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ONE-SIDED HEEGAARD SPLITTINGS
OF 3-MANIFOLDS

J. H. RUBINSTEIN

For a large class of closed orientable 3-manifolds, we
define a new decomposition method which uses embedded
one-sided surfaces and is analogous to Heegaard splittings.
The technique is most useful for studying some 'small" 3-
manifolds (i.e., which have finite fundamental group or are
not sufficiently large). We give several general criteria for
existence of these splittings and some results on nonorient-
able surfaces in lens spaces. Also stable equivalence (as for
Heegaard splittings) and a result of Waldhausen's are shown
to carry over to the one-sided case.

0* Introduction* In [7] an example is given showing that the
loop theorem is not valid for one-sided surfaces in 3-manifolds. For
this reason, such surfaces are difficult to handle and have not been
the object of much work. We would like to present a new approach
based on the following:

DEFINITION. Let M be a closed orientable 3-manifold. A pair
(Λf, K) is called a one-sided Heegaard splitting if if is a closed non-
orientable surface embedded in M such that M — K is an open
handlebody.

REMARKS. (1) If (Af, K) is a one-sided Heegaard splitting and
if N(K) is a small closed regular neighborhood of K, then N(K)
is homeomorphic to a twisted line-bundle over K. Also M—int N(K)
is a handlebody which we denote by Y.

(2) There is a double cover p:M—>M naturally associated
with a one-sided Heegaard splitting (M, K). It is the covering of
M corresponding to the subgroup i^π^M — K) of πί(Λf), where i is
the inclusion. The surface p~~\K), which we denote by K, is the
orientable double cover of K and (M, K) is a Heegaard decomposi-
tion (i.e., the closures of the components of M—K are handlebodies).
If g:M-*M is the covering transformation for p then K is g-
invariant and g interchanges the components of M — K.

We work in the PL category and let M be a closed orientable
3-manifold throughout. In § 1 it is proved that there are one-sided
splittings associated with any nonzero class in HZ(M, Z2). In § 2
one-sided decompositions are discussed where the surface K is (geo-
metrically) incompressible. This is the most useful setting for the
theory (cf. [4] for some results employing this approach).
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In § 3 a method based on [1] is given for studying the relation
in a lens space between a genus 1 Heegaard splitting and an em-
bedded incompressible nonorientable surface. As applications, it is
proved that any two incompressible surfaces in a lens space are
isotopic and a simple derivation of the algorithm of [1] for the genus
of these surfaces is given.

In § 4 we show that two one-sided splittings associated with the
same class in H2(M, Z2) are stably equivalent (cf. [6]). Finally in
§ 5 the standard form for maps of degree 1 in [9] is adapted to
one-sided decompositions.

1* Existence of one-sided splittings•

DEFINITION. Suppose K is a closed nonorientable surface em-
bedded in M. We denote by [K] the class in H2{M, Z2) which is
the image of the generator of H2(K, Z2) by the map induced by the
embedding of K in M. If (M, K) is a one-sided Heegaard splitting
then we call [K] the class associated with (M, K).

THEOREM 1. For any element a Φ 0 in H2(M, Z2), there is a
one-sided Heegaard splitting (ikf, K) with [K] = a.

Proof. The existence of a closed nonorientable surface K em-
bedded in with [K] = a follows as in [1]. Explicitly let /: M-+RP4

be a map such that /#: H^M, Z2) —> H^RP*, Z2) gives the element of
H\M, Z2) corresponding to a by Poincare duality. Assume / is
transverse on the submanifold RPZ. We can then join up the com-
ponents of the surface f~\RPz) using elementary surgery, by a
homotopy of /. This gives K.

As in Remark 2 above, there is a double cover p:M->M as-
sociated with K. Suppose M is triangulated with K as a full sub-
complex. Then there is a lifted ^-invariant triangulation of M.
Let K = p~\K) and let the vertices in K be divided into disjoint
classes V and W with W = gV. We denote the closures of the com-
ponents of M — K by Yλ and Y2.

Let Γt be the union of the 1-simplices of the triangulation of
M with interior in int Yi9 i = 1, 2. Let N(Γt) denote the closed
simplicial regular neighborhood of Γt in Yif with respect to the
second derived triangulation. Then Yt — int N(Γt) is the simplicial
neighborhood of the dual 1-skeleton of Y* and so is a handlebody.

