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LOCAL AND GLOBAL CONVEXITY IN COMPLETE
RIEMANNIAN MANIFOLDS

S. ALEXANDER

A connected open set in Euclidean space is convex if it
is locally supported at each boundary point; indeed, the same
statement holds in any complete Riemannian manifold for
which all geodesies are minimal. On the other hand, in an
arbitrary complete ^-dimensional Riemannian manifold M
the question, under what circumstances global convexity
properties are implied by local ones, involves the notion of
cut locus. This question will be considered here.

Propositions 2 and 3 give sufficient conditions, in terms of the
cut loci of boundary points, for a locally supported open subset of
Mto be weakly convex. Using a theorem of Karcher about hyper-
surfaces which do not intersect their own cut loci, we then obtain
a condition for convexity (Proposition 4), as well as the following
(Theorem 3): If H is an imbedded, compact, connected topological
hypersurface of M which does not intersect its own cut locus (it
follows then that M\H has two components, each with boundary H),
and if H has a one-sided field of local support elements, then H is
homeomorphic to S™'1 and the supported component of M\H is
convex.

It is hoped that these observations may prove useful in investi-
gating global convexity in certain classes of Riemannian manifolds
M for which information on the behavior of cut loci is available.

The paper [6] by Karcher is our reference for facts concerning
convexity and weak convexity of subsets of M, and cut loci of
subsets of M. We also use the notion of local convexity defined
and investigated by Cheeger and Gromoll [2]

Throughout, M will denote a complete Riemannian manifold of
dimension n. A subset B of M is strongly convex if M contains
exactly one minimal geodesic between any two points of B and that
geodesic lies in B; convex if B contains exactly one minimal geodesic
between any two points of B; and weakly convex if B contains at
least one minimal geodesic between any two points of B. A weakly
convex open set contains every minimal geodesic in M with endpoints
in B; thus for open sets, convexity and strong convexity are
equivalent. Any peM has a strongly convex neighborhood, namely
the open metric ball B(py ε) for e sufficiently small [5]. Finally, a
subset B of M is locally convex if each point of the closure B has
a strongly convex neighborhood U such that B Π U is strongly
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convex. Clearly, a weakly convex set is locally convex.
If B is an open subset of M, then an open halfspace Hp of the

tangent space Mp at p edB is called a support element for B if Hp

contains the initial tangent vectors of all minimal geodesies from p
to points of B. Hp is a local support element for B if, for some
open neighborhood U of p, Hp is a support element for B n U [6].

The notation [pq] (respectively, [pq)) will be used only when p
and g are not cut points of each other, and will denote the unique
(up to oriented reparametrization) minimal geodesic from p to q
(resp., that geodesic with endpoint deleted). Whenever p and q lie
on a minimal geodesic and one of p> q is not an endpoint, we may
refer to the geodesic [pq].

2. The theorem of Karcher. We shall need the generalized
Jordan-Brouwer separation theorem for arbitrary compact topological
hypersurf aces of E*. A proof is included because we could not find
a reference.

THEOREM 1 {Generalized Jordan-Brouwer separation theorem).
Let H be an imbedded, compact, connected topological (n — V)-mani-
fold in En. Then En\H consists of two components, each with
boundary H.

Proof. By Alexander duality, En\H has two components Aι and
A ([4], p. 179). Since these are open, Hz)dA1lJdA2; by invariance
of domain, H= dA1UdA2. Furthermore, since H is connected, there
exists q e H Π dA1 Π 3A2. Observe that no closed subset Hr of H\{q}
separates E*. Indeed, if V is an open ball about q in En such that
Vf)H' = φ, then V contains points of A1 and A2; therefore A1UA2U V
is a connected subset of En\Hf whose closure contains En\Hf, and
it follows that En\H' is connected.

If peH, then any two neighborhoods in H of p and q respec-
tively contain neighborhoods whose complements in H are homeo-
morphic, as may be seen by joining p and q by an arc covered by
finitely many coordinate neighborhoods. By a theorem of Borsuk
([3], p. 357), if E* is separated by a compact subset C then En is
separated by any homeomorph of C. Thus it follows from the
preceding paragraph that no proper closed subset of H separates
En. Therefore H is the boundary of each component of the com-
plement of H ([3], p. 356). This completes the proof.

