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SCALAR DEPENDENT ALGEBRAS
IN THE ALTERNATIVE SENSE

JOYCE LONGMAN AND MICHAEL RICH

Let B, a not necessarily associative algebra over a field
F of characteristic # 2, be equipped with a map ¢: R X R X
R —>F. We show that if R contains a nonzero idempotent
and satisfies the identities (1) (xy)z 1+ (yx)z = g(z, ¥, 2)[x(yz) +
yY(xz)] and (2) (xy)z + (2)y = g(x, ¥, 2)[x(yz) + x(zy)] then R is
an alternative algebra. The methods also apply to other
pairs of identities.

1. Introduction. In [1, 2] several authors have studied scalar
dependent algebras, i.e., not necessarily associative algebras R over
a field F' which are equipped with a map ¢g: R X R X R— F such
that (xy)z = g(w, ¥, 2)x(yz) for all z, ¥, z€ B. The main result there
was that if a scalar dependent algebra contains an idempotent e,
then it is associative. In [3] the study was extended to the case
of algebras over a principal ideal domain. Here we shall look at
the analogous situation in the alternative case.

Specifically, suppose that R is a not necessarily associative
algebra over a field F of characteristic # 2 equipped with a map
9: R X R x R— F and consider the identities:

(1) (@y)z + (y2)z = g(x, Y, 2)[x(Y2) + y(x2)]
(2) (@y)z + (x2)y = g(=, ¥, 2)[@(y2) + 2(zy)]
(3) (@y)z + (zy)z = 9(, ¥, 2)[x(y2) + 2(yz)]
(4) x(yz) + 2(yx) = g(x, ¥, 2)[(xy)z + (2y)7]
(5) 2(yz) + 2(zy) = 9=, ¥, 2)(zy)z + (v2)y]
(6) x(yz) + y(@z) = 9(, ¥, 2)[(@y)z + (y2)2] .

Note that if g(x, ¥, 2) = 1 then identities (1) and (6) each imply left
alternativity, (2) and (5) each imply right alternativity and identities
(8) and (4) each imply flexibility. (Recall that if (z, ¥, ) denotes
(xy)z — x(yz) then an algebra A is called left [right] alternative if
(x, 2, ) = 0 [(y, 2, ) = 0] for all z, ¥ in A and is alternative if it is
both left and right alternative. A is flexible if (x, ¥, ) = 0 for all
z,yin A. A flexible left (right) alternative algebra is alternative.)
The intent of this paper is to show that if R contains an idempotent e,
then any pair of identities (1)-(6) which imply alternativity when
g(z, ¥, ) = 1, imply alternativity in all cases. Since the methods of
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proof are similar regardless of the choice of identities, to avoid
repetition we present proofs only for the case of an algebra satisfy-
ing identities (1) and (2) and describe the results for the other cases
at the end. Thus, unless otherwise specified, B will denote an
algebra satisfying (1) and (2) over a field F' of characteristic # 2.

It wil be useful to note that if a = g(x, y, 2) then (1) and (2)
easily reduce to

(1) (@, ¥, 2) + (¥, x, 2) = (@ — D[x(yz) + y(xz)]
and
(2" (%, ¥, 2) + (2, 2, 9) = (@ — D[x(yz) + x(zy)] .

2. Algebras with an identity element. In this section we
assume that R contains an identity element 1.

LeMMA 1. If R contains an identity element 1 and satisfies
(1) then R s left altermative.

Proof. Let z,¥y,2zc€R and let @ = g(x,y,2), B=9x+ 1,9, 2),
o=g@®,y+1,2), vy=9x+1,y+1,2). Then we have

(@ — D[x(yz) + y(x2)] = (%, ¥, 2) + (¥, , 2)
=@x+Ly 2+ @Wz+1,2)
= (B — D[x(yz) + y(x2) + 2yz] .

Thus,

(7) (@ — B)=(yz) + y(x2)] = 2(8 — L)yz .
Similarly

(8) (@ — o)[z(yz) + y(@2)] = 2(6 — L)zz .

Suppose that (x, 9, 2) + (¥, x, 2) =0 and that « = 8. Then by (7)
yz=0. If @ =06 then by (8) 22 =0 from which it follows that
(x, ¥, 2) + (¥, ¢, 2) = 0. Thus a +* 6 and we get from (8)

(9) y(@z) = ¥(@z)  for & = Eg;—Tl)e F.