Clearly JV(Λ) n K = N(Γ2) Π K = N(V) U N(W), with N(V) Π
jSf(W) = 0 and gN(V) = N(W). Let N(V) be a small closed regular
neighborhood of N(V) in Y19 chosen so that N(V) Π gN(V) = 0 .
By an ambient isotopy of Yλ with support in N(V), we can shift
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Λ to Λ* and JV(Λ) to N(Γ?) so that N(Γ?) n flriNΓCΛ*) = 0 . We denote
gΓt by Γ? and gN{Γΐ) by i\Γ(Γ*).

Define Γ? as (Γx - intJ^Λ*)) U iV(Γa*). Then Γf, which is ob-
tained by adding the handles of N(Γ%) to the handlebody Yx —
int N(Γ*), is a handlebody. Also K* = dY* is ^-invariant and so
(M, X*) is a ^-invariant Heegaard splitting. Therefore (M, K*) is
a one-sided Heegaard splitting, where K* = p(K*). It is clear that
[i£] = [!£*], since the same double covering M is associated with K
and if*.

H2(M, Z8) ~ iΓ(ikf, Za) = if^M, Z2). So AT has a one-sided
Heegaard splitting if and only if H^M, Z2) Φ 0.

2. Incompressible one-sided splittings*

DEFINITION. A closed surface K Φ S2 embedded in M is incom-
pressible if there is no disk D embedded in M with D Γ) K = 3D a
noncontractible curve in K.

REMARK. If K Φ S2 is two-sided in M, then as is well-known
by the loop theorem, K is incompressible if and only if the map
i*: π^K) —> πλ(M) induced by the embedding is an injection. No
similar such a nice criterion has been found for one-sided surfaces.

DEFINITION. M is irreducible if any 2-sphere embedded in M
bounds a 3-cell.

LEMMA 2. Suppose M is irreducible and K is an incompressible
nonorientable surface embedded in M. The following are equivalent:

(1) M — K is an open handlebody.
( 2 ) The map i*: π^K) —» πt{M) is onto.
(3) There is no incompressible orientable surface in M which

is disjoint from K.

Proof. 1 => 2 is clear.
2 ==> 3. Suppose J is an orientable incompressible surface em-

bedded in M — K and i* is onto. If J is nonseparating in M then
there is a loop C which intersects J in a single point. But C is
homotopic to a loop in K, because πx{K) —> πx(M) is onto. Therefore
since JΠK= 0 , we get a contradiction to the invariance of in-
tersection number under homotopy.

On the other hand if J is separating in M then J = 3 W with W
contained in M — K. As i # is onto, it follows that πx(J) —> πx{ W) is
onto. This implies that J is a 2-sphere (since as is well-known,
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2βί(W) ^ βι(dW)), contrary to our assumption.
3 => 1. Let N(K) be a small closed regular neighborhood of K

with Y = M - int JV( J5Γ) and L = dN(K). We compress L to get Llf

each of whose components is incompressible or is a 2-sphere. All
the compressions can be made to occur in Y since K is incompres-
sible, as in 14.12 of [3]. Consequently we obtain that Lx is contained
in Y.

By assumption there are no incompressible orientable surfaces
in Y. Therefore we conclude that Lt is a union of 2-spheres. Then
as M is irreducible, these 2-spheres bound 3-cells and it easily follows
that Y is a handlebody.

LEMMA 3. Suppose H^M, Z) is finite. If aΦθ is in H2(M, Z2)
then there are disjoint nonorientable incompressible surfaces K^ in
M with Σ?=i [Ki\ — a- In particular there is a generating set of
classes of H2(M, Z2) represented by such surfaces.

Proof. As in Theorem 1, given a there is a closed nonorient-
able surface K embedded in M with [K] = a. We compress K to
JKΊ satisfying each component is incompressible or a 2-sphere. If
some two-sided component of Kx is nonseparating in M, then a loop
meeting this surface in a single point gives an element of infinite
order in H^M, Z), contrary to assumption. So all such components
are null-homologous and the one-sided components have associated
classes in H2(M, Z2) which sum to give a. We conclude that among
all such classes there is a set of generators for H2(M> Z2).

EXAMPLE. S2
 X S1 has no embedded incompressible nonorientable

surfaces, though by Theorem 1 it has one-sided Heegaard splittings.

Proof. Suppose K is incompressible and one-sided* in S2 x S1.
Assume K is transverse to S2 x {x}. Then by induction on the
number of curves of K Π S2 x {x}, it is easy to achieve S2 x {x} n
K = 0 by an isotopy of K. So K is contained in a 3-cell which is
impossible.

DEFINITION. We call (Λf, K) an incompressible one-sided Heegaard
splitting if (M, K) is a one-sided Heegaard splitting and K is in-
compressible in M.

