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APPLICATIONS OF APPROXIMATION THEORY
TO DIFFERENTIAL EQUATIONS WITH

DEVIATING ARGUMENTS

M. S. HENRY AND K. WIGGINS

The authors utilize fundamental approximation theory
concepts to establish an existence theorem for an initial
value problem with a deviating argument. The techniques
used to establish this theorem result in an algorithm to
compute polynomial approximations to the solution of the
initial value problem.

1* Introduction* In recent years several authors [2, 5, 8, 9,
10, 12] have considered best approximating in some sense the solu-
tions to various types of nonlinear differential and integro-differential
equations. These papers have generally been devoted to examining
questions involving the existence of best approximations and with
proving that appropriate sequences of approximations converge to a
solution of the differential or integro-differential equation. The best
approximation problems of the above references are ordinarily non-
linear and consequently computational questions are not readily
resolved.

More recently Allinger [1], Henry [1, 6] and Wiggins [6] have
developed alternative approximation theory approaches that are
computationally adaptive.

In this regard [6] deals with nonlinear initial value problems
without deviating arguments, whereas [1] primarily considers linear
initial value problems with deviating arguments. The approximation
problems of [6] and [1] are basically different. The goal of the
present paper is to extend the results of [6] to arbitrary order and
to the more difficult deviating argument case. The theory developed
in the present paper will not contain the linear theory of [1]; in a
subsequent paper [7] the authors will extend the results in [1] and
relate those extensions to the fundamental results of the present
paper.

2* The initial value problem* Consider the scalar initial
value problem

(1) x^\t) - /(*, x(t), , ^ - " ( ί ) , s(Λ(ί)), , x[%-ι\Kt))) = 0 ,
x{i)(ϋ) = ai9 i = 0,1, , n - 1, ί e J = [ - 7 , τ ] ,

where 7 ^ 0 , τ ^ 0, and 7 + τ > 0. This initial value problem is
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considered in [6] for h(t) = t and n = 2. A function x is a solution
to initial value problem (IVP) (1) on J if the x{ί)(t), i = 0, •••, %
are defined for t e J (J Λ(J) and if a? satisfies IVP (1) for ί 6 J. In
(1) it is assumed that f:Jx R2n —> i? is continuous, and that h e
C(J). Other hypotheses will be imposed later. We note that (1)
generalizes not only the initial value problem considered in [6], but
also the initial value problem with deviating argument of [1].

From a theoretical viewpoint, IVP (1) can be examined more
efficiently in an equivalent vector setting. The scalar form will be
utilized in the computations.

The standard transformation

(2) X(t) = foct), , xMY = [χ(t), , *<-«(«)]*

converts IVP (1) into a companion vector IVP

X(t) = AX(t) + F{t, X(ί), X(h(t))),
( } X(0) = Λ, teJ,

where A = (α0,

A =

/0 1 0

0 0 1

0 0 0

\o o o

and

(3 ) F(t, X(t), X(Λ(ί))) = [0, , 0, fh[x)(t)]τ

where for notational convenience

( 4 ) ΛM(ί) - f(t, χ(t), , ^ - " ( ί ) , χ(h(t)), ., x^

The conditions on / imply that F: J x J?2ίt —> i?91 may be assumed to
be continuous. Let Πk denote the set of scalar polynomials of
degree at most k. Define

^ k = {pe Πk:

( 5 ) + + &***»< 6 «Λ where c, = a j i ! and

bi 6 JB, (i = n, w + 1, , fc)} .

Thus ^ is the set of all scalar polynomials of degree at most k
that satisfy the initial conditions of (1). Let Uh denote the set of
functions P: J—> Rn such that each component of P is an element of
Πk. Corresponding to (5), define
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Hence for each P e ^ , P(0) = A Let #(ί) be the fundamental
matrix solution to the matrix initial value problem

(7 ) X(t) = AX(t), X(0) = /, ί 6 J .

Hereafter, for X = fo, , α?J 6R n ,

\X\ = max(!»<!)

if X is a continuous mapping from J to J?%, then

\X\j — max max (|&<(*) |) .
J l£ί£

Because of the nature of the matrix A, the solution ZΛ to the
vector initial value problem

( 8) X{t) = AX(t) , X(0) = Λ , teJ,

is an element of &k. Due to the continuity of F, there exists a
positive constant M depending on N such that | F(t, X, Y)\ <Z M for
all (ί, X, Y) 6 J x i22n with max (|X|, | Γ|) ̂  ΛΓ. Let ^(ί) = (ztS(t))f

teJ, Define

a = \Z\j = max max ( Σ | ziά{t)\) .
J

Then Ji = [— 7lf τ j £ J, 7X and τι nonnegative with Ίx + τx > 0, and
an appropriate deviating argument g are determined as follows:

Hx. Let N^l + \ZΛ\j. Choose Ji to insure that for all teJί9

2\t\Ma£ 1.