In a similar fashion (6 — D[x(yz) + y(xz) + 222] = (x, ¥y + 1, 2) +
W+Lz)=@C€+Ly+L2)+@W+Lz+1,2 =Dy +
Y(xz) + 222 + 2yz + 22] = (v — D[y(xz) + 222 + 22] so that

(10) (6 — Nylxz) + 222] = 2(7 — 1)z .

Since 6 = v implies that 2 =0 we get 6 # 7 and y(xz) + 202z = Uz
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for peF. Thus(z+ 1L y+ L2+ W+ 1 z+ 1,2 =" —ykz) +
2xz + 2z2] =tz for te F. By (9) (x, ¥, 2) + (¥, 2, 2) = (¢ — 1)0’x2. Thus
xz = t'z for t'€ F so that y(xz) = t'yz = 0. Since y(xz) = 2(yz) =0
we arrive at (x,¥,2) + (¢,«,2) =0. Thus if £ and y don’t left
alternate it follows that @ = 8. Since a = B, (7) leads to:

(11 (, ¥, 2) + (¥, ¢, 2) = 'yz for pekF.

Applying the same procedure as above it follows that g(x, y, 2+ 1)+
gz + 1, ¥,z + 1) and that

(12) @ y,z+ D+ Wz 2z+1) ="yk+1) for p#'eF.

Combining (11) and (12) we have (¢ — p)yz = p"y. If ¢ =p" it
follows that x and y left alternate. Suppose g = ", then yz = cy
for ¢ce F. Thus, by (11) (x, ¥, 2) + (y, #, ) = sy for se€ F. Analog-
ously, (z, ¥y + L, 2)+ (y+ 1,22 =8+ 1 for sse¢F. Comparing
the last two equations we have (s — s')y = s'l. Thus, either s’ = 0
or ¥ is a scalar multiple of the identity element. In either case
(x, 9, 2) + (¥, z, 2) = 0, so R is left alternative.

LEMMA 2. If R contains an identity element 1 and satisfies (2)
then R is right alternative.

Proof. Let x,y,2ze¢R, a«=g(x y,2), and B =gl + 1,9y, 2).
Then (a — 1)[x(y2) + 2(29)] = (@, ¥, 2) + (@, 2, 9) = (& + 1,9, 2) +
(x + 1, 2, 9) = (B — D[x(yz) + x(zy) + yz + zy]. Thus we get

(13) (@ — B)x(yz) + x(2y)] = (B — D]yz + zy] .

Suppose &« = 8. If 8 =1 the result follows immediately whereas if
B # 1 then yz + zy = 0. But in this case also (x, ¥, 2) + (%, 2, ¥) =
(@ — D][x(yz + 2y)] = 0 so the result holds. It follows that a == 8.
In general then, if (a, b, ¢) + (a, ¢, b) = 0 then g(a, b, ¢) = gla + 1, b, ¢).
We are left with the case @ == S. Then by (13) and (2') applied to
the triple z +1,%,2 we have (z, ¥, ?) + (x, 2, ¥) = l[zy + yz] for
le F. Applying the same argument to the triple z, 4, 2z + 1, we get
(@, ¥, 2+ 1)+ (x,2 + 1, y) = U'[zy + yz + 2y] so that (I —U")[zy + yz] =
2l'y. If 1l =1’ we get right alternativity as in Lemma 1. Thus we
may assume that 2y + yz = "y for I"” € F' so that (x, ¥, 2) + (, 2, ¥) =
vy for veF. Similarly (x, v +1,2) + (2,2, 9+ 1) =7y + 1) for
7' e F. Setting the last two equations equal we get (v —7) =71
and it follows that either ¥ = 0 or y is a scalar multiple of the
identity element. Thus, in any case (x, ¥, 2) + (%, 2, ¥) = 0.
Combining Lemmas 1 and 2 we have
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THEOREM 1. If R contains an identity element and satisfies (1)
and (2) then R is an alternative algebra.

3. Algebras containing an idempotent. Henceforth, we drop
the assumption that R contains an identity element but assume
instead that it contains a nonzero idempotent.

LeEmMMA 3. If R satisfies (1) and (2) then (e, e, R) = (R, ¢, ¢) =
(e, R, e) = 0.

Proof. Let xeR. By (1) ex = ae(ex) for & = g(e, ¢, x). Thus
(¢, 6, ) = (@ — l)e(ex). Similarly (e, e,z + ¢) = (8 — 1)[e(ex) + ¢] for
B = gle,e,x + ¢). Thus (@ — Be(ex) = (B — L)e. Now a = B implies
B =1 so that (¢, e, x) = 0. Assume « # B. Then e(ex) is a scalar
multiple of ¢ so that ex is a scalar multiple of ¢. Thus (e ¢, z) =
ex — e(ex) = 0 and we have (e, ¢, R) = 0. Similarly, by (2) we get
(R, e, e) = 0.

