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CENTERS OF REGULAR SELF-INJECTIVE RINGS

K. R. GOODEARL

This paper is concerned with calculating centers of
regular self-injective rings, particularly those obtained
by completions with respect to rank functions, and those
obtained as factor rings of other regular self-injective
rings. Sufficient conditions are developed under which the
completion of a regular ring R has the same center as R.
For any regular self-injective ring R of Type I/, it is shown
that the center of any factor ring of R is a factor ring of
the center of R. These results are used to distinguish
among the simple regular self-injective rings of Type 11/
by their possible centers.

All rings in this paper are associative with unit, and all ring
maps are assumed to preserve the unit.

l Introduction* The class of regular, right self-injective
rings may be divided into subclasses using the theory of types as
in [6, Chapters 5-7]. In particular, any indecomposable, regular,
right self-injective ring must be one of Types I/, I^, 11/, IL,, or
III [6, Corollary 7.6]. The indecomposable, regular, right self-
injective rings of Types 1/ and I^ are easy enough to describe,
since those of Type 1/ are the simple artinian rings, while those of
Type loo are the endomorphism rings of infinite-dimensional right
vector spaces [6, Theorem 5.4].

In the remaining cases, however, very little is known. The
center suggests itself as a reasonable invariant with which to
distinguish among different rings of the same type, particularly in
the indecomposable case, where the center is a field. In this paper,
we develop some techniques for calculating centers, and we apply
these techniques to the standard Type II examples (described below).
In particular, we show that any field can be the center of a simple,
regular, right and left self-injective ring of Type II, and that the
standard Type II examples can be distinguished by means of their
centers.

Both of the standard Type II examples are built up from
certain sequences of simple artinian rings, one by the completion of
a direct limit, the other by a factor ring of the direct product.
The second of these is the easiest to describe, as follows. Let
Rι> 2̂> be simple artinian rings whose composition series lengths
are unbounded, and set R = ΠRn. If M is any maximal two-sided
ideal of R which contains 0 Rn, then it follows from [6, Corollary
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11.10] that RjM is a simple, regular, right and left self-injeetive
ring of Type II.

To describe the other example, we outline the completion process
as developed in [8, 4, 5]. A pseudo-rank function on a regular ring
R [4, p. 269] is a map N:R-^ [0,1] such that

(a) N(X) = 1.
(b) N(xy) £ N(x), N(y) for all x,yeR.
(c) N(e + f) = N(e) + N(f) for all orthogonal idempotents e,

feR.
A rank function on R [13, p. 231] is a pseudo-rank function N such
that

(d) N(x) > 0 for all nonzero xeR.
It follows from (b) and (c) that N(x + y) <; N(x) + iV(τ/) for all
x,yeR [13, Corollary, p. 231].

Any pseudo-rank function N on R induces a pseudo-metric δ on
i? according to the rule δ(x, y) — N(x — y), and the ring operations
on R are uniformly continuous with respect to δ [13, pp. 231, 232].
Thus the (Hausdorff) completion of R with respect to δ is a ring
R, which we refer to as the N-completion of R. Note that the
kernel of the natural map R —> R equals the kernel of N. Accord-
ing to [8, Theorem 3.7], R is a regular ring, N extends continuously
to a rank function N on R, and R is complete with respect to N.
Also, R is right and left self-injective by [4, Corollary 15].

Given a simple regular ring R with a rank function N, the
iSΓ-eompletion R oi R need not be a simple ring or even indecom-
posable, as [4, Examples B, C] show. Necessary and sufficient
conditions for R to be simple are given in [4, Corollary 20]. In
particular, [4, Corollary 21] says that if N is unique then R is
simple.

The remaining Type II example is now constructed as in the
following proposition.

PROPOSITION 1.1. Let î —> J22—>• be a sequence of simple
artinian rings and ring maps such that the composition series
lengths of the Rn are unbounded, and set R = lim Rn. Then there

exists a unique rank function N on R, and the N-completion of
R is a simple, regular, right and left self-injective ring of Type
II.