THEOREM 4. Suppose M is irreducible and H^M, Z) is finite.
The following are equivalent:

(1) For any orientable incompressible surface J embedded in
M, the map H^J, Z2) -* Hγ(M, Z2) induced by the inclusion is onto.
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( 2) For any nonorientable incompressible surface K embedded
in M, M — K is an open handlebody.

If these conditions are satisfied, then there is an incompressible
one-sided splitting associated with any nonzero class in H2(M, Z2).

Proof 1 => 2. Suppose K is nonorientable and incompressible
in M. If J is orientable, incompressible and disjoint from K in M,
then the image of H^J, Z2) —> Hί(M9 Z2) is in the kernel of the epi-
morphism HX(M, Z2) —> Z2 which is the element of H\M} Z2) dual to
[K]. So the map HJ^J, Z2) -» H^M, Z2) is not onto, contrary to as-
sumption. We conclude that J Π K = 0 does not occur and there-
fore by Lemma 2, M — K is an open handlebody.

2 => 1. Suppose J is an orientable and incompressible surface in
M, for which H^J, Z2) —> H^M, Z2) is not onto. Then there is an
epimorphism H^M, Z2) —• Z2 with kernel containing the image of
H^J, Z2). Let f:M-*RP* be a map realizing the epimorphism.
Since / restricted to J is null-homotopic, without loss of generality
we can assume / is transverse on RP3 and /(J) Π RPZ = 0 .

Because JEΓ̂ Af, Z) is finite, all the two-sided components of
f~\RPz) are separating and there must be some one-sided com-
ponents. As in Lemma 3, we compress one of these latter surfaces
to obtain a one-sided incompressible surface K. Since J is incom-
pressible and M is irreducible, all the compressions can be made to
occur in M — J. By assumption M — K is an open handlebody con-
taining J and this gives a contradiction.

We now consider the last assertion of the theorem. Since
H^M, Z) is finite, given a Φ 0 in H2(M, Z2) Lemma 3 shows there
are disjoint nonorientable incompressible surfaces Kt in M with
Σ?=i [Kt] — a B u t for e a c h of these, M — Kt is an open handlebody
by Condition 2. For a handlebody X, since ΛΓ2(X, Z2) = 0 it follows
that there are no closed nonorientable surfaces embedded in X. We
conclude that n — 1 and [iξ] = α as desired.

COROLLARY 5. Suppose M is irreducible and not sufficiently
large. Then there is an incompressible one-sided splitting associated
with any nonzero class in H2(M, Z2).

REMARK. The theorem shows that M has many incompressible
one-sided splittings if and only if the existence of incompressible
two-sided surfaces is restricted.

PROPOSITION 6. Suppose M has an incompressible one-sided
Heegaard splitting. Then M is irreducible.

Proof Suppose S is a 2-sphere embedded in M. Assume S is
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transverse to K, where (Λf, K) is an incompressible one-sided splitting.
Since M — K is irreducible, it follows easily by induction on the
number of curves of S Π K that S bounds a 3-cell.

THEOREM 7. Suppose M is an orientable Seifert manifold with
fiber giving a nonzero class in HX{M, Z2). Assume M is neither a
union of two twisted line-bundles over a nonorientable surface nor
a surface-bundle over a circle. Then M has an incompressible one-
sided Heegaard splitting.

Proof. For the properties of Seifert manifolds, see [5] By
Proposition 1 of [2], M is irreducible. Let h be a fiber of M. Since
[h] Φ 0 in Hι{M9 Z2), there is an epimorphism Hλ{M, Z2) —> Z2 with
[h] not in the kernel. As in Theorem 1, we can find a closed non-
orientable surface K embedded in M with [K] dual to the corres-
ponding element of H\M, Z2). Consequently K and h have odd
intersection number.

Compressing K, we get a component Kt which has odd intersec-
tion number with h and is either a 2-sphere or is incompressible in
M. Suppose that the orbit surface for M is nonorientable. Then
we lift K19 h to K19 h in a double covering M of M, so that M has
an orientable orbit surface. Since h covers h once, it follows that
K19 h also have odd intersection number. The homotopy class {h} is
central in πx{M). There are two possibilities.

Case 1. Kx is two-sided in M.
After compressing Kx if necessary, we obtain a two-sided incom-

pressible surface J which has odd intersection number with h.
Therefore {h} is not in the image of πx(J) in π^M). Exactly as in
Theorem 2 of [2] it follows that M is a J-bundle over Sι and M
is either a union of two twisted line-bundles over a nonorientable
surface, or a surface-bundle over S\ contrary to assumption.