For the last identity we first note that (e, R, e)e = 0. For if
xR then (e, x, e)e = [(ex)e — e(xe)le = (ex)e — [e(xe)le = [e(x — xe)le.
But by (1), [e(x — xe)]le = —[(x — xe)ele + gle, x — xe, e)[e((x — we)e) +
(x — xze)e] = 0 by the earlier remarks. Therefore (¢, R, e)¢e = 0. Now
by (1) (e, x, ) = (¢t — L)[e(we) + xe] for £ = gle, z, €) and (¢, x + ¢, €) =
(0 — D)[e(xe) + xe + 2¢] for 6 = g(e, x + ¢, ¢). Therefore (¢t — d6)[e(xe) +
xe]l = 2(0 — L)e. If =0 then § =1 so that (¢, x, e) = 0. Otherwise
e(xe) + xe is a scalar multiple of ¢ from which it follows that
(e, x,e) = te for some tcF. But 0= (e 2, e)e =1te so that ¢ = 0.
Thus (e, x, ¢) = 0 so that (e, R, e) = 0.

LEMMA 4. Let e be an idempotent of a ring R satisfying (1).
Then to each x, y € R there are elements a, b€ F such that (x, ¥, €) +
(9, x, €) = ae and (x, ¢, y) + (e, x, ¥y) = be. Similarly, if R satisfies
(2) there are elements ¢, d e F' such that (x, ¥, e) + (x, ¢, ¥) = ce and
(e, =, ) + (e, ¥, x) = de.

Proof. We prove the first identity only as the others are proved
analogously. By (1) (z, ¥, e¢) + (¥, 2, e) = (@ — L)[x(ye) + y(xe)] and
(x, y+e 6+ ¥+e e = (B—Dx(ye) + y(xe) + 2xe] for a = g(, ¥, €)
and 8= g(x,y + ¢ ¢). Thus, (@ — B)[z(ye) + y(xe)] = 2(8 — Dwe. If
@ #= B then x(ye) + y(xe) = l(xe) for le F. If @ = B then either 8 =1
or ze = 0. In any event we have (x, ¥, ¢) + (9, x, €) = t(xe) for t e F
or xze = 0. Similarly (x +¢,9,¢) + (¥, x + ¢,¢) = t'(xe + e) for ' ¢ I
or x¢ + e¢=0. A simple analysis of the four combinations yields
(x, ¥, €) + (9, @, ) = ae for some a € F.

It is well known that Lemma 3 implies that, relative to an
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idempotent ¢, R has a Peirce decomposition R = R, + R,, + Ry, + Ry
where R;; = {x € R|ex = iz, xe = jx}. Thus, we only have to prove
the multiplicative properties in:

THEOREM 2. Let R be an algebra satisfying (1) and (2). Then
+f e is an idempotent of R, R has a Peirce decomposition B = R,, +
R, + R, + R, relative to ¢ and the Peirce subspaces multiply ac-
cording to:

(a) RyRj S Ry.

(b) R;R; < Rj.

(¢) BRyR,=01f j=k and (3, 3) #+ (k).

(d) 2% =0 for any r,;€R;;, 1+ J.

Proof. Let z,ycR,. By Lemma 4 (x, y,e¢) + (x, ¢, %) = ce or
(xy)e — i(xy) = ce. If ¢ = 1 then by writing 2y = a,, + a,, + @y, + @y
and comparing component parts of both sides of the equation we
get 2yeR, + Ry. Thus R}, S R, + R,. From Lemma 4 again
(x, e, y) + (e, x,y) = be or i(xy) — e(xy) = be. From this we get

"SR, + R, and R, S R, + R, + R,. Hence R < (R, + R;)N
(R, + Ry) =R,. In (2) let z,yc Ry, # =¢ to get (xy)e = 0. Thus
Ry S (Ry + RN (R, + By + Ry) = Ry,. Hence the R, are sub-
algebras.

To show that the subalgebras are othogonal, let x€ R, y € R;;,
% # j. Then from (x, y, €) + (z, ¢, y) = ce, we get (xy)e + (v — 27)xy =
ce from which it follows that xy = dec R,, for some é€ F. Thus
R,R;; S R,. Nowlet xeR,, y€Ry. By (2) (xzy)e + (xe)y = afx(ye) +
x(ey)] = 0 so that 2xy = ay = 0. By (1) (yx)e = 9(¥, %, &)[y(we) + x(ye)]
and by (2) (yx)e + (ye)x = gy, =, e)[y(xe) + y(ex)]. Since yx € R,, and
2y = 0 we arrive at yx = g(¥, =, e)(yx) = 29(y, %, ¢)(yx). Thus yx =0
and we have R, R, = R,R, = 0.