Proof. According to [4, Proposition 2], there is a unique rank
function on each Rn. Inasmuch as rank functions on R are induced
by compatible rank functions on the Rn, it follows that there is a
unique rank function JV on R.

Let R denote the iV-completion of R. Then R is regular by
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[8, Theorem 3.7] and [4, Corollary 15] says that R is right and left
self-injective. Since N is unique, [4, Corollary 21] says that R is
simple.

Inasmuch as the composition series lengths of the Rn are un-
bounded, we infer that there exists an infinite sequence of nonzero
orthogonal idempotents in R. Since R is simple, the natural map
R —• R is injective, hence R contains an infinite sequence of nonzero
orthogonal idempotents. Thus R is not artinian. Consequently, we
conclude as in [6, pp. 33, 34] that R is Type II.

We conclude this section by showing that any field can be the
center of a regular, right self-injective ring of Type III. This
result was proved by Handelman after seeing a preliminary version
of this paper.

PROPOSITION 1.2 (Handelman). Let F be any field. Then there
exists a simple, regular, right self-injective ring R of Type III
such that center(iZ) ^ F.

Proof. Set Sn = M2n(F) for all n = 1, 2 . Map each Sn->Sn+1

along the diagonal, i.e., map x ι-> Mξ I, and set S = limS%. Note
|_υ xj __^

that S is a simple regular ring, and that center(S) = F.
Now let R be the maximal right quotient ring of S. Since S

is a simple regular ring, we see that R is a simple, regular, right
self-injective ring. Given any x e center(R), we see that J =
{s e SI xs e S} is a nonzero two-sided ideal of S, whence J = S and
so xeS. Consequently, center(R) = center(S) = i77.

In [7, Example (e), pp. 831, 832], it is shown that R is directly
infinite. Since R is simple, it follows that R contains no nonzero
directly finite idempotents. Therefore R is Type III.

2* Completions* This section is concerned with calculating the
center of the completion R of a regular ring R with respect to a
pseudo-rank function, and in particular with conditions which ensure
that the center of R coincides with the center of R. As our
methods deal with direct limits of semisimple (artinian) rings, we
begin with the case where R equals the ring MJJD) of all n x n
matrices over a division ring D. Our method, which is an exten-
sion of [9, Theorem 5], involves comparing the ranks of additive
commutators xy — yx with the ranks of differences x — z, where
z e center(R). (By the rank of a matrix xeMn(D), we mean the
number of linearly independent rows (or columns) of x.)

In order to construct additive commutators in MJJD) with
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suitably large ranks, we use the rational canonical form for matri-
ces in Mn(D), which works as well over division rings as over fields
[10, p. 50]. Specifically, any matrix in Mn{D) is similar to a block
diagonal matrix where each block is a companion matrix, i.e., a
matrix of the form

LEMMA 2.1. Let D be a division ring, let n ^ 2 be an integer,
and let x e MJJD) be a companion matrix. Then there exists y e
Mn{D) such that xy — yx is invertible.

Proof. If n is even, set

V =

0 0

In this case, we compute that xy — yx has the form
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which is clearly invertible.
If n is odd, set

V =

< 1
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In this case, we compute that xy — yx has the form

Ό
0

0

1

0

0
*

1

0

0
1

•

•

•0
. *

0

1
*

0-1

0

•

0

0
oj

0

•

0

0
0

1

0
1

0

0
0

1
0

o .
0

1

• 0
• 0

0

•

•
0

0
l j

0
0

a

.

0

1
*

- 1
1

0

- 1
1

0 •••
*

•

0
*

-1

1
*

0 '
0

•

0

0

which we see is invertible (rearrange the columns in the order
2, 3, '••, n — 1,1, n to obtain a triangular matrix).

LEMMA 2.2. Let D be a division ring, and let n be a positive
integer. Let xeMn(D) be a diagonal matrix with diagonal entries
a19 &!, a2, b2, ', at, bt, at+1, at+1, , at+1 such that at Φ bt for all i = l,

(a) // at+ί 0 center(D), then there exists y e Mn(D) such that
xy — yx is invertible.

