
PACIFIC JOURNAL OF MATHEMATICS
Vol. 76, No. 1, 1978

SEMISIMPLE NIL ALGEBRAS OF TYPE δ

TIM ANDERSON AND ERWIN KLEINFELD

We prove that a finite dimensional semisimple nil algebra
over a field F which satisfies the identity (1 + δ)z(x°y) +
(1 — δ)(x°y)z = x(y°z) + y(x°z), where δeF and δ ̂  —1/2, is
anti-commutative. This result permits a further reduction
in the problem of classifying those varieties of power-as-
sociative algebras over F having the property that squares
of ideals are ideals and for which the nil algebras are not
pathological.

1* Introduction* Recently we gave a survey (see [1]) of those
varieties Ψ]? of power-associative algebras over a field F which
satisfy the following condition:

(1.1) For each Ae TF and ideal / of A, P is also an ideal of
A. It is well-known that the varieties of alternative and Lie algebras
have this property. On the other hand, there are some basic struc-
tural differences between these two varieties of algebras. In par-
ticular, while every Lie algebra is a nil algebra, in the alternative
theory, nil algebras are usually regarded as pathological in the
radical sense. Consequently, in our classification [1] we had to ac-
count for those varieties Y]? which satisfy in addition to (1.1) the
condition.

(1.2) TF contains a nonzero semi-simple nil algebra, and we
showed that the classification of such varieties was largely reduced
to the problem of classifying algebras of type δ. The algebras of
type δ satisfy, among other identities, the relation

(1.3) (1 + δ)z{x o y) + (1 - δ)(x ° y)z = x(y o z) + y{x ° z)

where δeF and xoy = l/2(xy + yx).
We are now able to prove the following result:

(1.4) THEOREM. If A is a semisimple nil algebra satisfying
the identity (1.3) with δ Φ —1/2, then A is anti-commutative.

As we shall point out later, this allows us to complete the clas-
sification of semisimple algebras of type δ Φ —1/2.

2* Preliminaries* Throughout this paper all algebras are as-
sumed to be finite dimensional over a fixed, but arbitrary, field F
of characteristic not two. For an algebra A and element aeA, the
right multiplication Ra is defined as the map Ra: x —> xay x e A. Fur-
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thermore, when n is a positive integer, An will denote the linear
span of all products of n elements of A. The associator (α, 6, c),
for a, b, ce A, is defined by (a, &, c) = (ab)c — a(be). We shall always
assume the algebras to be power-associative, so that the identity
0 = (x, x, x) holds, as well as its linearization

(2.1) 0 = Σ(σ(x), σ(y), σ(z)) ,

where the summation is taken over all σeS3, the symmetric group
on three letters.

For the basic notions of nil, solvable, and nilpotent algebras we
refer the reader to Schafer [2], with the understanding that in this
paper whenever an algebra is called semisimple that means that it
has no nonzero solvable ideal.

Given an algebra A, we may form the commutative algebra A+

by replacing the product db of A with the symmetrized product
l/2(α& + ba). Clearly, A is power-associative or nil if and only if
A+ is. Moreover, if λ Φ 1/2 is any scalar from F, we may replace
the product ab of A with the twisted product Xab + (1 — X)ba to
get an algebra A\ which is called quasi-equivalent to A (see [2]).
It is well-known that power-associativity, ideals, and semisimplicity
are preserved under quasi-equivalence. Furthermore, A+ = (Aλ)+ for
every λ Φ 1/2.

3* The structure of certain commutative algebras* We shall
show in next section that symmetrizing the product of an algebra
which satisfies (1.3) yields a commutative algebra in which

(3.1) 0 = (y, z, wx) + (z, y, wx) + (w, x, yz) + (xf w, yz)

is an identity. The purpose of this section is to get some useful
preliminary results on such algebras. Consequently, we shall as-
sume throughout this section that A is a commutative algebra in
which the relation (3.1) holds.

It is easy to see that (3.1) is equivalent to the following identity
in right multiplications:

(3.2) 0 = RxRyRz + RxRzRy + RyzRx + R{yz)x - 4RxRyz .

If B is any subalgebra of A then we shall denote by 2?* the sub-
algebra of Horn (A, A) which is generated by the set {Rb\be B}. We
suppose further that B is a solvable subalgebra, and our object is
to prove that B* is a nilpotent algebra. As B2 Φ B (in the case
B Φ 0) we may find a subspace C of B of codimension one in B such
that C 2 B\ Clearly C is an ideal of B and for any (fixed) w 0 C,
weB,we have the decomposition B = C + Fw. We set T = J5*C* + C*;
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the following sequence of lemmas is about T.

(3.3) LEMMA. T is a left ideal of B*.

Proof. Obvious.

