LINEAR OPERATORS FOR WHICH T*T AND T + T* COMMUTE III

STEPHEN L. CAMPBELL

Let Θ denote the set of all linear operators T acting on a separable Hilbert space $\mathscr H$ for which T^*T and $T+T^*$ commute. It will be shown that if $T\in\Theta$ and T^* is hyponormal, then T is normal. Also if $T\in\Theta$ and T is hyponormal, then T is subnormal.

I. Introduction. Operators in Θ need not be hyponormal [4], but have many hyponormal-like properties [1]-[4], [7], [8]. Therefore our first result is not surprising.

THEOREM 1. If $T \in \Theta$ and T^* is hyponormal, then T is normal.

Let $(QA) = \{T \mid T = Q + A, [Q, Q^*Q] = 0, A = A^*, [A; Q] = 0\}$ where [X, Y] = XY - YX. Then $(QA) \subset \Theta$ [2] and all operators in (QA) are subnormal. In [4] an example of a hyponormal operator in Θ , that is not in (QA), is given. That operator is a block weighted shift. Given that it is much "easier" for a shift to be hyponormal instead of subnormal, our second result is, at least to us, surprising.

THEOREM 2. If $T \in \Theta$ and T is hyponormal, then T is subnormal.

2. Proof. The proofs of Theorems 1 and 2 are closely related. If A is a positive linear operator with spectral resolution $A = \int \lambda dE(\lambda)$, then A^+ is defined by $A^+ = \int \lambda^+ dE(\lambda)$, where $\lambda^+ = 1/\lambda$ if $\lambda \neq 0$ and $0^+ = 0$. Note that A^+ , while possibly unbounded, is self-adjoint, and $\mathscr{D}(A^+) = R(A)$. Here \mathscr{D} , R denote domain and range. The null space is denoted N.

Proof of Theorem 2. Suppose $T \in \Theta$ and $[T^*T - TT^*] \ge 0$. Without loss of generality assume ||T|| < 1. Let $A = [T^*T - TT^*]^{1/2}$ be the positive square root of $[T^*T - TT^*]$. Then $T^*A^2 = A^2T$ since $T \in \Theta$ [1]. Thus $A^+T^*A^2 = AT$. Hence, $A^+T^*Ax = ATA^+x$ for all $x \in \mathscr{D}(A^+)$. Let $B = ATA^+$. Since AT is bounded, $B^* = A^+T^*A$, and $B \subseteq B^*$. But $\lambda - A^+T^*A = A^+(\lambda - T^*)A + \lambda(I - A^+A)$. Since $(i + T^*)$, $(i - T^*)$ are both invertible, both deficiency indices of B are zero. Thus $\overline{B} = B^*$ where \overline{B} is the closure of B [5, p. 1230]. Now on $\mathscr{H} = \mathscr{H} \oplus \mathscr{H} \oplus \mathscr{H}$, define

$$N = egin{bmatrix} T & A & 0 \ 0 & ar{B} & A \ 0 & 0 & T^* \end{bmatrix}$$
 .

But for all $x \in \mathcal{D}(B) = \mathcal{D}(A^+)$, $AB = T^*A$. Hence $A\bar{B} = T^*A$ for all $x \in (\bar{B})$. Since A, T^* are bounded, we also have $\bar{B}^*A = \bar{B}A = AT$. But then N is closed and $N^*N = NN^*$. Hence N is normal [5, 1258–1259] and

$$(1)$$
 $Nx = \lim_{n \to \infty} \int_{|\lambda| \le n} \lambda F(d\lambda) x$, $x \in \mathscr{D}(N)$

for a resolution of the identity $F(\cdot)$ defined on the complex plane. $\mathscr{D}(N)$ is just those x for which the limit in (1) exists. Note that $N-N^*$ is bounded and hence the support of $F(\cdot)$ lies in a horizontal strip. Let $\Delta=\{\lambda||\lambda|\leq||T||\}$. We now wish to show that $F(\Delta)\mathscr{H}=\mathscr{H}$ when \mathscr{H} is imbedded into \mathscr{H} by $\mathscr{H}\to\mathscr{H}\oplus 0\oplus 0$. But $x\in R(F(\Delta))$ if and only if both

(i)
$$x \in \mathscr{D}(N^{\it m})$$
 for all $m \geqq 0$ and

(ii)
$$||N^m x||/||T||^m \le ||x||$$
 for all $m \ge 0$.