(b) If αί+16center(D), then there exists yeMn(D) such that
— yx) = 2t.

Proof. It clearly suffices to show that if z = Q ^ e M2{D)

with a Φb, then there exists w e M2(D) such that zw — wz is inver-

tible. For this we need only take w = J J , since then zw — wz —
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[ 0 a-bl
[b-a 0 J

PROPOSITION 2.3. Let D be a division ring, let n be a positive
integer, and let xeMn(D). Then there exist matrices yeMn(D)
and z e center(Mn(D)) such that rank(# — z) ̂  rank(x?/ — yx).

Proof. By a change of basis, we may assume that x is in
rational canonical form. Then, by a permutation of the basis, we

may put x in the form Q „ L where xf is an n' x nf diagonal
matrix and x" is an n" x n" block diagonal matrix whose diagonal
blocks are companion matrices of degree at least 2. In view of
Lemma 2.1, there exists an n" x n" matrix y" over D such that
%"v" — y"%" is invertible.

We may arrange the diagonal entries of xr in the order alf blf

a>2f b2, , at9 bt, at+1, at+1, , at+1 wi th α^ Φ bt for all i = 1, , t. If

at+1 £ center(D), then by Lemma 2.2 there exists an nr x nf matrix
yf over D such that xfyf — y'x' is invertible. In this case, set y =

^ X in Mn(D), so that #?/ — ya? is invertible. Setting z = 0, we

obtain rank(# — z) ̂  w = rank(ίc?/ — yx), as desired.
Now assume that at+1 e center(D), and define z e center(Mn(D)) to

be the diagonal matrix with all diagonal entries equal to at+1. Note
that rank(# — z) ̂  2t + n". According to Lemma 2.2, there exists
an n' x nf matrix yf over D such that rankOV — y'x') = 2έ. Set-
ting 2/ = Q f J in Mn(D), we conclude that rank(#τ/ — ya?) = 2t Λ n"^
rank(ίc — z), as desired.

DEFINITION. Given modules A and 5, we write A < B to mean
that A is isomorphic to a submodule of B. Given elements x and
y in a regular ring R, we note that xR < ?/i2 if and only if x —
ayb for some a9beR.

COROLLARY 2.4. Let R be a semisimple ring, and let x e R.
Then there exist elements yeR and zecenter(R) such that (x — z)R<
(xy — yx)R.

Proof. It suffices to consider the case when R is simple artinian,
hence we may assume that R = Mn(D) for some positive integer n
and some division ring D. According to Proposition 2.3, there exist
yeR and ze center (R) such that rank(# — z) ̂  τa,nk(xy — yx). As
a result, we see that the composition series length of (x — z)R is
less than or equal to the composition series length of (xy — yx)R.
Consequently, we conclude that (x — z)R < (xy — yx)R.
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GOROLLARY 2.5. Let R be a directed union of semisimple sub-
rings Ri9 and assume that center^) £ centerCR,) whenever RtQRj.
Given any xeR, there exist elements y eR and z ecenter(iϋ) such
that (x — z)R ̂  {xy — yx)R.

Proof. We have x e Rk for some k, hence by Corollary 2.4
there exist yeRk and z e center(Rk) such that (x—z)Rk<>(xy — yx)Rk.
Since center(i2J £ center^) whenever Rt Q R5, we see that z e
center(iϊ). Inasmuch as R is a flat left i2fc-module, we conclude
that (x — z)R < {xy — yx)R.

THEOREM 2.6. Let R be a directed union of semisimple sub-
rings Ri9 and assume that center^) Q center(J?j) whenever Rt Q Rj.
Let N be a pseudo-rank function on R, let R denote the N-comple-
tion of R, and let φ: R —> R be the natural map. Then φ(center(R))
is dense in center(R).

Proof. Let N be the natural extension of N to R. Let x e
center(β), and let ε > 0 be a real number.

