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SPECTRAL SYNTHESIS IN HYPERGROUPS

AJIT KAUR CHILANA AND KENNETH A. Ross

A commutative hypergroup K is, roughly speaking, a
space in which the product of two elements is a probability
measure. Such spaces have been studied by Dunkl, Jewett,
and Spector. Examples include locally compact abelian
groups and double-coset spaces. K has a Haar measure m
(Spector). It is shown that for several important classes of
hypergroups the structure space of L^m) is a hypergroup j£.
For such spaces, Lx(m) is shown to be regular, in fact, super-
regular, and to have good approximate units. A Wiener-
Tauberian theorem is given. Points in the center of K are
shown to be strong Ditkin sets. Examples (due essentially
to Reiter and Naimark) show that not all points in it need
be spectral sets.

1* Introduction* The purpose of this paper is to determine to
what extent results for the group algebra of a locally compact
abelian group carry over to commutative hypergroups. The theory
of topological hypergroups was initiated by Dunkl [3], Jewett [6],
and Spector [12] and has recently received a good deal of attention
from harmonic analysts. Throughout the paper, K will denote a
commutative locally compact hypergroup such that K~ is a hyper-
group under pointwise operations. Being commutative, K admits a
Haar measure m, as shown by Spector [13]. The convolution algebra
L\m) = L\K) can be identified with the pointwise algebra A(K~) of
Fourier transforms on K~. The main reference will be Jewett [6]
who calls hypergroups "convos." A survey of the subject appears
in [10].

In §2 we establish some basic facts about A(K~). A{K~) is
shown to be a regular algebra of functions on K~\ in fact, -4.(10
is super-regular (2.9). It is shown that A(K~) has some useful ap-
proximate units. A Wiener-Tauberian theorem is given. Some
results on spectral synthesis are given in §3. The main result
asserts that points in the center of K" are strong Ditkin sets. Several
examples are discussed in §4. In particular, it is observed that, in
general, points of K~ need not be spectral sets. It is also observed
that there exists nondiscrete K^ such that every closed subset is a
Calderόn set.

1.1. As remarked above, we assume throughout that
(JEZx) K~ is a hypergroup under pointwise multiplication.

In (3.5)-(3.13) we impose another hypothesis which we now discuss.
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The hypergroup K~ need not be the structure space of A(K~). In
fact, the structure space for A(K~) w L\K) is the space «̂ t(JSΓ) of
all bounded continuous multiplicative functions on K [6, 6.3]. We
always have K" £ £fh{K\ but in (3.5)-(3.13) we assume that

We devote the remainder of §1 to showing that (HJ and (£Γ2) hold
for several important classes of hypergroups.

1.2. To start with, observe that (.Hi) and (if2) hold if K is a
locally compact abelian group. Now let G be a locally compact
abelian group and let B be a subgroup of the automorphism group
of G having compact closure. Then the space GB of J3~~-orbits is a
hypergroup. Property (JEΓJ holds for GB because (GBT is isomorphic
with (G~)B where G" denotes the character group of G. Property
(1Γ8) also holds for GB. See [11] for a more detailed discussion.

1.3. Compact hypergroups always satisfy (H2) [3, 3.5] but (HΊ)
can even fail for three-element hypergroups [3, 3.8], [6, 9.1C].

PROPOSITION 1.4. Let G be a Z-group, i.e. a group such that
G/Z is compact where Z denotes the center of G. The hypergroup
K of conjugacy classes of G satisfies (fli) and (H2). For each xeK
let aΓ be defined on K~ by x~(φ) = ψ(x). Then %b(K~) = ί A A =
{of: see JBL}. In particular, i ί A A is isomorphic with K and (H^ and
(jfff) hold for K~.

Proof. As observed in [11], K~ can be identified with the space
X of normalized characters on G. It is shown that ϊ is a hypergroup
in [11, 5.5] and so K satisfies ( i ϊ j . A theorem of Hulanicki (see
[16, 4.12]) shows that K also satisfies (H2).

As noted in [6, 12.4], #—>aΓ is a homeomorphism of K onto a
closed subset of K^. Now consider χ 6 Hh(K~). The fact that
χ = of for some xeK follows directly from Theorem 2 in Kaniuth
and Steiner [15]. To translate into their notation, observe that
E(G) = X^K~ and that Λ(G) = K. For ξeL\K~)9 let h(ξ) =

\ ζWx(Ψ)dψ Then h is a nonzero multiplicative linear functional

on L\K~) and the theorem of Kaniuth and Steiner shows that

h(ζ) = ί ξ{ψ)ψ{x)dψ for some a? e i ί and all ξ e L\K~). Then χ(f) =

ψ(x) = x~(φ) for ψ e ίC".