Case 2. Kt is one-sided in M.
Then Kx is one-sided in M. Suppose that J" is an orientable in-

compressible surface in M — Kt. Since h and Iζ. have an odd in-
tersection number, we see that {h} is not in the image of π^J) in
π^M). Passing to M9 we can apply the same argument as in Case
1. This gives a contradiction and so by Lemma 2, we conclude that
M — Kx is a handlebody.

If the orbit surface for M is orientable then a similar method
applies.

REMARKS. (1) Exactly the same argument as in (4.6) of [1]
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can be employed to show that if M is an orientable Seifert manifold
with orientable orbit surface and if K is an embedded nonorientable
surface which has odd intersection number with the fiber in M, then
π^K) -» π^M) is onto.

(2) To get examples where [h] Φ 0 in Hx{Mf Z2), take M such
that all the /^-invariants (multiplicities of the exceptional fibers) are
odd and the 6-invariant differs from the sum of the v-invariants by
an even number.

(3) The 3-manif olds in this theorem are in general sufficiently
large. They contain incompressible tori formed by the ordinary
fibers projecting to suitable circles in the orbit surface. Note that
such surfaces to some extent satisfy the conditions of Theorem 4;
the image of H^T, Z2) in H^M, Z2) certainly contains [h], where T
is a torus of ordinary fibers.

PROPOSITION 8. Let M be a Seifert manifold with S2 as orbit
surface and exceptional fibers of multiplicity (2, 2, n) excluding
S2 x S1, or (2, 4, n), for n ^ 1. Then there is an incompressible
one-sided splitting (M, K) such that K has genus 2 or 3 respectively.

Proof. For the (2, 2, n) case, see [4]. In the other case let Nx

and iV2 be small fibered neighborhoods of the exceptional fibers of
multiplicity 2 and 4 respectively and let Φ be the projection from
M to the orbit surface. Choose a nonsingular arc λ in the orbit
surface from Φ(dJVΊ) to Φ(dN2) missing the image of the third excep-
tional fiber and Φ(int Nt U int JV2). Then Φ~\X) is an annulus in M
with dΦ~\X) — Φ~\dX) consisting of a fiber in dNx and one in dN2.
By [1] or § 3 it follows that the component of dΦ~\X) in dNx bounds
a Mobius band in Nίf while the other curve of dΦ~\X) bounds a
Klein bottle with a hole in N2. Therefore we obtain a nonorientable
surface K of genus 3 embedded in M.

If K is compressible in M then M contains an embedded one-
sided RP2' By Proposition 1 of [2], M & RPS or M & RPZ %RP%

follows. The presentation of πt(M) given by the fibering (see [5])
shows that πL(M) = Z2 or Z2*Z2 is impossible. So K is incom-
pressible.

Finally we prove that M — K is an open handlebody. Now it is
easy to see as in § 3 or [1] that the map π,{K) -»πx(Nt U N2 U Φ~\X))
induced by the inclusion is onto. Since the complement of Nt U N2 U
Φ-1(λ) in M is an open solid torus, it follows that π^K) —> π^M) is
onto and so by Lemma 2 the result is established.

REMARKS. (1) Note that a Seifert space with exceptional fibers
of multiplicity (2, 2, 4) and S2 as orbit surface has incompressible
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splittings of genus 2 and genus 3. These are associated with dif-
ferent classes in H2(M, Z2) however.

(2) The Seifert manifolds with S2 as orbit surface and excep-
tional fibers of multiplicity (2, 2, n) excluding S1 x S2, or (2, 4, 3),
all have finite fundamental groups.

3* One-sided surfaces in lens spaces* Let M be the lens space
L(2k, q), where (2k, q) = l. Since H2(M, Z2) = Z2, M contains embedded
nonorientable surfaces. In [1] an algorithm is given for the mini-
mal genus, denoted N(Zk, q), of such surfaces. Note that an em-
bedded nonorientable surface of minimal genus is incompressible,
since H2(M, Z) = 0.

Let K denote an incompressible surface in M throughout this
section. Since M is not sufficiently large, K must be nonorientable
and M — K is an open handlebody by Corollary 5. Let (M, L) be a
Heegaard splitting of genus 1, with M = T U T where T U T =
dT = dT = L and T, T are solid tori.

LEMMA 9. After an isotopy, KΠT can be transformed into a
disk.

Proof, (cf. [1, p. 99]). By shrinking T, it can be assumed that
KΠ T is a collection of n meridian disks for T. Let D' be a me-
ridian disk for Tr. By an isotopy of K, we can suppose that Dr is
transverse to K and K Π D' contains no simple closed curves, since
K is incompressible. Also without loss of generality U can be
chosen so that no arc in dD' together with an arc in K n L bounds
a disk in L.