Choose weR such that N{φ(w) — x) < ε/3. According to Corol-
lary 2.5, there exist y e R and z e center(i2) such that (w — z)R <
(wy — yw)R. Then w — z = a(wy — yw)b for some a,beR, from
which we see that N(w — z) ^ N{wy — yw). Since x commutes
with φ(y), we obtain

N(w — z) ^ N(wy — yw) — N(φ(w)φ(y) — φ{y)φ{w))

= N((Φ(w) » x)Φ(y) - Φ(y)(Φ(w) - x))

^ 2N(φ(w) ~x)< 2ε/3 ,

and consequently

N(φ(z) - x)^ N(φ(z) - φ(w)) + N(Φ(w) - x)

< N(w - z) + (ε/3) < ε .

Therefore ^(center(R)) is dense in center(R).

COROLLARY 2.7. Let R be a directed union of semisimple sub-
rings Rif and assume that center(Rί) £ center(22j) whenever Rt £ Rj.
Let N be a rank function on R, let R denote the N-completion of
R, and assume that R is indecomposable (as a ring). Then the
natural map center(ϋί) -> center(^) is an isomorphism.

Proof. Since N is a rank function, we see that the natural
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map φ: R —» R must be injective. Let N be the natural extension
of N to R. According to Theorem 2.6, 0(center(jβ)) is dense in
center(R) in the JV-metric. Since R is an indecomposable regular
ring, centerCR) is a field. Then for any x e center(S), either x = 0
or x is invertible, hence either N(x) — 0 or N(x) = 1. Thus the N-
metric on center(jR) is discrete, hence we conclude that φ(centeτ(R)) =
center(R). Therefore ψ restricts to an isomorphism of center(R)
onto center(R).

Corollary 2.7 does not remain valid without the compatibility
condition on the centers of the Ri9 as Example 2.10 shows.

The calculation of the center of the completion of a direct limit
of semisimple rings with respect to a rank function was first per-
formed by Alexander in the following special case [1, Theorem 12.8],
using a fairly involved procedure. Specializing this case to the
situation where D is a field of characteristic zero, Handelman deve-
loped a relatively short proof in [9, Proposition 6].

THEOREM 2.8. Let D be a division ring, let nil) < n(2) < •
be positive integers such that n(k) | n(k + 1) for all k, and set Rk =
Mn{k)(D) for all k. Map each Rk —> Rk+1 by the obvious block dia-
gonal map, and set R — lim Rk. Then

(a) There exists a unique rank function N on R.
(b) The N-completion R of R is a simple, regular, right and

left self-injective ring of Type II.
(c) The natural map center(D) —> center(^) is an isomorphism.

Proof, (a) and (b) are given by Proposition 1.1.
(c) It is clear that the natural map center(D) —> center(i?) is an

isomorphism. Since the maps center(iϋfc) •-» centeτ(Rk+1) are isomor-
phisms for all k, we conclude from Corollary 2.7 that the natural
map center(i2) —> centeτ(R) is an isomorphism. Thus the natural
map center(D) —»center(J?) must be an isomorphism.

COROLLARY 2.9. Let F be any field. Then there exists a simple,
regular, right and left self-injective ring R of Type II such that
center(β) = F.

Proof. Set D = F and n(k) = 2fe for all k, and construct R as
in Theorem 2.8.

We close this section with an example which shows that Theo-
rem 2.6 and Corollary 2.7 may fail if we do not assume that
center(Rt) £ center(B,-) whenever Rt £ Rj.
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EXAMPLE 2.10. There exists a simple regular ring R such that
(a) R is the direct limit of a sequence Rx —> R2 —> of simple

artinian rings and ring maps.
(b) There exists a unique rank function JV on R.
(c) The JV-completion R of R is a simple, regular, right and

left self-injective ring of Type II.
(d) center(jβ) ^ R but center(β) ^ C.

