R is a finite direct
sum A 0 Bx 0 J32 0 0 Bn where A is a right Artinian right
FGDPIm-ring and the ring Bi is a simple right and left Noetherian
ring Morita equivalent to a Noetherian simple PCI-domain for each

Proof By the theorem and Lemma 5.5.

COROLLARY 5.9. Let R be a semiprime ring. Then the follow-
ing statements are equivalent.

( i ) R is a right Noetherian right FGDPI2-ring.
(ii) R is a left Noetherian left FGDPI2-ring.
(iii) R is a right Noetherian right FGDPI-ring.
(iv) R is a left Noetherian left FGDPI-ring.

Proof. By the theorem, Lemma 5.5 and Corollary 5.6.

COROLLARY 5.10. Let R be a right Noetherian right FGDPI2-
ring with Jacobson radical J. Then the ring R/J is a left Noether-
ian left FGDPI-ring. Moreover R is a left Si-ring and in parti-
cular R is left hereditary.

Proof. By Corollary 5.8 R/J is a right Noetherian right FGDPI2-
ring and by Corollary 5.9 R/J is a left Noetherian left FGDPI2-ring.
In §1 we noted that right Noetherian right CDPI-rings are right
Si-rings. Also by [5], Proposition 3.5, right Artinian right Si-rings
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are left Si-rings. The result follows by [5], Theorem 3.11 and
Proposition 3.3.
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