Let λ be a component of K Π D\ Then λ is an arc with ends
on curves of K Π L. If μ is an arc of dD' with dx = dμ then we
choose λ so that (int μ) f] K = 0.

Case 1. Both ends of λ are on a curve C of K Π L.
Then either n = 1 or there is an arc 7 of C with dμ = 37 and

μ U 7 bounds a disk on L. The latter contradicts our choice of D\

Case 2. λ joins curves C and C" of if (Ί I/.
There is an isotopy of K with support in a neighborhood of

D', which carries λ to μ along Df. After this isotopy Z" meets T
in n — 2 meridian disks and in a disk parallel to a disk on L. So a
further isotopy gives n — 2 meridian disks in K Π T and the result
follows by induction on n. Note K f] T = 0 implies K is contained
in Tr, which is impossible.

LEMMA 10. By an isotopy, K Π T can be changed into a Mobius
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band.

Proof. By Lemma 9 we can assume K Π T is a single meridian
disk. Denote K Π L by C and let D' be a meridian disk for Tf.
We can again suppose that K is transverse to D\ there are no closed
curves in KΓ)D' and no arc in 3D' together with an arc in C bounds
a disk in L.

Let λ be an arc of K Π D', chosen so that an arc μ of dDf with
dμ = 3λ satisfies (int μ) Γ\ K = 0. li μ has both ends on the same
side of C, then we get a contradiction to our choice of Df. Hence
μ goes from one side of C to the other. The isotopy of K taking
λ to μ along D' transforms K (Ί T into a Mobius band as required.

PROPOSITION 11. There are disjoint tori Ljy 1 ̂  j ^ g — 1, m
M (g — genus K) which are all parallel to each other and give
Heegaard splittings. The tori satisfy LjΠK = C3- is a single curve
and K — Ui CJ consists of 2 open Mobius bands and g — 2 open
Mobius bands with single holes.

Proof. By Lemma 10 there is a torus Lx with LXΓ\ K = Cx and
Γx n K equal to a Mobius band, where L, = dT, = 3T[ and Tlf T[ are
solid tori. We can assume K is transverse to D[, a meridian disk
for T[, K Π D[ contains no loops and no arc in dD[ together with an
arc in C1 bounds a disk in hγ. Then arcs μ and λ can be found with
properties as in Lemma 10. Let L2 be the image of Lx by the
isotopy taking μ to λ along D[ and pushing Lx a small distance into
int T[. Then L2 has the required properties and all the tori L3 are
constructed similarly. Note that after g steps the meridian disk
D'g can be chosen to miss K and the process stops.

THEOREM 12. Any two incompressible surfaces embedded in M
are isotopic.

Proof. Suppose iζ, K2 are both incompressible surfaces in M
and let (M, L) be a Heegaard splitting of genus 1 with L = dT=dT'.
By Lemma 9 we can assume i^ Π T and K2 Π T are disjoint meridian
disks. Let Ct denote the curve Kt Π L, i = 1, 2.

Let Df be a meridian disk for T and apply the argument for
Lemma 10. Then arcs μif Xt with the properties in that proof for
Ki can be found, i — 1,2. Without loss of generality we can suppose
that no arc of dDr with interior disjoint from Ct has both ends on
the same side of Ci9 for i — 1 or 2. It can be assumed also that
μι n C2 and μ2 (Ί Cx are both single points. There are three possibilities
as shown in Figure 1.
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(B)
FIGURE 1

In (A) μι and μ2 "spiral" oppositely, while in (B) and (C) they
"spiral" in the same direction. Note that in (C), μ1 Π μ2 =£ 0- It is
easy to see that in cases (B) and (C), after the isotopies of Kt taking
Xi to μt along D', the new curves KtΓ\ L are isotopic on L. Con-
sequently by a further isotopy it can be achieved that KtΓ\T and
K2 Π T are equal to the same Mobius band.

Suppose on the other hand that (A) is true. The four com-
ponents of L — d — C2 — μί — μ2 are open disks. Let B1 and B9 be
the closures of two of these, chosen as shown in (A) of Figure 1.
Assume that dD' is oriented so that it enters Bι at the end-point of
μx. Then dD' must leave B1 at a point of C2 Π B2, since otherwise
there is an arc of 3D' with both ends on the same side of Clf con-
trary to assumption. So 3D' enters B2 and similarly leaves it at a
point of Cx Π Bx. This implies that dD' remains in B1 U B2, which
is clearly false. We conclude that (A) does not occur.

To continue the procedure, it is only necessary to slightly disjoin
Kx and K2 near L by an isotopy. After g steps it follows that Kγ

and K2 are isotopic.