Proof, (a) Set s(n) = 2%(ίl+1)/2 and R% = M8{n)(C) for all n =
1, 2, . Define fί-algebra maps φn: Rn —> i2M+1 according to the rule

where # denotes the conjugate (not transposed) of the matrix x.
Set R — lim Rn, and for all n let ψ*n: Rn-> R be the natural map.

(b) For each n, there is a unique rank function Pn on Rn,
given by the rule PJx) = rank(x)/s(^). Observing that Pn+1φn — P%

for all w, we see that there is a rank function N on R such that
jVψv = Pw for all n. Since the Pn are unique, JV must be unique.

(c) is given by Proposition 1.1.
(d) It is clear that center(JS) = R. Since JV is a rank function,

we may identify R with its image in R. Let N be the natural
extension of JV to R.

For all n, let θn:C—>Rn be the natural isomorphism of C onto
the center of Rn. Given any xeC, we claim that the sequence
{ψnθn{x)} S R is Gauchy with respect to JV. For each nf we see
that θn+ι(x) — φnθn{x) is a diagonal matrix with 0 for the first
s(n + 1) — s(n) diagonal entries and x — x for the remaining s(n)
diagonal entries, whence rank (^+1(aj) — φnθn(x)) <^s(n). Consequently,

N(ψn+1θn+1(x) - - φnθn{x))

^ s(n)/s(n

As a result, we see for all k > n that

^ Σ
j

^ Σ l/2i+1 < 1/2".
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Therefore {ψjfjx)} is indeed Gauchy with respect to Nf hence there
is a unique element Ί(x)εR such that ψnθn(x) —• 7(a?) in the ΛΓ-metric.
Inasmuch as N(ψnθn(x) — ψkθk(x)) < 1/2" for all k> n, we see that
N(ψnθn(x) - 7(aO) ^ 1/2" for all n.

We now have a map Ί\C—>R, and it is clear that 7 is an
injective ring map. We claim that 7(C) = center(JB).

In order to prove that 7(C) £ center(jβ), it suffices to show that
for any xeC, Ύ(x) commutes with any y e R. Choose k such that
y e ψk(Rk). Given any n^ k, we have y = ψn(zn) for some zn e .#„.
Since 0ft(cc) commutes with zn9 we see that ψn0n(x) commutes with
y. Taking limits, we find that 7(cc) commutes with y, as desired.

Finally, consider any w e center(5). There exists xeRn for
some n such that N(ψn(x) — w) < 1/8. According to Corollary 2.4,
there exist elements yeRn and z e center(ΛJ such that (« — z)Rn<
(xy — yx)Rn, whence Pn(x — z) ^ Pn(xy — i/aj). Since w commutes
with ψn(y), we obtain

- yx) -

n(x) - w)ψn(y) - ψn(y)(ψn(x) - w))
x) -w)< 1/4 .

In addition, we have s = 0Λ(ί) for some ί e C, hence

W (») - ^A(ί)) = Nψn(x -z) = Pn(x -z)< 1/4 .

Recalling that N{ψJSJf) - 7(ί)) ^ l/2%, we find that

N(w - 7(0) ^ % - t («)) + N(ψn(x) - ψjn(t)) + N(ψJn(t) - Ύ(t))
< (1/8) + (1/4) + (1/2*) < 1 .

Consequently, w — 7(ί) is a noninvertible element of the field
center (R), hence w - 7(ί) = 0. Thus w e 7(C).

Therefore 7(C) = center (Λ) as claimed, so that C = center (R).

3* Factor rings* This section is concerned with calculating
the centers of factor rings of regular, right self-injective rings.

DEFINITION. For any ring R, we use B(R) to stand for the
Boolean algebra of all central idempotents of R. If R is regular
and right self-injective, then B(R) is complete by [6, Proposition
4.1].