(3.4) LEMMA. If ceC then RCRXRX e T for all xeB.

Proof. Follows immediately from (3.2) and B2 Q C.

(3.5) LEMMA. If c, deC then RcRdRx e T for all xeB.

Proof. Follows immediately from (3.2), B2 £ C.

(3.6) LEMMA. If ceC then RCRXRXRX e T for all xeB.

Proof. From (3.2) we have 0 = 2RXRXRX + RΛiR9 + JBβ8 - ^RxRxi.
Multiplying this equation by Re and using the fact that C contains
x2 and x\ it then follows from Lemma (3.5) that RCRXRXRX e T.

(3.7) LEMMA. If c,deC then RdRxRcRx e T for all xeB.

Proof. Using (3.2), 0 = RXRCRX + RXRXRC + RCXRX + Rie9)9- 4RXRCX,
thus 0 = RdRxRcRχ + RdRxRxRc + RdRcxRx + RdRie*)* ~ 4RdRxRcx. From
Lemma (3.3) and Lemma (3.5) it follows from this equation that
RdRxRcRx e T.

(3.8) LEMMA. RXRXRXRXRX e T for all xeB.

Proof. Using (3.2) we have 2RXRXRX = -RX*RX - Rx* + ARXRX2.
Multiplying this equation of the right by RXRX yields 2RXRXRXRXRX =
-RX2RXRXRX - RxzRxRx + ARXRX2RXRX. Then using Lemma (3.4) and
Lemma (3.3), we conclude that 2RXRXRXRXRX = -RxiRxRxRx (mod T).
Now applying the identity (3.2) to the factor RXRXRXJ we find that
2RXRXRXRXRX=Ξ -Rai(-1/2RX2R9 - l/2Rxz + 2RxRχi) = 0 (mod Γ) because
of Lemma (3.5). Thus RXRXRXRXRX e T.

(3.9) LEMMA. If ceC, then RCRXRXRXRX e T for all xeB.

Proof. Using (3.2), RCRXRXRXRX = RCRX{RXRXRX) -R C R X (~ \\2RX.RX -
l/2Rxz + 2RxRχ2) e T because of Lemma (3.7).

(3.10) LEMMA. If c, deC, then RcRxRxRdRx e T for all xeB.
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Proof. Using (3.2), RcRxRxRdRx = Rc(RaRxRd)Rx = Re(~-RxRdRx -

RdχRx — R(dx)x + ^RχRdx)Rχ = —RcRxRβRχRχ — RcRdχRxRχ — RcRux)χRχ +
ARcRxRdxRx e T, because of Lemmas (3.3), (3.4), (3.5), and (3.7).

(3.11) L E M M A . If ceC, then RZRXRXRCRX e Γ /or αiί a? e # .

Proof. From (3.2), RXRXRXRCRX = (RXRXRX)RCRX = (-1/2RX2RX -
1/2/2.8 + 2RXRX2)RCRX = -1/2RX2RXRCRX - 1/2RX*RCRX + 2RXRX2RCRX e T,
because of Lemmas (3.7), (3.5), and (3.3).

Now we can prove

(3.12) THEOREM. Le£ A be a commutative algebra satisfying the
identity (3.1) and let B be a solvable subalgebra of A. Then B* is
nilpotent.

Proof. We use induction on the dimension of B, the result being
trivial for dim B = 0. For dim B ^ 1, set B = C + Fw and T =
£*C* + C* as before. We claim that

(3.13) Z7 = RpRqRrRsRt e T f o r a l l p,q,r,s,teT.

To show this, we may suppose p, q, r, s, t are either in C or are = w.
If teC then [7eT by Lemma (3.3). Thus we suppose U =
RpRqRrR8Rw. Now if both r and s belong to C then ?7e ϊ7 because
of Lemma (3.5) and Lemma (3.3). Hence we may assume either
r = $ = w or exactly one of r and s belong to C. In the latter case,
if reC and s = w then UeT by Lemmas (3.4) and (3.3). Thus we
may assume either U = RpRqRwRwRw or Ϊ7 = RpRqRwRsRw, where
seC. In the first of these cases, if q eC, then UeT because of
Lemmas (3.6) and (3.3). On the other hand, if q = w, then UeT
because of Lemmas (3.8) and (3.9). This leaves the case U =
RpRqRwRsRw, where seC. Now if qeC, then UeT because of
Lemmas (3.7) and (3.3). Thus we suppose U = RPRWRWR8RW, where
seC. However then UeT because of Lemmas (3.10) and (3.11).

Having verified (3.13), it follows from Lemma (3.3) that (J5*)5 c
JB*C* + C*; whence (β*)6 c £*C*. Using induction on k, these last
two relations imply that (β*)5*+1 Q J5*(C*)ft. As dim C < dim £, it
follows from the induction hypothesis that C*& = 0 for some k; hence
B* is nilpotent.