Before proceeding note that R,;R;; + R,;R,;; S R,, + R,; for all
%, j. For by Lemma 4, (x,¢, %)+ (¢, %, y) = be. Then if zeR,,
yeR, or xeR, yeR, we obtain zy — e(xy) = bee R, so that
2ye R, + R, Similarly in (z, e, ) + (x, ¥, ¢) = ce let x€ Ry, ¥y € R,
or xe€R,, ye R, to get (xy)e — 2y = cec R, so that xy e R,, + R,,.

Next let xeR,;, y€R;;. Then zyeR, + R;;. If a=g(z, e, y)
then by (1), (xe)y + (ex)y = afx(ey) + e(xy)] is 2ixy = afixy + e(xy)].
Also by (2), (xe)y + (xy)e = afx(ey) + x(ye)] is ixy + (yx)e = axy. If
a =1 then izy = e(xy) and 12y + (xy)e = zy imply (2y), = 0 so that
2yeR,;. If a=%1and v =1 then by (1) 2xy = 2axy so that xy = 0,
whereas if ¢ = 0, (2) gives xy = axy and again xy = 0. Therefore,
in all cases vy € R;; or R,R,; < R;;.

By Lemma 4, (y, x, e) + (9, ¢, x) = ¢’e reduces to
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(yx)e + (3 — 20)yx = c'e

and we have yx € R,,. Next let ¢t = g(e, y, ). By (1), (ey)x + (ye)x =
tle(yx) + y(ex)] or yx = plyx + 1yx]. By (2), (ey)z + (ex)y = te(y) +
e(xy)] or wyx + ixy = plyx + ixy]l. If ¢ =1, yx = 2uyx and yxr + a2y =
Uyx + xy]. If g+ 1 then yx = —2xy so that yre R, N R; =0. If
r=1 yxr=2yr implies yxr=0. If 7=0, then pyxr =0 implies
yx = 0. Hence yx = 0 in all cases and R,;R;, = 0.

Now let x€R,;, ycR;; and v = g(y, e, x). Then yxeR, + R;,.
By (1) we obtain yx = v(iyx + e(yx)) and by (2) we have i(yx) + (yx)e =
2vi(yx). Therefore, if 7+ = 0 we have (yx)e = 0 so that (yz), = 0.
If + =1 we have (1 — v)yz = v[e(yx)] and 2yx = 2vyx. Therefore, if
v+ 1 then yx = 0 whereas, if v =1, e¢(yx) =0 so that (yx),, = 0.
Hence, in all cases yxe R;, or R;;R,; < R;,.

By Lemma 4, (z, e, y) + (e, z, ¥) = be which reduces to (3¢ — L)ay —
e(xy) = be. This implies that xy e R,;,. Now let é = g(«, 9, ¢). Then
(1) implies a2y + i(yx) = oi(xy + yx) so that if ¢ =0 then a2y = 0.
(2) implies (1 + ¢)(xy) = dixy. Therefore, if © = 1 we obtain a2y + yx =
o(xey + yx) and 22y = dxy. Therefore, if 6 = 1 then axy = 0 whereas,
if 6 #1 we have 2y = —yrxe R, N R, = 0. Thus R,R;;, = 0.

Let xe R,, yc Ry,. Then (x,e¢, y) + (e, x, y) = be reduces to xy —
e(xy) = be so that 2y e Ry, + R,. Also (%, v, ¢) + (2, ¢, ¥) = ce reduces
to (xy)e — xy = ce so that xye R, + R,. Thus xzye(R,, + Ry N
(R, + Ry) = R, and R,Ry, S R,.. Now (y, ¢, %) + (¢, 9, @) = b'e reduces
to —e(yx) = b’e so that yx e R, + R, + Ry, Let @ = g(x, ¥, e). Then
(xy)e + (yx)e = afa(ye) + y(xe)] and (xy)e + (ze)y = alx(ye) + x(ey)]
reduces to a2y + (yx)e = axy and a2y = axy, respectively. Thus
(yx)e = 0 and yxe R, Hence R, R, & Ry.