ίί2. Assume an interval J2 = [— 72, τ2], 72 and τ2 nonnegative with
72 + τ2 > 0, satisfying J2 Q Jx and h(J2) Q Ju exists. Define g e C(Jj)
by g(t) - Λ(ί), ί e J2

REMARK. If Λ(0) = 0, a condition frequently required of the
deviating argument (see [11]), then the existence of a J2 and g
satisfying H2 is assured.

Assuming hypotheses Hx and iϊ8, an alternative to initial value
problem (1A) is

-*(*) AX(t) + F(t, X(jb), X{g{t))) ,
{ } X(0) - A , ί e J, .
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3* An existence theorem* We are now in a position to define
an approximating scheme that results in a constructive existence
theorem for IFP(IB) and hence for (1A) and (1).

Let

(9) Sk = {Pe^k: \P- ZΛ\ ^2\t\Ma , teJ,}.

Then Sk is a compact, convex subset of &k. For x e Cn~\Jτ), let

(10) F[X](t) = F(jb, X{t), X(g(t))) ,

where again X(t) is given by (2). If PeSk, consider the best
approximation problem

(11) iτdlV-AV-PlP]^.
Vs£k

Because of the nature of A and &kf this minimization problem
reduces to the scalar best approximation problem

(12) inf | | * - / b ] | U ,
veπk_n

where p is the first component of P and where f[p] = fg[p]. Since
/: C*"1^) —> G(J^), it is well known from classical approximation
theory that there exists a v e Πn_k such that

(13) inf | | t > - / [ p ] | | , ι = | | i ; - / [ p ] | | , 1 .

Integrate v n times to obtain the kth degree polynomial vb e <^k.

If Vb = (vh, •• , ^ r i ) ) , then

(14) m£\Ϋ-AV- F[P]\Jι=\γh-AV>- F[P]|Λ .

Define an operator Tk on Sk as follows: if PeSk, then

(15) Tk[P](t)= Vh(t)9 ί e J i .

Thus if PeSk, Tk[P] is the best approximation from &k to F[P]
in the sense of (14). Note that since (13) has a unique solution vbf

Vb is also unique.

THEOREM 1. Assume that f and h satisfy the continuity require-
ments described below (1), and that Hγ and H2 are valid. Then Tk

is a continuous mapping from Sk into Sk.

Proof. Suppose that Tk[P] = Vb. Let

(16) T̂ i(ί) - AVb(t) - F[P](t) = E(t) .
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Since PeSk, Ή.^ and H2 imply that 1-FfP]!,̂  ^ M, and consequently,
since Z(t)A e &k and Vb is best in the sense of (14),

AVh

2A- ΆZΛ-F[P]

This inequality and (16) imply that

(17) \E\Jt<,

Now (16) holds if and only if

Vb(t) - Z{t)Λ

Z(t)Z-1(s)E(s)ds .
o

A variation of parameters argument readily verifies equality (18).
Since A is a constant matrix, Z(t)Z~\s) = Z(t—s); therefore (17) and
(18) imply that

\Vb-~ZΛ\^2\t\M\Z\Jl

, teJ,.

Thus VbeSk and hence Tk maps Sk into Sk.
Establishing that Tk is continuous is somewhat more difficult

and requires the use of fundamental concepts of approximation
theory. Suppose that PeSk and that P is any other element of
Sk; if Tk[P] = Q and Tk[P] = Q, then as in (13),

inf \\v -

and

inf ||ι; -

where p, p, q, and q are the first components of P, P, Q, and Q,
respectively. The classical Freud theorem [3, p. 82] of approxima-
tion theory implies that

(19) Il9(w) — Ψn)\\j1 ^ ^ P I I / M — f[p]\\jί

Let ε > 0 be given. Since / is uniformly continuous on compact
subsets of J x R2n, there exists a δ > 0 such that if \P - P\Jt < δ,
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(20)
Xp max [max (Ύlf τ^Y"*

i — 0, 1, , n .

Inequalities (19) and (20) imply that

\q{ί)(t) - Q{i)(t)\ <e i = 0, 1, , n - 1, t e J.

Thus

(21)

Since Tk[P] = Q and Γfc[P] = Q, the above analysis establishes that
given PeSk and ε > 0, there exists d0 > 0 such that if PeS f c and

δ, then

Hence Tfc is a continuous mapping from Sk into SΛ and the proof is
complete.