(3.14) COROLLARY. A commutative solvable algebra A satisfying
(3.1) is nilpotent.

Proof. This follows from choosing B—A in the previous theorem.
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(3.15) COROLLARY. If x is a nilpotent element of a commutative
algebra satisfying the identity (3.1), then Rx is nilpotent.

(3.16) THEOREM. If A is a commutative nil algebra satisfying
(3.1) then A is nilpotent.

Proof. We use induction on the dimension of A. If A2 Φ A
then the solvability of A/A2 and A2 imply A is solvable; hence A is
nilpotent because of Corollary (3.14). Thus we may suppose A = A2.

For ueA we let u* = {t e A\ut = 0}. Using (3.1), we find that
if t e uδ, a e A then 0 = (ί, u, a2) + (u, t, a2) + 2(a, a, tu) = (a2)(RuRt+RtRu).
However, as A = A2 and A is commutative, A is spanned by
{a2\aeA}. Thus

(3.17) RuRt + RtRu = 0 for all teuδ .

From this relation it follows that uδ is a subalgebra of A. Indeed,
is 8, t 6 uδ then u{st) = (s)RtRu — — (s)RuRt = — (sw)ί = 0; whence s£ e w5.

Now among all the nonzero elements of A we choose w so that
uδ is maximal with respect to inclusion. We shall first consider the
case that uδ Φ A. Here the induction hypothesis tells us that uδ is
solvable: hence by Theorem (3.12) we have that (uδ)* is nilpotent.
By a well-known argument (see [2, p. 96]), this implies there exists
an element x£uδ such that xuδ Q uδ. We claim that

(3.18) uδ = (uRk

xY for all k.

To prove this, we use induction on k. Suppose k = 1; let t e uδ.
Then (ux)t = (x)RuRt = -(x)RtRu = ~(xt)u = 0. Thus uδ £ (^) δ . As
x & uδ, ux Φ 0; hence from our choice of u, uδ = (ux)δ. This verifies
(3.18) in the case k = 1. We show next that uδ = (uRk

x

+1)δ. Let
teuδ and v = uR\. Then (̂ ίc)ί = (x)RυRt. The induction hypothesis
says that tevδ; hence by (3.17), (vx)t = xRvRt = —xRtRυ = — (α?ί)v.
However, xteuδ = vδ. Thus (va?)ί = 0 and t e (^^)δ = (ui2^+1)3. This
shows that ^ δ £ (^i2^+1)δ. Moreover, as α;i6 Φ 0 and ^ δ = (uR*y,

Φ 0. Hence from the maximality of u it follows that uδ =
1)δ, which completes the induction proof of (3.18). Now as Rx

is nilpotent (see Corollary (3.15)), it follows from (3.18) that uδ =
0δ = A, a contradiction.

We have shown that uδ cannot be a proper subalgebra of A,
Therefore uδ = A, which implies uA = 0. Then JFW is a nonzero
ideal of Af and by the induction hypothesis, A/Fu is nilpotent. As
(Fu)2 = 0, this implies A is solvable; hence A is nilpotent.

4* Main results.

(4.1) LEMMA. An algebra A satisfying the identity
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(1 + δ)z(χoy) + (1 — d)(χoy)z = x(y ° z) + y(χoz)

is quasi-equivalent to an algebra satisfying

(4.2) z(x o y) + (x o y)z = χ(y o z) + y(x o z)

unless δ — —1/2,

Proof. Let Aλ be quasi-equivalent to A via the product a? ® 3/ =
Xxy + (1 — X)yx, where λ Φ 1/2. As 2/ (x) x = (1 — λ)a?y + λ?/#, we
find

(4.3) xy = μx®y + (1 - μ)y(g)X

where μ — λ(2λ — I)" 1 . Substituting (4.3) into (1.3) and keeping in
mind the fact that (Aλ)+ = A+, we find

(4.4) [(1 + δ)μ + (1 - δ)(l - μ)]z ®{χoy)

+ [(1 + δ)(l - μ) + (1 - δ)μ](x <>y)®z

= μx0 (y o z) + μy ® (x o z) + (1 - μ)G(x, y, z)

where G{x, y, z) = (y o z) (x) cc + («° z) (x) 1/. However, from (2.1) we
have

(4.5) G(x, y,z)= ~(x o y) ® z + z (g) (x oy) + y ® (xo z) + x® (y o z) .

Substituting (4.5) into (4.4) yields

(4.6) (1 + ω)z(g)(a?°y) + (1 - ω)(x<>y)(g)z = x®(yoz) + y(g)(χoz)

where ω — — 1 + ^ — δ + 2δμ. Evidently, as long as δ ^ —1/2, we
may choose λ so that o) — 0. However, when ω = 0, (4.6) is simply
(4.2).