An interesting hypergroup for which both (HJ and (iϊ2) fail is
discussed in (4.8.)
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2* The algebra A(K~). We begin by setting down some results
that are straightforward consequences of basic results in [6]. As
stated in § 1, we assume throughout that K is a commutative hyper-
group and that K~ is a hypergroup under pointwise operations. The
Plancherel measure on K~ will be denoted by π. Since K~ is a
hypergroup, π is the Haar measure for K^\ see [6, 7.3, 12.4], In
view of [6, 7.31] the Fourier transform on L\m) n L\m) extends to
an isometry of L\m) onto L\π).

LEMMA 2.1. // / and g are in L\m), then / " and g~ are in
L2(π) and f~*g~=:(fgy. Moreover, (φ,ψ)-^φ*ψ is a jointly
continuous mapping from L\π) x U(π) onto A(K~).

LEMMA 2.2. Iff belongs to L\m) or L\m) and ifΎeK~, then
(fηy = (jΓ)r. Iff belongs to L\m) and yeK, then (ΛΓ(7) = 7(»)/Λ(7)
for all 7 e K~.

The next lemma follows from (2.2B) and (5.4H) in [6].

LEMMA 2.3. For f in L\m), the mapping y-*fy is continuous
from K into L\m).

LEMMA 2.4. If f g are in L\m) and yeK, then

{f*g)y = f*(gv) = (fy)*g .

The regularity of A(K~) is a consequence of the next lemma,
whose statement and proof will be familiar.

LEMMA 2.5. Let E be a compact subset of K~ and let V be a
symmetric set such that π(V) > 0 and such that its closure V~ is
compact. Then there is a function φ in A{K~) such that 0 <; φ ^ 1,
φ(j) == l for ΎβE and φ(Ύ) = 0 for Ύ<£E*V*V. Also, we have
\\φ\\\<ίπ{E*V)lπ{V).

Proof. Let ξr and ξE#v denote the characteristic functions of V
and E*V, respectively, and let φ = ^(V)" 1 ^*^^. Lemma 2.1 shows
that φ belongs to A(K~). For Ύei f , we have

φ(Ί) = π(VΓ \

pr denotes the point mass at 7. Since each pΊ*pv is a probability
measure, we see that 0 <; φ <̂  1. lίΎβE, then supp (pr * pγ,) QE*V
for all 7' 6 V, from which it follows that φ(Ύ) = 1. If φ(7) Φ 0, then
(Pr*Pr)(E*V) > 0 for some 7' e V. From (4.1B) in [6] it follows that
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7 6 7'*i£*FG E*V*V. The norm inequality is easily verified.

The subscript "00" on a family of functions restricts the family
to its members having compact support.

THEOREM 2.6. A{K") is a regular Banach algebra of functions
on K~. Moreover, A00(K~) is dense in A(K~).

Proof. Lemma 2.5 establishes the regularity. Lemma 2.1
implies that C00(K~)*CQ0(K~) is dense in A(K~) and [6, 3.2B] implies
that C 0 Γ(in * Coo(ir)

We now obtain two useful approximate units for Lι{m), i.e., for
A(K~). We use the notation " " " to signify involution.

LEMMA 2.7. Let f be in L\m) and ε>0. There is a neighborhood
V of the identity e in K such that for every nonnegative Borel

function u supported by V and satisfying \ u(x)dm(x) = 1, we have

Wf-f + u^Kε.

Proof. By Lemma 2.3 there is a symmetric neighborhood V of
e such that \\fy — f\\t < ε for yeV. If u is as indicated, then

f*u(x) - f(x) = \ [fy(x) - Ax)Mi)dm(y)
JK

for x e K, and therefore

\\f*u-f\\ι£\ \ \fy{x) - f(x)\u(y)dm(y)dm(x)
JK JK

= \ IIΛ - f\\My)dm(y) < ε .
JK

THEOREM 2.8. A(K~) has an approximate unit {φa} such that
each φa belongs to A00(K~) and ||^α |L = 1 for all a. If K is metri-
zable, {φa} can be chosen as a sequence.