COROLLARY 1. Assume the hypotheses of Theorem 1 are valid.
Then the mapping Tk has a fixed point in Sk.

Proof. Since Sk is a compact, convex subset of &>kf the result
follows from the Schauder fixed point theorem [16, p. 25].

We summarize the results of Theorem 1 and Corollary 1. There
exists a Pe^k such that if we seek the best approximation Vb to
F[P] in the sense of (14), this best approximation is precisely Vh —
P. In the equivalent scalar form, if we seek the best approxima-
tion v from Πk_n to f[p] in the sense of (13), then v = pm.

The proof of Theorem 1 does not depend on k, and consequently
the hypotheses of Theorem 1 imply that there exists a sequence

(22) {P*(ί)}5U, teJlf

of fixed points, one for each operator Tk, k >̂ n.
Define Ek, k^n, by

(23) Pk(t) - APk(t) - F[Pk](t) - Ek(t) ,

16 Jί9 where Pk is an element of the sequence (22). Since Pk e Sk,
k^ n,

(24) \Pk{t) - Z(t)Λ\ ̂  2\t\Ma , te J, .

Equation (23) and inequalities (17) and (24) imply that the sequences

(25) {IP*!,,}?-, and
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are bounded. Thus the sequence (22) is an equicontinuous and uni-
formly bounded family on Jt. Let if be a cluster point of this
sequence. Equality (23) is valid if and only if

(26) Pk{t) - Z{t)Λ =

*Z{t)Z~\s)Ek{s)ds.
JO

Thus if

(27) lim\Ek\j, = 0 ,

then (26) implies that W is a solution to IVP (IB). Thus W is a
solution to IVP (1A) on J2, and the first entry w of W satisfies
IVP (1) on J2. These observations constitute part of the conclusions
of the next theorem.

THEOREM 2. Suppose the hypotheses of Theorem 1 are satisfied.
Then (27) is valid. If W is a cluster point of (22) on Jlf then W
is a solution of IVP (IB) on Jx and W is a solution of IVP (1A)
on J2.

Proof. Based on the remarks preceeding the statement of
Theorem 2, only (27) needs to be established. Let

(28) P* = (P» •• , P ί r 1 ) ) .

Then since Pk is a fixed point of Tk,

inf ||t; -

If

then

(29) ek

Jackson's theorem [13, p. 22] implies that

(30) e*-(/[pJ) ^
— n

where L is half the length of the interval Jlt and ωk is the modulus
of continuity of f[pk] on Jίm Let ε > 0 be given. Since the se-
quences (25) are bounded, the sequences
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are uniformly bounded and equicontinuous families on Jx. Thus the
uniform continuity of / on compact subsets of Jt x R2n implies that
the sequence {f[pk]}ΐ=* is an equicontinuous family on Jt. Con-
sequently given ε > 0 there exists a δ > 0 such that 11 — s | <; δ
implies that \f[pk](t) — f[pk](s)\ ^ ε, independent of k. Therefore
ωk(δ) <; ε, independent of k. If K is large enough to insure that for
all k^ K, L/(k — n) <; δ, then the monotonicity of ωk [13, p. 14]
implies for all k ^ K,

J L ) ^ ωk(δ) ̂  e .

Thus for all k ^ K, (29) and (30) imply that 1^1^ ^ 6ε. Con-
sequently lim \Ek\jι = 0, completing the proof.

Jc—>oo

4* Computations* We now describe an algorithm based on the
theory of section three. For k sufficiently large, initially choose
Pk0(t) = Z(t)Λ. At the I + 1 step solve via the second algorithm of
Remes [3, p. 97] the best approximation problem

(31) inf \Ϋ-AV- ^ [P*, i ] | Λ = inf \\v -/[p.M^
Ve.^k veΠk_n

Let the solution of this minimizing problem be P M + 1 and continue.
We again note that pk

n,ι+1 is then the minimizing polynomial to the
scalar problem in (31). This procedure yields a unique sequence

(32) {Phtl}U

with a corresponding sequence of first elements of (32),

(33) {Pk.ι)U

The sequences (32) and (33) have cluster points Pk and pk, respec-
tively, which are approximate solutions of degree k to (1A) and (1)
on J2.

The actual calculations are carried out in the scalar setting.
Furthermore, the computations are effected for any interval Ĵ  £ /
for which λ(e/i) £ Jγ If no such interval exists, the construction of
an appropriate g would be necessary (see H2). If convergence does
not occur, then Jx is reduced (see Hj).

