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AUTOMORPHISMS OF LOCALLY COMPACT GROUPS

JUSTIN PETERS AND TERJE SUND

It is proved that for arbitrary locally compact groups
G the automorphism group Aut (G) is a complete topological
group. Several conditions equivalent to closedness of the
group Int (G) of inner automorphisms are given, such as G
admits no nontrivial central sequences. It is shown that
Aut (G) is topologically embedded in the automorphism group
Aut 2(G) of the group von Neumann algebra. However,
closedness of Int “2(G) does not imply closedness of Int(G),
nor conversely.

1. Let G be a locally compact group and Aut (G) the group of
all its topological automorphisms with the Birkhoff topology. A
neighborhood basis of the identity automorphism consists of sets
N, V) ={acAut (@): a(x) e Vx and a(x)€ Vz, all xeC}, where C
is compact and V is a neighborhood of the identity e¢ of G. As is
well known, Aut (G) is a Hausdorff topological group but not generally
locally compact [1; p. 57]. In this article we are mainly concerned
with the topological properties of Aut(G) and its subgroup Int (G) of
inner automorphisms. We prove that for G arbitrary locally compact
Aut (@) is a complete topological group. In particular, if G is also
separable Aut (@) is a Polish group. Furthermore, we give two new
characterizations of the topology for Aut (G), (1.1 and 1.6). In §2
we turn to the question of when certain subgroups (among them
Int (@)) are closed in Aut (@), and several equivalent conditions are
given; for instance, Int (G) is closed iff G admits no nontrivial central
sequences (2.2). Applications to more special classes of groups are
also given, as well as to the question of unimodularity of Int (G),
(2.7). We remark that there is no separability assumption on the
groups before 1.11.

LEMMA 1.1. The sets
W,

where ¢;€ C(G) and € > 0, form a basis for the neighborhoods of the
wdentity in Aut (G).

swe = (T € AUt (G); [[ 957 — ¢illo <&, 1 = j = m}

1reves

Proof. Let ¢4, ---,4,€C,(G) and ¢ > 0 be given. Note that
[§ioT — ¢i]l < € implies |07 — ¢;]l. <&, T € Aut (G). Set F' = Ui,
support (¢,), and let W be a symmetric neighborhood of ¢ in G such
that |¢,(x) — d,(wx)| < e for all zeG,weW,1<7<n We claim

143



144 JUSTIN PETERS AND TERJE SUND

NF, W)Wy, 4ne. Let € N(F, W). Then forxeF, t(x)z e W, so
(%) [g(x) — g(z(@) | <e, L1=i=mn.

If z(x) e F', then 7 Y(z(x))c(x)*e W, i.e., xz(x)"*e W, so (x) holds. If
x¢ F and z(x) ¢ F' then ¢,(x) = ¢,(c(x)) = 0, so again (x) is satisfied.

Conversely, let FFC G be compact and W a neighborhood of ¢ in
G. Let U be a compact neighborhood of ¢ in G such that U*- U 'C
W. Let 4eC, (@) be such that 0 <+ <1, support () cU? and
J(u)=1/2vVu € U. (The existence of such a + is clear.) Let {x,,---, 2,}
be a finite subset of F' such that {U,,:1 <7 < n} covers F. Define
¥ €C(G) by ¥(x) = y(xx:"), L =% < n. It is now routine to verify
that Wy, v, C N(F, W).

.....

1.2. By Braconnier [1] there is a continuous (modular) homo-
morphism 4: Aut (G) > R* with the property

M) Safoa'l(x)dx - ng(oc)dx . for feC(G),

where dx is a fixed Haar measure. Defining
a(f) = ) fea, f e L(G), @ € Aut(G),

it is easy to see that & becomes an automorphism of the group
algebra L'(G). Denote by ) the left regular representation of G as
well as the left regular representation of LY(G) on L*G). Viewing
&, a e Aut (@), as an automorphism of AM(LYG)), we show that @ can
be extended to an automorphism of the von Neumann algebra of the
left regular representation, Z(G) = MLYG))” = MG)”. We define a
unitary operator U?% a € Aut (G), by

Urg = dl@) " V*goax™, geLl¥@).
A straight forward calculation shows
Ma(f) =UNMHU" .