DEFINITION. One-sided Heegaard splittings (M, Kt) and (M, K2)
are strongly equivalent if Kx and K2 are isotopic.

REMARKS. (1) The theorem implies that any incompressible
surface in a lens space has minimal genus.

(2) An equivalent statement to the theorem is that any two
incompressible one-sided splittings of a lens space are strongly equiv-
alent. We conjecture that this is true for arbitrary one-sided split-
tings for which the surfaces have the same genus in a lens space
[cf. [10]).

(3) Let M be a lens space and (Λf, K) be an incompressible
one-sided splitting. Let ί%f(M) denote the quotient of the homeo-
morphism group of M by the normal subgroup of homeomorphisms
isotopic to the identity. The theorem implies that any class in
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£ίf(M) is represented by a homeomorphism which preserves the
splitting (Λf, K). This can be useful for studying £ίf{M) (cf. [4]
for the case M = L{An, ±{2n - 1))).

THEOREM 13 ((8.3) of [1]). N{2k, q) = 1 + N(2(k ~ Q), q - 2m),
where m, Q satisfy 2km — qQ — ± 1 , 0 < Q < k.

Proof. Let K be an incompressible surface in M. By Lemma
10 we can assume K Γt T is a Mobius band denoted £7, where as
usual J l ί ^ Γ U f , Γ Π T' = L and T, T" are solid tori. Let Tt be
a solid torus with meridian disk A We form a new lens space M1

as the union of Tt and T" identified along their boundaries by a
homeomorphism which takes 3D1 to 3E. Then ML contains a non-
orientable surface Kλ = (K — int E) U A> which has genus 1 less
than K.

Suppose Kγ is compressible in Mγ. Then there is a nonorientable
surface K2 embedded in Mx with smaller genus than Kx. By Lemma
9, after an isotopy K2 Γ) Tx can be transformed into a meridian disk.
But then K2 — int !\ has a boundary curve which bounds a Mobius
band in T. Consequently there is a nonorientable surface in M
with genus 1 greater than K2, which contradicts our assumption
that K has minimal genus. Therefore if Mι = L(2kίt qj we conclude
that N{2k, ϊ) = 1 + N(2klf qx).

In HJ^L, Z) let a, af be elements satisfying a~0 in Γ and α'~0
in T". Also let classes 6, 6' be chosen so that {α, 6}, {α', 6'} are bases
for HΊCL, Z). Without loss of generality we can suppose that a =
qar + 2&δ' and b — maf + Qδ', with m, Q chosen as above, since
M = L(2fcf q).

Now α, α' have intersection number ±2k. In the argument for
Lemma 10, clearly dE has two less intersection points with the curve
3D' than 3D does, where D, D' are the meridian disks for T, T
respectively. So [3E] and a' have intersection number with absolute
value strictly less than 2k. Also by a suitable orientation of 3E
it can be assumed that [3E] = — 2ί> + JVα where iV is odd, since 3E
and 3Z> have intersection number ±2. Hence [di£] — (Nq — 2m)α' +
(2kN-2Q)V and [SJS], α' have intersection number ±(2kN - 2Q).
We conclude that N — 1. Since S.E' is a meridian curve for 2\, it
follows that M1 = I#(2fc — 2Q, ^ — 2m) as desired.

4* Stable equivalence* Let (M, K) be a one-sided Heegaard
splitting and (M'f Kr) & one- or two-sided Heegaard splitting. Let
B, B' be 3-cells in M, Mf such that B n i£ = J5 and B' f) K' = D' are
disks. Suppose Λf — int J5 is attached to Mf — int JB' by a homeo-
morphism of the boundary 2-spheres, which takes 3D to 3D'. The
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resulting 3-manifold is the connected sum M$M' and contains the
closed nonorientable surface K$Kf. Clearly {M%M\K%Kf) is a
one-sided Heegaard splitting which we will denote by (M, K)$(M'9 K!)
and call the connected sum of the splittings (M, K), (Mf, Kf).

DEFINITION. One-sided Heegaard splittings (M, K), (M\ Kf) are
equivalent if there is a homeomorphism from M to M\ which maps
K to Kr.

Note that (M, K) # (ΛΓ, Kr) is independent of the choice of the
3-cells B, Br up to equivalence. Let (S3, L) denote the standard
Heegaard splitting of genus 1 of S3 and let (M, K) # n(S\ L) be the
connected sum with n copies of (S3, L).

DEFINITION. One-sided Heegaard splittings (Λf, K), (ΛΓ, Kr) are
stably equivalent if (Af, K)$n{S\ L) is equivalent to {M',K')$m(S\ L)
for some m, n.