Proof. Let ^ be a basis of neighborhoods at e consisting of
compact symmetric sets. We direct the net by D = {(Ϊ7, δ): Ue^f,
0 < δ < 1} where (Ulf δ,) ̂  (U2, δ2) signifies Ux S U2 and δ, ̂  δ2. For
Ue <&, let fΌ = m(U)-^ For α = (17, δ), use Theorem 2.6 to select
ψa in Λo(^") such that | |Λ — ̂ «IU < δ. Finally, define φa = ||ψα||lVβ
Some routine estimates and an application of Lemma 2.7 show that
{φa} is an approximate unit for A{K~).

Before obtaining our second approximate unit, we use Theorem
2.8 to show that A(K~) is super-regular.
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THEOREM 2.9. Let E be a compact subset of KΛ and let $ > 0.
Then there is a function ψ in Am{K^) such that ^(7) = 1 for Ί e E
and | | t |U < 1 + ε.

Proof. By Lemma 2.5 there exists φ in A00(K~) such that φ = 1
on E. By (2.8) there exists <p0 in Am(K~) such that ||^0|U = 1 and
\\φ — <ρpolL < ε* Now let ψ = φ + φ0 —

THEOREM 2.10. A(K~) has an approximate unit {φa} with the
following properties. If φa — fa for fa e L\m)f then each fa belongs
to Cto(K), each φa belongs to L\π), φa ^ 0, and \\ΨC\\A — 1 for all a.
If K is metrizable, {φa} can be chosen as a sequence.

Proof. Our directed set will be a basis ^/ of compact sym-
metric neighborhoods of e. For each U in ̂ , select V in %f satisfy-
ing F* V C. U. Let gv = mCF)"1^, fπ = gv*Qv > and φΌ = Λ . Then
/ϋ- is easily seen to be in C^{K). Since gv belongs to L%π), φΠ = {gvf
belongs to L\π). Since V is symmetric and gv is real-valued, gv is
real-valued and so φπ ^ 0. Since gv(l) = 1, we have

i = ^ ( l ) ^ n ^ i u ^ I I ^ I L = HΛIL s II^ILII^IL - i ,

i.e., ||<2vlU = 1. Finally, Lemma 2.7 implies that {φπ} is an approxi-
mate unit for A(K").

THEOREM 2.11. A subset I of L\K) is a closed ideal if and only
if it is a closed translation-invariant subspace.

Proof. Let I be a closed ideal, / e l , yeK. If {ga} is an ap-
proximate unit for L\K), then /„ = limα (/„) * ga. But by (2.4), each
(Λ) *ga=f* (9a)y is in / and so fy e I.

Now suppose that / is a closed translation-invariant subspace
and l e t/61, geL\K), ε > 0. Select h e C00(K) so that H/IUI0 - h\\, <
ε/2. Use Lemma 2.3 to partition the compact set supp (h) U Supp (hY
into Borel sets {JB,-}*̂  so that

x^eB, imply PΊkllΛ -/JL < ε/2 .

Select α?- e 5j and set cy = \ h(x)dm(x). For a? e iί, we have

(ft*/)(*) - Σ cs(f9.)(x) = Σ
i=l ^ i=l

from which it follows that \\h*f - Σ?=i ^(/^)lli < ε / 2 Hence
Hflf * / — Σi=i ci(/^ )lli < ε τ l l u s flf * / e / since I is translation-invariant
and closed.
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Here is a Wiener-Tauberian theorem for hypergroups.

THEOREM 2.12. If f belongs to L\K) and if f vanishes nowhere
on K~, then the closed translation-invariant subspace of L\K)
generated by f is L\K) itself.

We omit the direct proof which is similar to that for the group
case. If K~ is the structure space £f&K) for L\K), then this
theorem follows from the abstract Tauberian theorem [5, 39.27] in
view of Theorem 2.6. See the discussion in (1.1).

3* Synthesis in A(K~). As before, K denotes a commutative
hypergroup such that K~ is also a hypergroup. The center Z(K)
of K consists of all x in K such that supp (px * py) is a singleton for
each y e K. The center Z{KΓ) of K~ is the set of ψ in K~ such
that \ψI = 1. A detailed study of centers appears in [11]. The main
result in this section, and in this paper, asserts that each point in
Z(K~) is a strong Ditkin set for the algebra A(K~); see (3.3) and
(3.8). We begin with two lemmas.