The unitary implementation @+ U* allows us to define &(T) for T e
HF(G) by
a(T) =UTU~".

LEMMA 1.8. The map acAut (G)—U*geL*(G) is continuous
(g € LX(G)).

Proof. This follows from Proposition 2, page 78 of [1].

1.4. Our next aim is to study Aut(G) by embedding it in
Aut Z(G), and we shall prove that the embedding is topological if
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Aut & (G) is provided with the appropriate topology, namely the
uniform-weak topology. A neighborhood base at the identity ¢e
Aut Z#(G) is given by

{acAut Z(G):| <(@— 0, ¢ >|<¢ e B@)1=i=n},

where ¢ > 0 and <2 denotes the unit ball in <Z(G). Recall that the
predual, “2(G),, is the Fourier algebra A(G) (see [5]). Let

Wi, s = {@c Aut (G): ||g; — goa]| <&, 1 =i =m}, ¢,€AG),

where ||-|| denotes the norm in A(G).

LEMMmA 1.5.

W, c={aeAut (@) | <@ —0)FA, s > | <e, 1150,

Leeorbn

Proof. First note (&(T), ¢) ={T, ¢o) for T € H(G), ¢ € A(G) and
@ e Aut (@); i.e., @'(¢) = poa: If T = \N(f), f € L(G), we have
@, 8 = d@ | Fea@p@ds = F), o) -

Since {\(f): f € L@)} is dense in .ZZ(G), the claim follows. Now
(@& — T, ¢y = (T, ¢oax — ¢y, Te . Taking the supremum over all
Te < we get

sup (@ — 0T, ) = llpea—all,  $cA@),

and the lemma follows.

PROPOSITION 1.6. The sets Wy, 4. ¢:€ AG) and ¢ > 0, form a
base at the identity ¢ e Aut (G) for the Birkhoff tovology. Hence the
embedding Aut (G) = Aut .ZZ(G) s topological.

Proof. We show first that the topology generated by the sets
Wi, is weaker then that of Aut(G). The proof of Lemma 1.5
shows that for ¢ € A(G), @ € Aut (G).

16— geall = sup | (T = &(D), §)1 -
Writing ¢ = (f<§)7, f, g € L*G), we have
16— gearll = sup | (T — ATV, 05|
= sup| (T —U-TU=, )|
= sup | (UT — TU)f, U="g)|
< sup| (U="T — ), U="'g)|
+sup | (T =T, U0
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Now

(T = TUNS, Uy | ST = U H)1LIT gl
=[If=U"Fllgll., all Tez.
K(U'T — ) f, U'g) |
= [KU'TS, U9y — (Tf, U9y |
= KT, ¢ — <Tf, U"'g)| = [KTf, g = U"g) |
= ITFlLllg —U gl = I fll.Ilg — U glle
all Tez, .

Let N be a neighborhood of ¢ € Aut (G) such that || f — U f|,l|gll. <
¢/2 and [[f|.[lg —U*'g|l, < ¢/2. Then |lp — goa)| < e.

Conversely, let FF < G be compact and W a neighborhood of ¢ in
G. Let U be a compact neighborhood of ¢ such that U?>- U 'c W.

Since A(G) is a regular algebra, there exists € A(G) with 0 <
P =1, 4(u) =1 for u e U, and support () C U?[5; Lemma 3.2]. Let
{2y, <+, 2,} C F be so that {Ux;: 1 < 1 < n} covers F. Define 4,(y) =
Yyye:), 1 = ¢ =n. We claim Wy, 4. C NF, W). Indeed, suppose
,,,,, v, and let e F. Then x ¢ Ux; for some j. Now
[[4pjoT—ps|l <1 implies |[4rjot—qp;lle <1, so that |y;or(x) —vi(x)| < 1.
But for xe€ Ux;, j(x) = ¥(xx;') = 1. Hence z(x)€support (+;), or
7(x) € Ux;. But then

@' e UPxe™ e UPU'CW.
In addition

Hpset™ — Arylle = [l dhso7 — Pylle <1,

so the same argument as above yields z7'(x) € Wx.