We have established (a) and (¢). For (b) let =, yeR,. Then
(x, ¥, €) + (x, e, y) = ce reduces to (xy)e — xy = ce so that xy € R, + R,,.
Let 0 = g(zx, ¢, y). Then (xe)y + (xy)e = o[x(ey) + x(ye)] reduces to
2y = 0(xy). Thus, if xy # 0 then 6 = 1. But then we get (xe)y +
(ex)y = x(ey) + e(xy) or e(xy) = 0. Thus xzy € R, so that R} & R,,.

If x, y € R, then (x, ¢, ¥) + (¢, x, y) = be reduces to xy — e(xy) = be
or vy R,, + Ry. Let 6 = g(x, ¢, y). Then (xe)y + (ex)y = o[x(ey) +
e(xy)] and (xe)y + (xy)e = o[x(ey) + x(ye)] reduce to xy = dxy and
2y + (xy)e = oxy, respectively. Thus (xy)e = 0 and xy € B,,. Hence
R, & R,,.

Finally, for (d) let x ¢ R,; for 7 j. Then 2*’cR;,. Let y =1«
in (x, ¥, €) + (¥, x, €) = ce to obtain 2(¢ — j)x* = aec€ R,. Since ¢ # J
and 2’¢ R;;, it follows that «* = 0.

The alternative nuecleus, N ,(R), of an arbitrary ring R is defined
by N,(R)={reR|(x, 7, 2)=0 and (r,y,2) = (¥, 2,7) = (x, r,y) for
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all z, y € R}. It is shown in [4] that Theorem 2 is equivalent to the
fact that ee N,(R) for any idempotent ¢ of R. It is immediate that
if ¢+ j then R;; & N,R) for if »,;eR,;; then (e + 7,;)° = e+ 7.
Thus e + r,; is idempotent so that ¢ + 7,;€ N,(R) and so 7;; € N(R).

LemMMA 5. R, and R, are alternative subalgebras of R.

Proof. It is immediate from Theorem 1 that R, is alternative
since R,, is an algebra which contains an identity element e. Now
let o, 9,2e Ry, @ =g, y,2), and S=g9gx + ¢,y + ¢ 2+ ¢). Then
by (1) (x, y, 2) + (¥, x, 2) = (@ — D[x(yz) + y(®)z]. Similarly

(@ ¥, 2) + W x,2) =(€+2,¢e+y,e+2)+E+y,e+xe+2)
= (B—=D)(e + 2)[(e + y)(e + 2)] + (e + Y(e + x)e + 2)]] .

Comparing the last two identities we obtain (@ — B)[x(yz) + y(xz)] =
2(8 — 1)e since R, is a subalgebra. If ¢ = 8 then 8 = 1 so that R,
is left alternative. If @ = 8 then a(y2) + y(@z) = 2[(8 — L)/(@ — B)]e.
But z(yz)+y(xz) € Ry, and 2[(B—1)/(a—pB)]le€ R,;. Thus x(yz)+y(xz)=0
and 8 = 1. Hence R, is left alternative. A similar argument using
(2) shows that R, is right alternative.

THEOREM 3. If R is an algebra satisfying (1) and (2) and if
R contains a nonzero idempotent element, then R is alternative.

Proof. Let x,yeR. Then x = 3} ;,x; and y = D} ;-0 ¥Y:;; SO
that (x, x, ¥) = >3- (&, ¢, ¥,;). Now if 4 j, then y,;€ N (R) so
that, by the definition of N,(R), (z, «, ¥,;) = 0. Thus, (z, 2, ¥) reduces
to Do (@, @, Yu) = Xiikr=0 Ty Tery Yu).  Let S denote the sum
St ikri=o (&iss Tipy Yi). The terms in S of the form (x,;, %u, ¥,) are
all zero by Theorem 2 and Lemma 5. The terms in S of the form
(%45, %:5, Yu) for © += J are all zero since z,; € N,(R). Finally the other
terms in S come in pairs of the form (;;, Zu, Y1) + @rws Tijy Yir)-
Since ¢ # j or k == r the sum of each of these pairs is zero. Thus
(x,2,¥) =0 and R is left alternative. Similarly R is right alternative.

The result of Theorem 1 holds true if the ring satisfies any
pair of the identities (1)-(6) other than the pairs (1) and (6), (2) and
(5), and (3) and (4) for which the result is obviously not true. The
same holds true if the ring does not contain an identity but does
contain a nonzero idempotent, except that here the case in which
the identities (1) and (5) are satisfied is left open since we are un-
able to establish the property R, & R, in this case. The proofs
vary somewhat from those presented here but the basic attack is
the same. Detailed proofs are available from the authors upon
request.
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