LEMMA 3.1. Let F be a compact symmetric subset of K and
ε > 0. If H £ {7 6 J5Γ: \7{y) — 1| < s for all y e F), π(H) < oo, and
if 9 = ξnf then \\gβ - g\\2 ̂  επ(H)1/2 for xeF.

Proof. By Lemma 2.2, we have

H Λ - J7III = lift - dWl = \ \y(χ)g(Ύ) - ΰ(n2dπ(Ύ)

- \ \Ύ(x) - l\2dπ(Ύ) ^ e2π(H) .
JH

LEMMA 3.2. If F is a compact symmetric subset of K and
d > 0, then there exists g e L\K) such that

( i ) llfir|li<2,
(ii) g = 1 on a neighborhood of 1,

(iii) \ \g(y*&) — g(y)\dm(y) <; δ for xeF.
JK

Proof. Let ε = δ/12 and let

Φ = {7 e ί T : \7(y) - 1|< e for y e F}.

Since K~ has the compact-open topology, Φ is a neighborhood of
1 and so Φ contains an open symmetric neighborhood IT, of 1
having compact closure. Since π is a regular measure on ϋΓ",
there exists a compact symmetric neighborhood H2 of 1 such that
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H2 £ H, and π(H2) > (l/4)τr(J3i). By [6, 3.2D], there is a neighbor-
hood Ψ of 1 such that Ψ*H2S= -Hi. Now there exist gl9 g2 in L\K)
such that Qi = £Hi, i = 1, 2. Finally we put g = π(BβrιQi.gι. Observe
that \\gt\\l = TrCff,) and so

H2

\\g\\x = τr(i3Γa)-
1]|flrtflr.lL ^ rc^niifclUlfcll, - WiϊOMiίs)]172 < 2 .

To check (ii), consider ψeΨ. Then

π(H2)g(f) =

= \

For ΎeH2, we have s u p p ^ * ^ ) ^ ? ^ * ! ^ ^ ^ ! and so ζHl is identically
1 on supp(2ty*pr). Therefore π(H2)g(ψ) — π(H2), i.e., g(ψ) = 1. Thus
^ = 1 on Ψ and (ii) holds.

Since F is symmetric, it suffices to prove (iii) for x in place of
x. Observe that

π(H2)[g(y*x) - g(y)] = (g1gi)(y*x) -

( i )

Using Lemma 3.1, we obtain

\ |G1|(2) J*

Similarly, we have

( 3 ) S |G8| dm ̂
JK

Estimation of the integral of Ĝ  is more delicate. By Holder's
inequality, we have \Gx{y)\2 ^ Aλ{y)A2{y) where

AM = \ \g<(z) -
JK

Now

= (\gt\\(y) -
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By [6, 3.3B], we have

\ (\gi\
)κ

and so

ί [(iΛl^

Also

and so

JK ι ~ % % 2 ~~

By Holder's inequality again, we obtain

(4)

Combining (l)-(4), we find

π(H2) \\g(y*x) - g(y)\dm(y)

or

I \g(y*x) — g(y)\dm(y) ^ βεlπiHJ/πίHz)]1'2 < 12ε = <5 .

The next theorem shows that the identity 1 of K~ may be
viewed as a strong Ditkin set for A(K~) even if K~ is not the
structure space for A(K~); see (1.1).

THEOREM 3.3. There is a net {fa} in L\K) such that
( i ) IIΛIIi < .3 for all a,

( i i ) iffeLXK) and / ( I ) = 0, then l im β \\f - / * / α | L = 0,

(iii) each fa vanishes in a neighborhood of 1 in K" and has
compact support.

Proof. Let {uβ} be an approximate unit for L\K) such that
WUβWi = 1 and ύβeAno(K~) for all /3; see (2.8). The net {/α} will be
directed by the set
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D = {(F, δ, β):FQ K compact symmetric, δ > 0}

where (F, d, β) ^ (F'9 δ', β') signifies F^F', δ^δ', β ^ β\ Given
a = (F, δ, β), select gF,δ as in Lemma 3.2 and then define fa = uβ -

Uβ*gFtδ

Properties (i) and (iii) are easy to verify. To verify (ii), consider
fe L\K) such that /(I) = 0, and let ε > 0. Select β0 so that β ^ β
implies | |/ — f*uβ\\x < ε/2; select compact symmetric Fo in K so that

I/I dm < ε/16; and select δ0 so that 4<50||/Hi < ε. If aQ = (Fo, δ0, β0),

0

routine estimates show that a ;> a0 implies | |/ — f*fa\\ι < ε.