COROLLARY 1.7. Suppose G has small neighborhoods of the
wdentity, invariant under inner automorphisms (i.e., G € [SIN]).
Then viewing the group Int(G) as a subgroup of Aut FZ(G), the
pointwise-weak and uniform-weak topologies coincide on Int (G).

Proof. Ge[SIN] if and only if <Z(G) is a finite von Neumann
algebra, [4; 18. 10.5]. The conclusion follows from [10; Proposition
3.7].

Note that the above can just as well be stated for [SIN];-groups
where BC Aut (@) is a subgroup. Also, the corollary is not too
surprising in view of the fact that for [SIN]-groups the point-open
and Birkhoff topologies of Aut (G) agree on Int (G) [9; Satz 1.6].

1.8. We say that G is an [FIA]z-group if B is a relatively
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compact subgroup of Aut (@) (see [7]). It is now a trivial consequence
of 1.6 that G €[FIA];z if and only if B, viewed as a subgroup of
Aut Z(G) endowed with the uniform-weak topology, is relatively
compact. Cf. [6; Theorem 2.4]. By [6; Corollary 1.6], the pointwise-
weak topology may be substituted for the uniform-weak topology.

We mention another consequence of Proposition 1.6 which was
suggested to us by Kenneth Ross. An important tool in harmonic
analysis on [FIA|z-groups is the “sharp operator,” which is defined
as follows: if f is a continuous function on G €[FIA];, then

r@ =\ _repwas,

where dfB is normalized Haar measure on the compact group B~ C
Aut (G). f*is a continuous, B-invariant function on G. We show
that if f is in the Fourier algebra A(G), so is f%*. By Proposition
1.6 the map B — foB8, Aut (G) — A(G), is continuous. Viewing f*as
a vector valued integral, we can then adapt [14; Lemma 1.4] to
show that f*c A(G).

1.9. Next we show in an elementary way that for an arbitrary
locally compact group G, Aut (G) is a complete topological group (in
its two-sided uniformity).

THEOREM. .Let G be a locally compact group; them Aut (G) s
complete with respect to its two-sided untformity.

Proof. Let (a,) be a Cauchy net in Aut (G). Since a— U,
Aut (G) —» £ (LXG)) is continuous in the strong operator topology,
it is also weakly continuous. Now U®e & (L*(G)),(=unit ball of
Z(L*(G))); also the weak and ultraweak topology coincide on
L (LX(G)), and Z(IA@)), is compact in this topology. Thus (U™)
has a point of accumulation Ue £ (LXG)),; let (@,.) be a subnet such
that U 7U weakly. Then for f, g e LXG)

(U =TS, gy = (U™ = U, gy + (U —U)f, ¢)
= (f — US"uf, U g) + (U —U)f, g
< f = U uflllgll + (U= —U)f, g —0

since a;'a, —— ¢ in Aut (G). Thus U~ —U in the weak operator
v

, K -1 v
topology. Similarly U% converges weakly to some Ve & (LX@)),.
We claim V=U"* Let f, ge L*(G),e > 0. Let v, be such that for
Yy >y,
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(USVE—UVE @l <e, and |[U%g=USgl, < 5o

Choose v, such that v > v, implies
(U f —Vf, Usagd| < ¢.
Then for v, £ > v, and v,, we have
| (UUS"f —UVH, g
< [{UUS" f = UVY, gb| + U=V —UVS, 9>l ,
where [(UVf —UVSf, g>| <e. Also
| U Usrf — UV, gy| = [{U'f — Vf, Usaagd!
S [(US'f —Vf, Usigy| + [KUS" f —Vf, Ui'g — Ussag)|
<e+ [USf —VIILIUS g —Usigll,
<e+ 2l fLI|UF g —Usigl, < 2,

so that
[(UU"f —UVE, g)| < 3¢
But
(UUf, gy = (U, ) == {90
hence

UVS, 9 =<{fi9, all f,gelXG);
thus V =U""'. In addition,

(Uf, gy = lim <U“f, g) = lim (f, U'g) = {f, Vo),

so V=U*, and we have U™ =U", so U is unitary. A standard argu-
ment shows U* converges strongly to U:

|USF = UF | = (U, UF) ~ (UF, Uf)
— CUSE, US> + (TS, UF) = 2, £> = (U, UF)
— (U, Uf —0.