LEMMA 3.1. Let R be a regular, right self-injective ring, and
let XQR. Let YQ B(R), and set f = V Y. If xe = 0 for all xeX
and all ee Y, then xf=0 for all xeX.
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Proof. Let J be the right annihilator of X, and note that
(R/J)B is nonsingular. According to [6, Proposition 4.1], Σ e ε F βi2 is
an essential right ί?-submodule of fR. Inasmuch as χ e ε F eϋ <£ /,
we conclude that fR <; /, so that xf = 0 for all x e l .

LEMMA 3.2. Lβί R be a regular, right self-injective ring. Given
any xeR, there exist elements yeR and feB(R) such that fxe
center(R) and (xy — yx)e Φ 0 for all nonzero e <| 1 — / in B(R).

Proof. Set Y= {e e B(R) | (xt - tx)e = 0 for all t e R} and / = V Y.
According to Lemma 3.1, (fx)t — t(fx) — (xt — tx)f = 0 for all teR,
hence fx e center (i2).

Let W be the set of those g e B(R) for which there exists an
element teR such that (xt — tx)e Φ 0 for all nonzero e ^ g in B(R).
We claim that every nonzero h ^ 1 — / in J3(i?) must lie above some
nonzero member of W.

Now h ^ / and so fc?Γ, hence (ccί — tx)h Φ 0 for some teR.
Setting k = V {β e JB(22) | (ccί — tx)e = 0}, we see by Lemma 3.1 that
(xt — £#)& = 0. Then h <£ k, hence g — h — hk is a nonzero member
of 2?CB). It is clear that g ^ h, and that (αsί — tx)e Φ 0 for all
nonzero e ^ g in B(R), whence g e W.

Thus every nonzero h <> 1 — f in B(R) lies above some nonzero
member of W, as claimed. Consequently, we infer that there exist
orthogonal idempotents gteW such that \/gt = 1 — / . For each i,
there exists an element yt e R such that (xyt — ytx)e Φ 0 for all
nonzero e <; ̂  in JB(JB). Since i2 is right self-injective, there exists
yeR such that ^/^ = ytgt for all i. Given any nonzero e ^ 1— / in
5(12), we have egtφQ for some i, whence (xy — yx)egi = (xyi~yix)egiφ
0. Therefore (XT/ — yx)e Φ 0 for all nonzero e ^ 1 — / in J5(22).

THEOREM 3.3. Let R be a regular, right self-injective ring, and
let P be a minimal prime ideal of R. Then the natural map
center(i?) —> center(J?/P) is surjective.

Proof. Given any x e R such that x e center(R/P), we must
show that x — z in R/P for some z e center(R). According to
Lemma 3.2, there exist yeR and feB(R) such that fx e center(jR)
and (xy — yx)e Φ 0 for all nonzero e <; 1 — / in B(R).

Since x e center (RIP), we obtain xy — yxeP. According to [3,
Theorem 2.3], P = [P f] B(R)]R, from which it follows that xy-yx =
g(xy — yx) for some g e P f] B(R). Consequently, (xy — yx)(l — g) — 0,
which implies that (1 - g)(l - /) = 0. Thus 1 - / = g(l - /) 6 P,
and so x — fx e P.

Therefore we have fx e centev(R) such that x — fx in R/P.
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DEFINITION. For any ring R, we use BS(R) to stand for the
set of all maximal ideals of the Boolean algebra B(R).

LEMMA 3.4. Let R be a regular, right self-injective ring which
is Type In for some n. For any MeBS(R), R/MR is a simple
artinian ring, and the natural map center(jβ) —> center(i?/M#) is
surjective.

Proof. According to [3, Theorem 2.3], MR is a minimal prime
ideal of R, hence Theorem 3.3 says that the natural map center(i2)-*
center(i2/MB) is surjective. Now R ~ Mn(S) for some abelian,
regular, right self-injective ring S, hence R/MR = Mn(S/Q) for some
prime ideal Q of S. Inasmuch as S is strongly regular, S/Q is a
division ring, whence R/MR is simple artinian.

PROPOSITION 3.5. Let R be a regular, right self-injective ring
of Type If. Given any xeR, there exist elements y eR and z e
center(R) such that (x — z)R < (xy — yx)R.