REMARK 3.4. The proof of Theorem 3.3 follows the same pattern
as in the group case (see [5, 39.28], for example). The main new
difficulty is that the relation (fg)x = fxgx, familiar for functions on
groups, does not in general hold for functions on hypergroups.

Concepts such as spectral set, strong Ditkin set and Calderόn
set are normally defined for subsets of the structure space of a
regular commutative Banach algebra. For these reasons, we adopt

AN ADDITIONAL HYPOTHESIS 3.5. For the remainder of this sec-
tion, we assume that K~ — <£fh(K). Thus K will be a commutative
hypergroup such that K" is a hypergroup and K^ is the structure
space of L\K).

If K is compact, then K~ is discrete and all its subsets are
Calderόn sets. So our results below on synthesis are of special
interest only if K is noncompact. In any case, {1} is a strong Ditkin
set for L\K) by Theorem 3.3. Our next result and its corollary
allow us to extend this result to points in Z(K~). It should be
compared with results of Rieffel [9, §4.2].

THEOREM 3.6. Let h be a nonzero bounded continuous function
on K, and define Jh(g) = hg for each g e L\K). If 7 e Z(K~)9 then
Jr is an isometric algebra isomorphism of L\K) onto L\K). Con-
versely, if Jh preserves the convolution of L\K), then h belongs to

Proof The first statement is easily verified. For example, the
identity Jr(f*g) = Jr{f)*Jr{g) is checked using the definition of con-
volution and the fact that 7 is constant with value y(x)Ύ(y) on
supp(px*py) for each x,yeK and 7e Z(K") [3, 2.2].

For the converse, we first consider x, y eK and show that h(s) =
h(x)h(y) for all s e supp (px * py). Assume that β = h(x)h(y) — h(s) Φ 0
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for some s e supp (pβ * py) so that [h(x)h(y) — h(s)]β > 0. There exist
compact neighborhoods V and W of x and y, and η > 0, so that

Re[h(v)h(w) - h(s)]β ^η for veV, weW.

Select a continuous nonnegative function / so that f(x) > 0 and
supp (/) Q V, and let g = £^. Since x e supp (p, * p;) we have
f(s*y) > 0. By the continuity of w \-+f(s*w), we see that f(s*ϊυ) > 0
in a neighborhood of y and so

(1) [ f(s*w)dm(w) > 0 .
Jw

Direct calculations show that

(hf)*(hg)(8) = \ \ h(v)f(v)d(ps*pι)(v)h(w)dm(w)
JW JV

and

h(f*g)(s) = Λ(β) \ I f(v)d(p$*pz)(v)dm(w) .
JW JV

Since (hf)*(hg) = h(f*g)9 we conclude that

0 = '

contrary to the estimate

S r
\ [Λ(i;)λ(ii;) —

IT JF

S Γ f

I f(v)d(ps*p^){v)dm{w) = η\ f(s*w)dm(w) > 0
see (1).

Thus Λ(β) = h(x)h(y) for s 6 supp (pβ * py) and hence h(x * ») =
h(x)h(y). Since /&(x*e) = h(x)h(e) and /ι is nonzero somewhere, we
conclude that /&(e) = 1. Since h(x)h(x) = Λ(e) = 1 and fe is bounded
above, \h\ is bounded away from zero. Hence \h\ = 1 by [9, 4.2.3]
and so h is in

COROLLARY 3.7. Suppose that Ύ e Z(K~) and that E is a spectral
set {respectively, Calderon set or strong Ditkin set) in K~ for A(K~).
Then ΊE has the same property.

To check this corollary, use Lemma 2.2: (Jr(/)Γ = (/)?. The
next theorem is immediate from Theorem 3.3 and Corollary 3.7.

THEOREM 3.8. Points in the center Z(K~) of K~ are strong
Ditkin sets for the algebra A(K~).
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COROLLARY 3.9. Countable closed subsets of Z(K~) are Calderόn
sets for A(K~). See [5, 39.39.c].

Theorem 3.8 is best possible in the sense that the points in
K~\Z(K~) need not even be spectral sets; see (4.5), (4.7) and (4.8).
Note, however, that Ditkin's condition holds at °° by Theorem 2.8.