It remains to show that \(x)+—Un(x)U™* defines an automorphism of
M@G) (and thus of G). Fix xe@G; clearly (a,(x)) is a Cauchy net in
G and (since G is complete) converges to an element, say a(x)eG.
Then
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Usn@) Us" = Ma, () — Ma(@)) weakly,
and
Usn(x) U= — UM)U™  weakly .

So Mea(x)) =Un=x)U™'. To prove @ is a homomorphism,

Ma(ey)) = UMay) U™ = (UM2) U N UMy)U™) = Ma(x))Me(y))
=NMa@)a(y)) ;

so a(zy) = a(@)a(y). Also Mea(@™) =Un(@ U™ = Un(x)'U? =
(On@)U D™ = Ma@)™ = Mva(e)™) ie., a@™) = a(x)™’. To prove
continuity of «, let (x,) >, in G. Then

)"(a(x#)) = Ux(x#) U —/;_’ Uk(xo) Ut = )\'(a(xo))

in the weak operator topology. But 2+ \(x) is a homeomorphism
of G onto \G), where \MG)C L (L*G)) carries the weak topology
([6; Lemma 2.2]). Thus a(x,) — a(x,). Similarly, @' is continuous,
and we have ac Aut (@), so that Aut (@) is complete.

REMARK 1.10. Since by 1.6 Aut (G) is topologically embedded in
the complete group Aut <Z(G), [10; Proposition 3.5], it would be
natural to prove completeness of Aut (G) by showing it is closed in
Aut Z(G). Actually, such a proof can be given, utilizing the pro-
found duality theory in [16]. We sketch the argument. Consider
a net (a,) in Aut (@) such that & — 7€ Aut “#(G) in the uniform
weak topology. By duality theory <Z(G) is a Hopf-von Neumann
algebra with comultiplication §: Z(G) —» HA(G) K H(G) which is a
o-weakly continuous isomorphism given by 6(7T) =W (T Q L)W,
T e #(G), where Wk(s, t) = k(s, st), ke LX(G x G), s, t€ G, [16; Section
4]. Furthermore, one has

{TeZ(G):oT) =T TH0}
={TeA(GF): T = \(s), for some scG}.

Notice that Aut (G) corresponds to the subgroup
{B e Aut Z(@): 6(BM(s)) = BA(S) ® an(s) , all se@G}.

Since &, — v e Aut (Z(G)) and 6 (& N(s)) = A N(s) ® AN(s), all se@,
continuity of ¢ gives

o(Y(M(8))) = Y(\(8)) ® Y(\(8)) , all se@G.

Thus 7 = & for some ac Aut (G@).
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COROLLARY 1.11. If G is a separable locally compact group,
then Aut (G) is @ Polish topological group.

Proof. Indeed, if G = Uy, F,, F, compact, and if {U,},..y is a
neighborhood base at ecG, then {N(F,, U,)}... is a neighborhood
base at c€ Aut (@), so that Aut(G) is metrizable [11; 8.3] and by 1.9.
It is complete.

2. We proceed now to applications of the Theorem in 1.9 First
we turn to the question of when certain subgroups of Aut (G) are
closed. The following result contains a group theoretical analog to
[2; Theorem 3.1]. We thank Erling Stormer for showing us Connes’
paper [2], and for helpful discussions concerning central sequences
of vov Neumann algebras.

ProOPOSITION 2.1. Let G be a separable locally compact group,
and B a subgroup of Aut (G). Suppose there is a separable locally
compact group H and a continuous surjective homomorphism @: H —
B. Then the following are equivalent.

(a) B s closed in Aut (G@).

(b) w: H— B 1is open onto its range B.

(¢) For any metghborhood V of the identity in H there exist
&y, 0y 0, €C(G) and & > 0 such that, for all he H,

[|gio@(h) — ¢4l < €, 1<i<n, implies heV-(kerw).

(d) Same statement as (c) with C,(G) replaced by the Fourier
algebra A(G) (and its norm || -||).