Proof. According to [6, Corollary 6.5], there exist regular,
right self-injective rings Rί9 R2, such that R ~ ΠRn and each
Rn is Type In. Consequently, there exist orthogonal central idem-
potents elt e2, e B(R) such that V en — 1 and each enR is Type In.

Let X be the set of those feB(R) for which there exist
elements y,a,beR and z ecenter(jR) such that f(x — z)—fa(xy — yx)b.
We claim that any nonzero g e B{R) must lie above some nonzero
member of X.

Now gen Φ 0 for some n, hence there exists M e BS(R) such
that gen g M. Since en £ M, we see that M Π enR e BS(enR) and that
enR/(M Π enR)enR ~ R/MR. Consequently, it follows from Lemma
3.4 that R/MR is a simple artinian ring, and that the natural map
center(jβ) —> center(R/MR) is surjective. Applying Corollary 2.4 to
the element x e R/MR, we obtain elements y' e R/MR and zr 6
center (R/MR) such that (x - zf)(R/MR) < (xy' - yfx)(R/MR). Thus
x — z

r — a'(xyf — y'x)b' for some α', V e R/MR. Now there exist
elements y, a,beR such that y — yf, a = a', and b = V, and there
exists z 6 center(R) such that z = zr.

Thus x — z — a(xy — yx)b 6 MR, from which it follows that

x — z — a(xy — yx)b = h[x — z — a(xy — yx)b]

for some heM. Since g £ M and heM, we see that / — g(l — h) is
not in M, whence / is a nonzero member of B(R) such that / <ί g.
In addition, f[x — z — a(xy — yx)b] — 0, so that feX. Thus the
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claim holds.
Inasmuch as every nonzero member of B(R) lies above a nonzero

member of X, we infer that there exist orthogonal idempotents
fiβX such that vft = 1. For each i, there exist elements yif aif

biβR and zi e center(J?) such that /<(» — zt) — fiat(xyt — !/<»)&*. Since
R is right self-injective, there exist elements y, a,b, zeR such that
Vfi = !/</<, α/< = ttf/i, &Λ = δi/o and s/, = s,/, for all i. Then
/<(» — z) — fta(xy — yx)b for all i, hence we see by Lemma 3.1 that
x — z = a(xy — yx)b. Thus (x — z)R < (α?y — yx)R. Since «/< =«,/< e
center(R) for all i, we conclude from Lemma 3.1 that z e center(R).

THEOREM 3.6. Let R be a regular, right self-injective ring of
Type If. If K is any two-sided ideal of R, then the natural map
center(R) —• center(RJK) is surjective.

Proof. Consider any xeR such that x ecenter(R/K). Accord-
ing to Proposition 3.5, there exist y e R and z e center(ϋί) such that
(x — z)R < (xy — yx)R. Since R/K is a flat left iϋ-module, it follows
that (x - z)(R/K) < (xy - yx)(R/K). Since x e centeτ(R/K), we
obtain xy = yx, and consequently x = z.

The centers of the other standard Type II examples may now
be calculated using Theorem 3.6, as follows.

THEOREM 3.7. Let Du D2, ••• be division rings, let n(l)<n(2)<
• be positive integers, and set Rk = Mn{k)(Dk) and Fk = center(i?fe)
for all k. Set R = ΠRk, and let M be any maximal two-sided
ideal of R which contains 0 Rk. Then R/M is a simple, regular,
right and left self-injective ring of Type II, and center (R/M) =
(ΠFk)/[Mf](ΠFk)].

Proof. Since each Rk is a regular, right self-injective ring of
Type In{k), [6, Corollary 11.10] says that R/M is a simple, regular,
right and left self-injective ring of Type II. According to [6, Corol-
lary 6.5], R is Type If, hence Theorem 3.6 says that the natural map
center(ϋ?) —> center(jffi/ikf) is surjective. Observing that center(i?) =
ΠFk, we conclude that center(i2/M) = (ΠFk)/[M f] (ΠFk)].