Since \mathcal{H} clearly satisfies both (i) and (ii), we have $F(\Delta)\mathcal{H} = \mathcal{H}$. But then $NF(\Delta)$ is a bounded normal extension of T and T is subnormal as desired.

Proof of Theorem 1. Suppose that $T \in \Theta$ and T^* is hyponormal. We shall first show that T^* is subnormal. Let $A = [TT^* - T^*T]^{1/2}$ be the positive square root of $[TT^* - T^*T]$. Again,

 $T^*A^2=A^2T$. Define $B,\,ar{B}$ as in the proof of Theorem 2. This time let

$$N = egin{bmatrix} T & 0 & 0 \ A & ar{B} & 0 \ 0 & A & T^* \end{bmatrix}$$
 .

Again N is a possibly unbounded normal operator, and one can argue that $N^*F(\Delta)$ is a normal extension of T^* . Hence T^* is subnormal. The remainder of the proof is a modification of the proof of Lemma 2 in [9].

Let $M = \begin{bmatrix} T^* & C \\ 0 & B \end{bmatrix}$ be the normal extension of T^* . Let $L = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$, where $D = [TT^* - T^*T] \ge 0$. Then $ML = LM^*$ since $T \in \Theta$. Hence by the Fuglede-Putnam theorem $M^*L = LM$ and $LM = M^*L$. Thus

$$DT^* = TD$$
, $DC = 0$.

But $T^*D = DT$ since $T \in \Theta$. Hence

$$DTT^* = T^*TD.$$

or equivalently,

$$(TT^* - T^*T)(TT^*) = T^*T(TT^* - T^*T)$$
.

Simplifying gives

$$(TT^*)^2 + (T^*T)^2 = 2(T^*T)(TT^*)$$
 .

Hence $[T^*T, TT^*] = 0$. But $T \in \Theta$ and $[T^*T, TT^*] = 0$ implies T is quasinormal [6]. Hence T is subnormal. But then T is normal since T and T^* are both subnormal.

It should be noted that one has to consider the extensions of B in the proofs since A^+ may be unbounded. Examples can easily be constructed by taking direct sums of multiples of the block shift in [4].

REFERENCES

- 1. S. L. Campbell, Operator valued inner functions analytic on the closed disc II, Pacific J. Math., 61 (1975), 53-58.
- 2. ——, Linear operators for which T^*T and $T+T^*$ commute, Pacific J. Math., **61** (1975), 53-57.
- 3. S. L. Campbell and Ralph Gellar, Spectral properties of linear operators for which T^*T and $T+T^*$ commute, Proc. Amer. Math. Soc., **60** (1976), 197-202.
- 4. ——, Linear operators for which T^*T and $T+T^*$ commute II, Trans. Amer. Math. Soc., **224** (1977), 305-319.
- 5. N. Dunford and J. Schwartz, *Linear Operators*, *Part II*, Interscience Publishers, New York, New York, 1963.
- 6. Mary Embry, Conditions implying normality in Hilbert space, Pacific J. Math., 18 (1966), 457-460.
- 7. V. I. Istratescu, A characterization of hermitian operators and related classes of operators I, preprint.
- 8. ———, A class of operators satisfying $\operatorname{Re} \sigma(T) = \sigma(\operatorname{Re} T)$, preprint.
- 9. H. Radjavi and P. Rosenthal, On roots of normal operators, J. Math. Anal. Appl., **34** (1971), 653-664.

Received March 21, 1977.

NORTH CAROLINA STATE UNIVERSITY RALEIGH, NC 27607