Proof. (a)=(b). If B is closed in Aut(G) then H and B are
both Polish. Observe then that a continuous homomorphism between
two Polish groups is open [12; Corollary 3, p. 98]. (b)=(¢). Put
K = ker w. Since ® is open it follows from Lemma 1.1. that given
a neighborhood V of the identity in H there are functions ¢, ---, ¢, €
C.(G) and ¢ > 0 so that W,, . ,..N BCw(V). Now ® can be lifted
to a map @ of H/K— B, so that the diagram commutes and @ is
a homeomorphism.

H/K
N
HTB

Thus w(h)e W, ,,.. implies @w(h) e w(V) = &(VK); hence @(hK)e
@(VK), so that he hK C VK. :
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(¢)=(d) is clear in view of Proposition 1.6.

(d)=1(a). By 1.6 and 1.11 there is a sequence (¢,) from A(G)
such that the sets W, = W, ;..,» form a base for the identity in
Aut(G@). Let {V,} be a countable base for the identity in H. By (d),
given » there is an m(n) so that @w(h)e W, implies he V, K. Let
6 € B~ and choose a sequence («,) from B so that @, — 6 and a;}; @, €
W for j = 0. Setting & (a,) = h,K, we have h;:;h,-KCV,K,
j = 0. This says that (k,K) is Cauchy in the left uniformity of
H/K. Since H/K is locally compact, it is complete, and h,K -

hK e H/K, hence w(h) = @(hK) = 6 by continuity of @, and thus 6 € B.

2.2. Define a homomorphism Ad: G — Int (G) by Ad (g)(x) = gxg™".
A sequence (x,) from G is said to be central if Ad (x,) pnd in Aut (G).

(x,) is trivial if there is a sequence (z,) from the center Z(G) of G
such that x,z," - e.

COROLLARY. Let G be separable locally compact. Then Int (@)
is closed if and only +f all central sequences are trivial.

Proof. If Int(G) is closed, let (x,) be a central sequence and
{V.,} a nested neighborhood base for the identity in G. By (d) of
2.1 for each » we can find a set {g, ---, ¢,,} C A(G) and ¢, > 0 so that
for x €@, ||p;oAd () — ¢;]| < &,, 1 £ J < 4, implies x € V,Z(G). Note
that if @ = Ad in 2.1, ker w is just Z(G). Choosing a sequence (k;)
from N such that k = k; = [|¢;cAd () — ¢;]| < e, 1 < 7 < 1,, we have
xz, ¢ V,Z(G), hence z,2;' €V, for some z,€ Z(G). Then z,2;'— e, and
(x,) is trivial. The converse is shown the same way as (d)= (a) in
2.1.

2.3. We remark that the class of groups.for which Aut(G) is
locally compact includes the compactly generated Lie groups [9; Satz
2.2]. For Int (@) we have the following

COROLLARY. Let G be separable and locally compact. Then
Int (@) s locally compact = Int (G) 1s closed.

Proof. If Int(G) is locally compact, it is necessarily closed [9;
Theorem 5.11]. On the other hand if Int (G) is closed, take G = H
and ® = Ad in 2.1. Then by continuity of Ad, Int (G) is homeomorphic
with G/Z(G).

2.4. If Int (G) is not closed it is still reasonable to ask if Int (G)~
will be locally compact.
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COROLLARY. Let G be a separable, connected locally compact
group. Then the closure Int (G)~ imn Aut (G) is locally compact.

Proof. By [17; Lemma 2.2] there is a locally compact connected
group P and a continuous map pq: P — Aut (G) with pi(P) = Int (G)™.
Since G is separable, it follows from the construction of P in [17]
that P is also separable. Thus by Corollary 1.11 and [12; Corollary
3] p; is a homeomorphism and hence Int (G)~ is locally compact.

We now give an example that shows that for nonconnected
groups, Int (G)~ need not be locally compact. Let G be the countable
weak direct sum of the free group on two generators with the dis-
crete topology: G = >\v.,G,, where G, is generated by {a,, b,}. The
neutral element of G, is the empty word, @,, and ¢ = (9, @,, +--) is
the neutral element of G. If Int(G)~ were locally compact there
would be a relatively compact open neighborhood N of the identity ¢
in Int (G). If N, is another open neighborhood of ¢, since |J,.; Ny Ad ()
covers Int (G)~, there would be a finite subcover, N~ < U7, N; Ad (x,)
of N-. Thus

() N:N*mInt(G)C[QN;Ad(xi)]ﬂInt(G): L:_llNlAd(xi).