A careful reading of (39.24), (39.39) and (39.42) in [5] shows
that the following general result holds.

THEOREM 3.10. Let 8ί be a regular Banach algebra in CQ(X),
where X is the structure space of SI. Suppose that Sί satisfies
Ditkin's condition at oo, and let Xo denote the set of x in X at
which Sί satisfies Ditkin's condition.

( i ) If E is a closed subset of X such that dE Q Xo and such
that dE contains no nonvoid perfect sets, then E is a Calderόn set
for 8Ϊ.

(ii) If E is a closed nonspectral subset of Xo, then there exists
a continuum of closed ideals in 31 with zero-set E.

COROLLARY 3.11. If E is a closed subset of K~ such that dE £
Z(K^) and dE contains no nonvoid perfect sets, then E is a Calderόn
set for A(K~).

COROLLARY 3.12. Suppose that K~ is discrete at points of
K~\Z(K~). If E is closed in K~ and Ef] Z(K~) contains no nonvoid
perfect sets, then E is a Calderόn set. In particular, if K~\Z(K~)
is discrete and Z(K~) is countable, then every closed subset of K~
is a Calderόn set.

See Example 4.6.

COROLLARY 3.13. If E is a closed nonspectral set in Z(K"),
then there exists a continuum of closed ideals in A(K~) with zero-set
E.

Corollary 3.13 can fail if E is a closed subset of K~; see (4.5).

4* Examples* In this section we give examples to show that
points in K~ need not be spectral sets. We begin with a general
discussion.

Let A be a Banach algebra of continuous functions on a locally
compact Hausdorff space X such that X can be considered as a sub-
set of the structure space of A. The zero-set Z(I) for a closed ideal
I in A is {x e X: f(x) — 0 for all fel}. A closed subset E of X will
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be called a spectral set if it is not the zero-set of two distinct closed
ideals in A. For a subset S of the conjugate space A* of A, we
write I(S) for the set {/ 6 A: <p(f) = 0 for all φ e S}. The set I(S)
need not be an ideal in A, but it will be under certain conditions
on S.

Derivations 4.1. A set D = {dQ, dί9 , dn} in A* is often called
a system of derivations if Leibniz rule

dk(fg) = ΣΣ

holds for /, geA, 0 ^ fc ^ n. Note that for & = 0 this requirement
simply asserts that d0 is a multiplicative linear functional on A. If
d0 is point evaluation at x0 in X, we call D a system of derivations
at x0, and we call dι a point derivation at xQ.

It is easy to show that D is a system of derivations in A*, then
I(D) is a closed ideal in A. In particular, if dγ is a point derivation
at x0 in X and if d0 denotes the evaluation map at x0, then I({d0, c£J)
is a closed ideal in A. If its zero-set is {xQ}, then {x0} is not a
spectral set. For a partial converse, see Atzmon [1, 4.5].

In order to characterize spectral sets in X, we introduce a
generalization of a "set of multiplicative linear functional."

Collectionwise multiplicative sets 4.2. A subset S of A* is called
collectionwise multiplicative if, for φeS and f, geA, there exist ψγ

and ψ2 in S (depending on φ, f, and #) such that φ(fg) = Ψi(/)ψ2(flf)
[2]. For a collectionwise multiplicative set S in A*, I(S) is a closed
ideal in A. In fact, it can be shown that a closed subset S of X
is spectral if and only if for every collectionwise multiplicative set
T in A* with Z(I{T)) - S we have I(Γ) =

There are various ways to obtain collectionwise multiplicative
sets. If D = {ώo> <?i> , dn} is a system of derivations, then the
absolutely convex hull of {2nd^2n~ιdι, , 2dn_1, d j is collectionwise
multiplicative. Clearly the union of collectionwise multiplicative sets
is collectionwise multiplicative, and so is its absolutely convex closed
hull. More generally, suppose that S is a collectionwise multiplica-
tive set, that a Ξ> 1, and that T Q A* has the property that if φ € T
and f, geA, then there exist ψeS and complex numbers a, β, Ύ, δ
such that φ(fg) = aφ(f)φ(g) + βφ{f)f{g) + Ύψ(f)φ(g) + δψ(f)ψ(g) and
«l + l£l .+ |7|. + \δ\ ^ a. Then α<Γ U S> is collectionwise multiplica-
tive where (T \J S) is the absolutely convex closed hull of T I) S.
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Point derivations in M{K) 4.3. Now we give a general method
to obtain point derivations for the algebra M(K) which can be con-
sidered as a Banach algebra of bounded continuous functions on
<^h(K) and M(K) can be regarded as a Banach algebra of functions
on ϋ r by [6, 6.3, 7.3E].