THEOREM 14. Suppose (M, K), (M, K') are one-sided Heegaard
splittings with [K] — [K']. Then they are stably equivalent.

Proof. There is a double cover M of Mf associated with both
splittings, as in § 0. Let K, Kf denote the lifts of Ky Kr to M. Since
M — Kf is an open handlebody, there is a wedge of circles, denoted
Λ\ which is embedded in M — Kf as a deformation retract. Assume
that Λ' is transverse to K and let Λ[, A'2 be the lifts of Λ' to M.

We do the procedure of Theorem 1, using a triangulation of M
which contains Λr as a subcomplex. Let Γi9 N(Γi), Yi9 V, W, N(V)
be defined as in Theorem 1, with respect to K. It can be supposed
that the partition V U W of the vertices of K is chosen so that V
contains Λ'2Γ\K. Instead of moving Γt just in N(V), we need to
use an isotopy with support in N(V) U N(Λ'2 Π Yd, where N{Λ'2 Π Yd
is a small regular neighborhood of the second derived simplicial
neighborhood of Λf

2 Π Yx in ΓΊ The isotopy is chosen to shift Γ1

to Γf so that N(Γ?) n gN(Γ?) = 0 and N(Γ?) Π 4 = 0 .
Defining ίΓ* as in Theorem 1, we see that K* D (Λ[ U 4) = 0

has been achieved. Also by [6] it follows that (M, ϋΓ*) and (M, K)
are stably equivalent, where Z"* = p(K*). So there is no loss of
generality in replacing (Λf, K) by (M, if*), which we now do. Then
K Π A' — 0 and hence K is contained in a closed regular neighbor-
hood N(K') of if.

LEMMA 15. Suppose K is closed nonorientable surface embedded
in N which is a twisted line-bundle over a closed nonorientable
surface Kf. Then genus K ^ genus Kr. Equality holds if and only
if K is incompressible in N. In this case K and Kf are isotopic.
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Proof. We compress K so that every component is either in-
compressible or a 2-sphere. Since every two-sided surface in N
separates, some component Kx is nonorientable. It suffices to prove
that Kx is isotopic to K'.

Suppose without loss of generality that Iζ is transverse to K'
and that Kt f] K' contains only loops which are noncontractible in
both Kx and K' (as Kl9 Kr are incompressible). Let N(Kf) be a small
closed regular neighborhood with Kx Π N(K') consisting of Mobius
bands and annuli. Since H2(N, Z2) — Z2, it is easy to see that Kf — Kt

and Jζ — K' are orientable.
N — int N{Kf) is homeomorphic to dN x / and will be denoted

by X. Every component Rx of Kλ Π X is orientable and incompressible
in X. By [8] it follows that there is a region R' in dN(K') with
dR1 = dR' and Rt parallel to R'. Clearly then Rx can be chosen so
that (int Rr) Π Kx= 0 . There are unique components Rlf R\ of Kt — Kr

and Kf — Kx containing Rlf Rf respectively, and there is an isotopy
of Kx taking R, to R'.

If Kλ Π K' consists entirely of orientation-reversing curves then
the closure of Rt or Rf is Kx or K!. So Kx and if' are isotopic.
On the other hand if Kx (Ί Kr contains some orientation-preserving
curves then there must be at least one in dRλ = dR. In this case,
after the isotopy moving Rx to R' we can slightly disjoint Kx and Kr

so that the surfaces are again transverse and have fewer curves of
intersection. By induction on the number of these curves, the lemma
is proved.

Returning to the proof of the theorem, we have K included in
N(K'). So by the lemma there is a unique one-sided component Kt

obtained from compressing K in N(K'), and Kx is isotopic to Kf.
Any two-sided incompressible surface in N(K') must be parallel to
dN(K') by [8] and so is completely compressible in M. We conclude
that Kf can be assumed to be the result of a sequence of compres-
sions of K.

Consequently without loss of generality there is a collection of
disks Dlf , Dr embedded in M with the following properties

— The curves dDt are all contained in K and form a nonsepa-
rating set of loops in K (i.e., K— UδZ^ is connected).

— Di pi Dj is a union of disks Dk in the collection, for all i, j .
— Di intersects K transversely for all i, and each component of

K Π Di is one of the curves dDk.
— K' is obtained by successively compressing K using the disks

Di in order of size, starting with the smallest.
Next the complexity rii of a disk Dt is defined to be the number

of disks Dj which are contained in Dt. Our aim is to decrease all
the complexities to zero. Suppose there is a complexity which is
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nonzero. N(K) can be chosen small enough so that every component
of Dt Π N(K) is a small annulus containing exactly one curve of
Dt Π K, for all i.