We may assume N = N(C, {¢}), where C = {a,, b} X {a,, b} X -+ X
{@, 0,} X {®,4,} X +++, since N must contain a neighborhood of this
form. It is then easy to see Ad (¢) € N if and only if ¢ =(0,, @,, --- @,
Gnyis °° *)s Onti eGn-H" j=z1l. Let N, = N(C,y {6}), ¢ = {au bl} X oeee X
{@nsrs bpis} X {@,2} X +++. Then N and N, are subgroups, Ad (¢)€ N,
iff g =(@, -, @y, Ppisy Gnios ***)Gns5 €Guyj 5 = 2. N, is normal in N
and N/N, = G,,,. This contradicts (x).

2.5. Let G, be the closed normal subgroup of elements z in G
having relatively compact conjugacy classes {gxg™:9cG}. If Ge
[SIN], G is open since any compact Int (G)-invariant neighborhood of
¢ is contained in G,. Let w: G — Aut (G,) be the continuous homo-
morphism @(g) = Ad (9)|s,, and let B be the subgroup @(G) < Aut (G).
Clearly G, is an [SIN];-group, and we have

COROLLARY. Let G be separable. Then, with notation as above,
B s closed < B 1is compact = G/ker @ is compact.

Proof. The first equivalence is proved in [7]. If B is closed,
B is homomorphic with G/ker @ (the proposition in 2.1, (a) = (b)) so
by compactness of B, G/ker ® must be compact. Conversely, if
G/ker w is compact then so is B = @&(G/ker w) by continuity of the
lifted map @.
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Specializing the preceding corollary even further we obtain

COROLLARY 2.6. Let G be a locally compact group and suppose
Int (G)~ s compact. Then Int (@) is closed = G/Z(G) is compact
(Z(G) = the center of (@)).

Proof. This follows immediately from the Corollary in 2.5 if
G is separable. From [7] Int (G) is closed < Int (@) is compact. But
Int (G) compact implies Ad: G — Int (G) is open [11; Theorem 5.29],
hence Int (G) = G/Z(G), and so G/Z(G) is compact. Conversely if
G/Z(@) is compact, lifting Ad to a continuous map G/Z(G) — Int (@)
we see that Int (G) is compact, hence closed.

COROLLARY 2.7. Let G be a separable locally compact group.
Then Int (@) is unimodular = G is unimodular and Int (G) s closed.

Proof. If Int (G) is unimodular, in particular it is closed, so by
the proposition in 2.1 it is topologically isomorphic with G/Z(G), so
that the latter is unimodular. It is then easy to see G is unimodular;
we give a proof for completeness. Let dz and d4 be Haar measures
on Z(G) and G/Z(G) respectively, and xz — &, G — G/Z(G) the canonical
map. Let

o(xz)dz di , 0eC,G).

SG/Z(G)SZ/(G)

o) =

By the Weil integration formula p is a left Haar measure on G. Using
right-invariance of d# and the fact that Z(G) is the center, one
verifies easily that g is even right-invariant. Thus G is unimodular.
Conversely, if G is unimodular and Int(G) is closed we show that
G/Z(G) is unimodular. It will then follow that Int (@) is unimodular,
since Int (G) = G/Z(G).

Define ¢ as above. By assumption g is right-invariant. The
mapping C,(G) — C(G/Z(G)), ¢ +— &, gz?(ac)—g ¢(ocz)dz is surjective [11,

Theorem 15.21]. p(¢) = u(s,) for all ¢ eC, (G), Y €@, then implies d
is right-invariant:

Fi@ds = pgi) = w) = | F@)di

SG/Z(G)

(here ¢,(x) = ¢(yx)). Thus Int (G) is unimodular.

Finally we show that closedness of Int (G) does not imply closedness
of Int .<2(G), nor conversely.
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PROPOSITION 2.8. There is a group G such that Int(G) s closed
and Int Z(G) 1s nonclosed. On the other hand, there is a group G
with Int (G) nonclosed and Int Z(G) closed.