We note that a cluster point of (32) need not be a fixed point
of Tk in the sense of Corollary 1. However, an additional checkable
condition insures that a cluster point of (32) is a fixed point of Tk.
In particular, entries of sequence (33) satisfy

inf \\v -
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In calculating pktl+ί9 an alternating set (see [3, p. 75]) consisting of
k — n + 2 arises. If Xι = {t1)l9 , tk_n+2jt} is an alternating set, and if

then

i = 1, , w — jfc + 1 .

Let X = {̂ , , £n_i.+2} be a cluster point of {XJΓ=o> and let

(34) ek(t) = pίΓ}(t) - jf[pj(t)

where pk is the first entry of the cluster point Pk of (32) (and
hence a cluster point of (33)). Without loss of generality we can
assume that the subsequences of {XJ and of (33) that converge to
X and pk, respectively, involve the same subscripts.

H3. Suppose for tif ti+ι e X that ek(Q = —ek(ti+1), i = 1, , k — n + 1,
where ek is defined in (34).

We note that this condition is weaker than assuming the alter-
nation theorem.

Assuming HB is valid, Pk is a fixed point of Tk, and consequently
the theory of § 3 applies. If (33) actually converges, H3 is satisfied.

The following examples employ the algorithm described above.
A Fortran IV program using double precision arithmetic is utilized
in the calculations. The calculations [for Examples 1 and 2 were
executed on the Xerox Sigma 7 computer, located at Montana State
University. The calculations for Example 3 were effected on the
IBM 370, at The College of Charleston.

EXAMPLE 1.

ί(ί) - 2(2 - t)x{t)x\t) - 0 , J = [-.7, .7]

x(0) = 1/2 , 4(0) - 1/4

The algorithm is employed over all of J, since g(t) = t. For
k = 5 approximation is from

^ 5 - {P(t): p(ί) = .5 + .25ί + b2t
2 + bzt* + bj4 + bδt

δ} .

Let Bt = (.5, .25, δ2Z, &3Z, bu, b6l) be the coefficients of the ί-th iterate
pk>ι of sequence (33). Then

Bo = (.5, .25, 0, 0, 0, 0)

B, - (.5, .25, .125000, .020833, -.005208, -.001562)

J?15 - (.5, .25, .119879, .057090, ,042496, ,023350) .
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If the algorithm is terminated with Blδ (a stopping criteria is em-
ployed here), then the cluster point of (33) is

pB(t) = .5 + .25ί + .119879*2 + .570909*3 + .424964J4 + .233505*5 .

The actual solution is x(t) = 1/(2 - ί), and \\x - pδ\\j = .001779.

EXAMPLE 2.

*(ί) + 4a?(t/2)4(ί/2) = 0, / = [- 1, 1] ,

α(0) = 0 , 4(0) = 2 .

We observe that h(J) £ J. Approximation is again from &6f

and

BQ = (0, 2, 0, 0, 0, 0) ,
. . .

B9 = (0, 2, 0, - 1.290025, 0, .204262) .

Then B9 and B10 are equal through six decimal places. Thus

pβ(ί) = 2ί - 1.290025*3 + .204262*5 .

The actual solution is x(t) = sin 2ί and |ja? — 3>β|U = .006865.

EXAMPLE 3. h(t) = 1/2(6* - 1)

x(t) + 4[2a?(λ(ί)) + I]" 2 = 0 , te [-.175, 1]

x(0) = 0 , 4(0) = 2

In this example h(J) — [—.08, .859]£J. For approximation from
^ 7 , the alternating set is

X = {- .1750, - .1211, .0509, .3313, .6519, .9054, 1.0000} .

The actual solution is x(t) = Zw(2ί + 1), and

p7(t) = 2ί - 1.9688tβ + 2.8151t8 - 4.7085*4

+ .58950ί5 - 4.0266ίβ + 1.0974t7 .

Hypothesis H3 is satisfied by e7, and | |β7 | | = .08519. Finally, ||a? —
p7\\ = .00496.

5* Conclusions* This paper utilizes approximation theory
techniques to obtain uniform approximate solutions to variants of
IVP (1). The primary result of the paper is an existence theorem
for IVP (1). An algorithm based on this existence theorem is used
to compute approximate solutions to IVP (1). This paper extends
results of the authors [6] to higher order initial value problems
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with deviating arguments. The present paper is closely related to
[1], but results in an approximation problem and a companion algo-
rithm that differ from those given in [1] (for additional literature
involving other deviating argument problems, see the references of
[1]). In a subsequent paper [7] the authors intend to present a
theory that parallels the theory of the present paper but contains
the linear theory of [1]. The results of the present paper do sub-
stantially improve the nonlinear results contained in [1].
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