(4.7) THEOREM. 1/ A satisfies (4.2)

(4.8) s(α o y ) = JJ o (x o y) - [Xf yf z] - [y, x, z]

and

(4.9) [w, x, yo«] + [a?, w, yoz] + [y, z, w<>χ] + [z,y, woχ] = 0

for all w, x, y, ze A, where [a, δ, c] = (α o 6) o c — a o (6 o c).

Proof. Interchanging ?/ and 2J in (4.2) and then subtracting the
resulting identity from (4.2) yields

(4.10) y(x o z) - z(x o 1/) = 2[y, x, z] .

Interchanging x and y in (4.10) we have
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(4.11) x(y o z) ~ z{x o y) = 2[x, y, z] .

Adding (4.10) and (4.11) we have

(4.12) x(y o z) + y(x ° z) — 2z(x ° y) = 2([#, x, z] + [x, y, z\) .

Now comparison of (4.12) and (4.2) yields (4.8).
.As a © α = α2, setting s = a? o 7/ in (4.8) yields

(4.13) 0 = [x,y,χoy] + [y, x,χoy].

Moreover, as A+ is power-associative, 0 — [x, x, x ° #]. Linearizing
this we find 0=[y, x, χoχ] + [χf y, x o #] + 2[#, a?, cc © ^/]. Another lineari-
zation gives 0 = [y, y, χoχ] + 2[y, x,x<>y] + [y, y, x o ίc] + 2[α:, y, x°y] +
2[y, x, x°y] + 2[#, 7/, χo?/] + 2[#, a?, ί/°3/] Reducing this last relation
by means of (4.13) we get

(4.14) 0 = [x, x , y o y] + [y, y , χ o χ ] m

Linearizing (4.14) by replacing x with x + w and y with y + z yields
the desired identity (4.9). The reader should note that (4.9) is
similar to (3.1) in the commutative case.

(4.15) THEOREM. If A is a semisimple nil algebra satisfying
the identity

(1 + δ)z(x o y) + (1 — δ)(x ° y)z = x(y ° 2) + y(x o z) ,

where δ Φ —1/2, tften A is anti-commutative.

Proof. I t suffices to prove A is quasi-equivalent to an algebra
which is anti-commutative. Thus, without loss of generality, and
on account of Lemma (4.1), Theorem (4.7), and Theorem (3.16), we
may assume that

(4.16) A+ is nilpotent

and

(4.17) z{x o y) = z © (x o y) — [α;, y, 2] — [y, a?, 2;]

where [a, b, c] = (α © 6) o c — a 0 (6 o c).
As Λ+ is nilpotent, there is an integer n such that Aw Φ 0 and

Ac%+1] = 0, where Am denotes the linear span in the algebra A+ of
all symmetrised products of n elements. We show n = 1.

If n > 1, choose w e A [n]. As A[Λ] = Ac%-"1] o A + Aίn~21 o A[2] + ,
w is a linear combination of terms of the type x°y9 where xe A[n~^
and y e A1*1. Using the relation (4.17), we see that z(x °y)e Aίn+1Ί = 0
for all z e A. Thus 0 = An; hence AAW = 0. This shows Aw is a
left ideal of A. As A [ w ] o i = 0, it follows that Aw is a 2-sided
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ideal of A. However, AMAW £ AAW = 0. Thus Aw is a solvable
ideal of the semisimple algebra A. Consequently, Aw = 0, contrary
to the choice of n. Thus n = 1 and A o A = 0, which means A is
anti-commutative.

In our paper [1] we introduced the class of algebras of type δ.
These satisfy the identity (1 + δ)z(x o y) + (1 — δ)(x ° y)z = &(# °z) +
y(x°z)f as well as

(4.19) ( a ^ K = αi(«8»i)»2 + ^(XiX^x* + az

and

(4.20)

where t h e coefficients a u "'fβ8 belong to t h e field F and satisfy
t h e relat ions

(4.21) 1 = —aj. + ct2 + a3 — a4 = aδ — a6~ a7 + a8

- A - A - A + A = - A + A + A - ft
= αx + α2 + - + α8 = A + ft + + ft

It was proved in [1] that if A is a semisimple algebra of type
δ Φ —1/2 then A is the direct sum A = A1 + Ao, where Aί is a direct
sum of fields and Ao is a semi-simple nil algebra. Now in view of
Theorem (4.15), we know that Ao is anti-commutative. However, in
the anti-commutative case, the identity (4.19) reduces to the Jacobi
identity on account of (4.21). Therefore, we have the following
result:

(4.22) THEOREM. A semisimple algebra of type δ Φ —1/2 is a
direct sum of fields and a semisimple Lie algebra.
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