Before proving the proposition we need a fact, the proof of which
we include for the sake of completeness. If @ and @Q* represent the
rationals and nonzero rationals respectively, let G={(p, ¢): » € @%, ¢ € Q}
with multiplication (p, ¢)(¢', ¢') = (pp’, ¢ + pq’). Provide G with the
discrete topology. Then Aut(G) = Int (G). To see this, let @ € Aut (G)
and set a(l, q) = (a,(q), a(q)), a€Q. Now a(l, 9)a(, ¢') = (a,(9)a,(q),
ax(q) + a(@ay(q)). Also, a[(1, ¢)(1, ¢)] = (aq + ¢'), a(q + ¢')). This
forces o,(q¢ + ¢') = a,(q@)a,(q’) and thus a,(¢) =1 for all ge @, since
the only homomorphism of the additive group (@, +) into the mul-
tiplicative group (Q*, -) is the trivial one. Thus @,(¢ + ¢') = a,(q) +
a,(q"), so a,e Aut (@, +), and so ,(¢) = aq, a€Q*. Set a(g, 0) =
(Bi(p), B:(p), peQ* We caleculate a(p, q) = a[(p, 0)(1, g/p)] =
a(p, 0)a(l, g/p) = (By(p), Bu(p) + Bu(p)-(aq/p)). But also

a(p, q) = a[(1, q)(p, 0)] = a1, q)a(p, 0)
= (B,(p), ag + By(p)) -

We have By(p) + (aq/p)B.(p) = aq + B:(p), and hence B,(p) = p. Fur-
thermore, equating a(p, 0)a(p’, 0) with a(p’, 0)a(p, 0), (p, ' € @%), we
arrive at By(p)(1 — p') = By(p")(1 — p). If p, ' # 1, then By(p)/(1 — p) =
B(p)]A—p)=>becQ, a constant. Thus B,(p) =b(1l—p), p+1, pecQ*.
But since «a(l, 0) = (1, 0), £,(1) = 0, so the equation holds for all
pe@* Now a has been completely determined:

a(p, @) = a[(1, ¢)(p, 0)(p, 0)]
= (p, aq + b1 — D)) .

But (a, b)(p, ¢)(a, b))~ = (p, ag + b(1 — p)), which means « € Int (G).

Proof of Proposition 2.8. Let G be the group described above.
Since all the nontrivial conjugacy classes of G are infinite, 2 (@) is
a type I[, factor. Since G is amenable, ZZ(G) must be the hyperfinite
factor [3; Corollary 7.2], hence Int <Z(G) is nonclosed.

For the other direction, let A = (17 Z.,) B G Z,), where [[7 Z,
has the product topology and the weak direct sum > Z, the discrete
topology. Define a: A — A as follows

a((2), () = (2 + w), (W), @) e 1] Z,, w)e S Z, .

Then « is a continuous homomorphism and a® = identity, so that
acAut (4). Let G be the semidirect product G = Ax,Z,, where
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n(m) = a™, m e Z,*. Since a leaves the elements of >\ Z, fixed, it
follows that G/[I7 Z, is abelian so that the commutator [G, G] is
compact. In particular all the conjugacy classes of G are pre-
compact. Furthermore one sees that the center Z(G) is equal to
117 Z, so G/Z(G@) is noncompact. Since Z/(G) is open it is clear that
G has small invariant neighborhoods of the identity, and by the
Ascoli theorem for groups [7; Satz 1.7], Int (G)~ is compact. According
to Corollary 2.6, Int (G) is not closed in Aut (G). This can also be
seen directly: let c((&), (¥o), 0) = ((%:), (%), 0) and z((z), (¥, 1) =
((x; + 1), (9.), 0), where (x,) € I Z, (y:) € 2.5 Z..
Then

zeInt (G)"\Int (@) .

Observe next that G is type I, containing a normal abelian subgroup
A of finite index, thus Int & (G) = {@ € Aut Z#(G): « leaves the center
of . Z(G) pointwise fixed} is closed [15; Corollary 2.9. 32].
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