At least one of the components of I?< Π Y is not a disk, for
some i. Let us consider the intersections of the meridian disks for
Y with the disks Dt. Note that in a handlebody, a loop which is
disjoint from a complete set of meridian disks must be contractible.
Therefore it easily follows that for some i, either one of the com-
ponents of Dif)Y is compressible in Y or there is a disk D embedded
in Y with 3D = X U 7, where λ, 7 are arcs in dY, Dt respectively
and both join two different curves of Dt Π d Y. In the former case
it is easy to see that we can alter the choice of the compressing
disks Dt so as to decrease some of the numbers nt.

It now suffices to suppose that we have a disk D as above. Let
μγ and μ2 be arcs in Dt (Ί N(K) which join the end-points of 7 to K>
with (int ft) D K = (int μ2) f] K = 0 . Clearly faClK and μ2f] K lie
in two different components of Dt Π K. An embedded disk D' in
N(K) can be found with dD' = ft U λ U ft U λ', where λ' is an arc
in K and If Π int Dr — 0. To see this we identify N(K) with the
mapping cylinder of the double covering of K. Then the mapping
cylinder restricted to λ intersects if in a singular arc, in general.
However the singularities may be pushed off the ends of this arc
to give D\

Let Do = ΰ U D' and let 7' denote the arc ft U 7 U ft. Then
3D0 = 7' U λ'. We perform an elementary surgery on K along the
path 7'. Consequently the effect of this is to add a trivial handle
to K. Also 7' is contained in Di and without loss of generality, Όt

can be chosen so that 7' joins dDi to some curve dDό for j Φ i. We
now observe that a set of compressing disks for K with the trivial
handle along 7' added, can be obtained by replacing Dt by two disks
D'iy D" which have complexities both strictly less than nt. For the
choices of D[, D", see Figures 2 and 3.

t
Dx

Ί'

The vertical line are in K.
The horizontal lines

represent compressing
disks D^Dz'D A .

FIGURE 2
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D2

1

/
D2

1
1 Tote that D2 ^ A
still and D'2 ̂  DB.

FIGURE 3

By induction, this completes the proof that all the complexities can
be reduced to zero. In this case it can be assumed that K is obtained
from Kf by elementary surgeries along a collection Γ of arcs, each
of which intersects Kr precisely at its endpoints.

Now M can be triangulated so that if is a full subcomplex and
the 1-skeleton contains Γ. Applying the procedure of Theorem 1,
we add a suitably shifted boundary of a small neighorhood of the
1-skeleton of M — K to K, and similarly for Kf using the 1-skeleton
of M — K — Γ. The same new splitting (M, K") is obtained in both
cases, and (M, K") is stably equivalent to (M, K) and (ikf, K') by
[6]. Hence the theorem is proved.

5* Mappings of degree 1*

LEMMA 17. Let f:Mf->M be an odd degree map between closed
orientable 3-manifolds. If (M, K) is a one-sided Heegaard splitting
then there is a one-sided Heegaard splitting (M\ Kf) and a map / '
homotopie to f such that f'~\K) = K'.

Proof. Using elementary surgery, we can obtain f~ι (K) is con-
nected by a homotopy of /, since πx(Mf K) = {1}. Suppose f~\K) is
orientable. Then / factors through the double cover of M associated
with the splitting (M, K). This contradicts the assumption that /
is of odd degree. Therefore f~\K) is nonorientable.

We now do the procedure of Theorem 1 using Mr and the surface
f~\K). As π^M, K) - {1}, all the 1-handles can be added to f~\K)
by a homotopy of /. If / ' : M'->M is the new map then f'~\K) = K'
gives a one-sided Heegaard splitting of M' as required.

THEOREM 18. With the hypotheses of Lemma 17, suppose that
f is of degree 1. Then f and K! can be chosen so that

/': M' - int N(K') > M - int N(K)
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is standard (in the sense of [9]), where f'~\N(K)) = N(K').

Proof. The map / ' found in Lemma 17 lifts to a degree 1 map
/': Mr —• M, where M', M are the double covers associated with the
splittings (ΛΓ, K')9 (Λf, K). If K, K' are the lifts of K, K' to M, W
respectively then f'~\K) = # ' and (M, £ ) , (iEf', If') are Heegaard
splittings.

Let Y[, Y'2 be the closures of the components of Mf — K\ In
Theorem 2.1 of [9] it is proved that / ' can be made standard on
the handlebodies Y[, Y'2 by the operation of drilling holes. It is
only necessary to do this in a manner which is invariant under the
covering transformation to obtain the result.
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