Let K be a commutative hypergroup such that K^ is a hyper-
group. Let {χa} be a net in £fh{K), {aa} a net of complex numbers,
/ a nonzero bounded continuous function on K, and %e<gfh(K) such
that αα(χα — χ) —• / and χα —• χ uniformly on compact subsets of K.
Define Φf(μ) = \ fdμ for μ e M(K), so that *gt(lf) is embedded in
the structure space of M{K) via the mapping χ -> Φχ. (Note that
our Φχ is the same as Jewett's Fj [6, 6.3].) For / described above,
Φf is a point derivation for M{K) at χ 6 <%fh{K).

We check that Φ/ is a point derivation at χ, noting first that
Φ/ is clearly a nonzero continuous linear functional on M(K). If
x,yeK, then αα(χα — %)->/ uniformly on the (compact) support of
px*py and so

/(α * V) • = \ /d(P* * 2>*y = lim αα \ [χa - χ]d(px * py)
JK a JK

= lim aa[χa(x)χa(y) - χ(x)χ(y)]

= lim K[χα(a;) - χ(»)]χβ(») + χ(x)aa[χa(y) - χ(y)]}

= f(χ)x(y) + χ(«)Λ»).

Now for μ,ve M(K), we have

Φf(μ*v) = \ fd(μ*v) = \ \ f(x*y)dμ(x)dv(y)
JK JK JK

= \ \ f(x)χ(v)dμ(x)dv(y) + ( ί χ{x)f{v)dμ{x)dv(y)
JK JK JK JK

= Φf(μ)Φχ(v) + Φχ(μ)Φf(v) ,

i.e., Φ/ is a point derivation for M(JK") at χ. Note that Φ/ can, of
course, also be regarded as a point derivation for L\K) at χ.

For a subset ^ of the space Gb(K) of bounded continuous
functions on K9 we write I(J?~) for the following closed subspace
of L\K): {geL\K)\ Φf{g) = 0 for all / e ^ } . The following simple
observation will help us determine when our ideals are distinct.

LEMMA 4.4. // J^\ and J?l are distinct finite subsets of a
linearly independent subset JF* of Cb(K), then I{^[) Φ

Proof. {Φf\ f e / Ί is a linearly independent set of linear func-



326 AJIT KAUR CHILANA AND KENNETH A. ROSS

tionals on L\K). The lemma follows from an elementary fact con-
cerning linear functionals [5, E. 12].

EXAMPLE 4.5. Let G = Rn and let B be the group of rotations
in G. The study of rotation-invariant functions and measures on
Rn can be viewed as a study of functions and measures on the
hypergroup K — GB; see (1.2). As a set, K is identified with R+ =
[0, oo); see the discussion and references in [10, §3]. The hypergroup
K~ is isomorphic with K and so L\K) and A(K) are isometrically
isomorphic. The center of K is {0} and this is a Calderόn set by
Theorem 3.8. The remaining points of K are nonspectral sets if
n ^ 3. This follows from the work of Reiter [7] which shows the
connection between radial functions on Rn and L. Schwartz's original
example of a nonsynthesis set. Varopoulos [14] has determined
completely the closed ideals of A(K) with zero-set {p} in (0, oo).

Let us briefly cast these known results of Reiter and Varopoulos
in terms of the notations in 4.1 and 4.2. Let A°°(K) be the space
of infinitely differentiate functions in A(K). Fix p in (0, oo) and
let δ° denote the point evaluation functional on A(K): δ\f) = f(p)
tor feA(K). Similarly, let δk denote the Ath-derivative evaluated
at p: dk(f) = f*\p) for fe A°°(K). For n ^ 3, δ1 is continuous in the
topology of A(K) [8, Ch. 2, 6.3(4)] and can be defined on all of A(K).
Accordingly δι is a point derivation at p and {p} is not a spectral
set as discussed in (4.1). Varopoulos [14, p. 384] shows that δk is
continuous on A(K) if and only if k^Kn where Kn is the greatest
integer less than or equal to (l/2){n — 1). For k <; Kn, the set Dk =
{δ°, δ\ , δk} is a system of derivations at p and I{Dk) is a closed
ideal in A(K). These ideals are distinct and they all have zero-set
{p}. Varopoulos shows that these are the only closed ideals with
zero-set {p}. In particular, all points in K are spectral sets if
n = 2.