Unlike the Type II examples obtained from completions, the
rings R/M in Theorem 3.7 do not have completely arbitrary centers,
as the following corollary (of Theorem 3.6) shows.

COROLLARY 3.8. Let Rlf R2, be simple artinian rings, set
R = ΠRk, and let M be any maximal two-sided ideal of R which
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contains φ Rk. Then center(i?/ikf) is either finite or uncountable.

Proof. Set Fk = center^*) for all k, and note that center(i2) =
ΠFk. Note also that P = ikfΠCiZ^) is a prime ideal of 772*̂  which
contains ®Fk. By [6, Corollary 6.5], R is Type I/, hence Theorem
3.6 says that the natural map center(it?) —• center(.β/Λf) is surjective.
Thus centeτ(R/M) = (ΠFk)/P.

Since ΠFk is a commutative regular ring, all of its prime ideals
are maximal, hence it follows that P is a minimal prime ideal of
ΠFk. Consequently, [3, Proposition 3,3] says that there exists an
ultrafilter &~ on the index set N = {1, 2, } such that

P = {xeΠFk\{keN\xk = 0}eJT} .

Thus (ΠFk)/P is an ultraproduct of the Fk. Since 0 f , S P , we
see that ^~ is a nonprincipal ultrafilter on N.

Now if the set {keN\ Fk is finite} belongs to ̂ ~, then we see
by [2, Lemmas 3.7, 3.11] that (ΠFk)/P is either finite or uncount-
able. On the other hand, if the set {keN\Fk is infinite} belongs to
J ^ , then we see by [2, Corollaries 1.10, 3.14] that (ΠFk)/P is
uncountable. Therefore in all cases center(ϋ?/Af) = (ΠFk)/P is either
finite or uncountable.

The following example, and the basic idea for its proof, was
suggested by Handelman in correspondence.

EXAMPLE 3.9. There exists a simple regular ring R such that
(a) R is the direct limit of a sequence R1 —> i?2 —> of simple

artinian rings and ring maps.
(b) There exists a unique rank function N on R.
(c) The iV-completion R of R is a simple, regular, right and

left self-injective ring.
(d) There do not exist simple artinian rings Sίf S2, such

that R is isomorphic to a factor ring of ΠSn.

Proof. Set D = Q and n{k) = 2k for all k = 1, 2, . , and con-
struct R as in Theorem 2.8. Then (a), (b), (c) hold, and center (JB) = Q.

(d) Suppose that there do exist simple artinian rings Sίf S2,
such that R=(ΠSn)/M for some maximal two-sided ideal M of
Since R is Type II, we see that R 0 Sn for all n, whence φ S %

Then Corollary 3.8 says that the center of (ΠSn)/M is either finite
or uncountable. Since center(jB) is countably infinite, this is im-
possible.

In view of Example 3.9, we ask whether the simple, regular,
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right and left self-injective rings RjM of Theorem 3.7 can be
obtained as in Theorem 2.8. More generally, can every simple,
regular, right and left self-injective ring of Type II be obtained as
in Theorem 2.8? The following example of von Neumann [12] indi-
cates that the answer to this second question is probably negative.

Set D — C, choose positive integers n(ϊ) < n{2) < such that
n(Jc) I n(k + 1) for all k, and construct R as in Theorem 2.8. Let S
be the "regular ring" of a complex W*-factor of Type 11/ (denoted
U(M) in [12, § 5]). As indicated in [12, § 5], S is a continuous
regular ring. It is not hard to check that S is simple, and [11,
Theorem 7.9] says that S is right and left self-injective. By [11,
Theorem 5.1], S is directly finite, from which we infer that S is
Type II. However, [12, Theorem E] says that R & S.

This example shows that there exists a simple, regular, right
and left self-injective ring S of Type II such that S cannot be
obtained as in Theorem 2.8 in case D is a field (since then D = C).
It still might be possible to obtain $ as in Theorem 2.8 with some
noncommutative D, but this seems unlikely.
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