EXAMPLE 4.6. Let G be the group Δv of p-adic integers and let
B denote the group of units in G acting on G. Then GB is a compact
hypergroup identified with the one-point compactification Z% of Z+ —
{0,1,2, •••}. The hypergroup K = G* is identified with Z+ and
GB — K~; see [4] for more details. Since the center of GB is {oo},
Corollary 3.12 shows that every closed subset of GB is a Calderόn
set. For a class of hypergroups that includes GB, Dunkl and Ramirez
[4, 10.6] prove that every subset is a spectral set.

EXAMPLE 4.7. As in [6, 15.4], let F be the hypergroup of con-
jugacy classes of the compact group SU(2). Then K — F~ is a com-
mutative discrete hypergroup and Proposition 1.4 shows that K~ is
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a hypergroup isomorphic with F and that <%fh{K) = K". We may
take {0,1,2, } as a model for K and [0, π] as a model for K" == î 7.
Specifically, JST = {χθ: θ e [0, π]} where χ,(%) = sin (n + l)0/[(w + 1) sin θ]
for θ e (0, π), χo(w) = 1 and χx(n) = (-1)* for w = 0,1, 2, . Since
Z(iT) = {χ0, χff}, the sets {χ0}, {χκ} are strong Ditkin sets.

We now show that for θ e (0, π), {χθ} is not a spectral set. Let

gin _ i) = A ( χ , ( ^ _ 1)) =
d^ ^ sin2 β

for n*zl. Then gr̂  is a bounded (continuous) function on K and
hence Φ^ is a continuous linear functional on M(K). Since %0+3 —> χθ

and δ~1[χ(?+δ — χ ]̂ -> gθ uniformly on compact subsets of if as δ —• 0,
Φ00 is a point derivation at χθ by (4.3). Since {χθ, gθ] is linearly in-
dependent, the closed ideals /({%<?}) and I({%Θ, gθ}) are distinct by (4.4).
Each of these ideals has zero-set {χ#} and so {χθ} is not a spectral
set.

NAIMARK'S EXAMPLE 4.8. We assume familiarity with Jewett's
treatment of Naimark's example K = [0, ©o) [6, 9.5]. If supp(τr)
denotes the support of the Plancherel measure on K~, then
supp (TΓ) £ i f £ c^(K) and 1 g supp (π). In particular, JBΓ̂  is not a
hypergroup. We will show that many points of ^ (JSΓ) are not
spectral sets for L\K) and, in fact, we will show that they are the
zero-sets of infinitely many closed ideals.

Fix complex numbers α, 6 with a — b2, a Φ 0, and 0 <̂  Im (6) < 1.
For n = 0, 1, 2, ••-, let

f2n(x) = α;2% sin δα /sinh a? and /2w+1(α?) = a?2%+1 cos &#/sinh x .

Note that b~% = χβ, an element of <̂ ?(J5Γ). Each /m is a bounded
continuous function on K. So each Φ/ is a continuous linear func-

J 171

tional on M(K). Straightforward calculations show that

¥m(χ*y) = Σ

for x, y eK. It follows that

Wfm(μ*v) = Σ ί .

for μ,veM(K). Hence for any m ^ 0, Im = J({/0, /t, , /m}) is a
closed ideal in Lx(iί). Since {fo,flf •••} is a linearly independent set
of functions on K, Lemma 4.4 shows that the ideals Io, Ilf are
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all distinct. Moreover, each of these ideals has zero-set {χα} in
Similar computations show that {χ0} is the zero-set of infinitely

many closed ideals in L\K). The auxiliary functions fn in this case
are defined by fn(x) = x2w+1/sinh x. Note that f0 = χ0.

We do not know the status of the identity χ_t or the other
points of <^b(K) not covered by the preceding discussion. However,
we observe that no point of supp(ττ) = {χt:te[0, oo)} is a spectra]
set.

The first author should like to thank the University of Oregon
for giving her a visiting appointment and providing support and
facilities during the academic session 1976-77.
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