For any subset S of M, the cut locus C(S) of S in M is defined
by C(S): — [Jpes C(p) where C(p) is the cut locus of p. The following
theorem was proved by Karcher in [6]. (It is stated there for
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H — S""1, but the proof holds in the present case also, with the only
necessary change being the substitution of Theorem 1 for the original
Jordan-Brouwer theorem.)

THEOREM 2 (Karcher). Let H be an imbedded, compact, connect-
ed topological (n — l)-manifold in M satisfying Hf] G{H) — 0 . Then
M\H consists of two open components At and A2, each with boundary
H, where (1) A1 is bounded, and (2)C(A1) c A2.

The component Ax is uniquely determined by (1) and (2), and is
referred to as the "inside" component of M\H.

3. Local and global convexity* Concerning the question raised
in the introduction, the following information may be found in the
paper by Karcher:

PROPOSITION 1 [6]. A connected open subset B of M is convex
if and only if B possesses a local support element at every boundary
point and does not intersect its own cut locus.

If B is a locally convex open set, then as Cheeger and Gromoll
have shown [2], B is an imbedded topological manifold-with-boundary;
furthermore, B possesses a local support element at every boundary
point. It is worth noting that an open set may possess a local sup-
port element at every boundary point and yet not be locally convex:

EXAMPLE 1. Let g be the standard Riemannian metric on R2,
B be the open subset of R2 indicated in Figure 1, and H be the
indicated arc in dB. We shall alter the metric g so that the inside
loop beginning and ending at p is a geodesic in the new metric.
Let U be a connected open set satisfying H — U Γ\dB and carrying
Fermi coordinates about H. Then there exists a Riemannian metric
h on R2 such that (1) g and h agree on JK2\ϊ7, and (2) H is the image
of an /^-geodesic. Indeed, h may be constructed from g and the flat
metric h on U determined by the Fermi coordinates; one uses a
smooth Urysohn function vanishing on R2\U and taking value 1 on

FIGURE 1



286 S. ALEXANDER

a neighborhood of every point of H which does not have a neighbor-
hood on which h agrees with g. The metric h is complete since it
agrees with g except on a compact set. By (1) and (2), B has a
local support element with respect to h at every boundary point,
but B is not locally convex at p.

Local convexity does follow from being locally supported if dB
is an imbedded manifold (it is not necessary to assume that B is a
manif old-with-boundar y):

LEMMA 1. Let B be an open subset of M whose boundary is an
imbedded topological (n — l)-manifold. If B possesses a local support
element at every boundary point, then B is locally convex.

Proof. Fix p e dB, and choose ε sufficiently small that B(p, ε')
is convex for e' ^ ε. It follows from Proposition 1 that every con-
nected component of B Π B(p, ε) is convex. Choose ε'(0 < ε' ^ ε) so
that dB Π B(p, ε') lies in the component through p of dB Π B(p, ε);
this is possible because dB is an imbedded manifold. Certainly there
is a component C of B Π B(p, ε) such that dC Π B(p, ε') Φ 0 . Since
C is convex, dC is an imbedded (n — l)-manifold in M, and hence
in dB. By invariance of domain, dC Π B(p, ε) is open in dB Π B(p, ε);
obviously, it is also closed. Thus, by choice of ε', pedC. Now
suppose Cx is another component of i n B(p, ε) whose boundary
intersects B(p, ε'). Then C Π Q = φ, and C and C1 are imbedded
manifolds-with-boundary having common boundary in a neighborhood
of p, in contradiction to the local support hypothesis. Therefore
B Π B(p, ε') = C Π B(p, ε'). Since both C and B(p, ε') are strongly
convex, so is B Π B(pf ε'), as required.

PROPOSITION 2. A connected open subset B of M is weakly
convex if and only if B possesses a local support element at every
boundary point and B\C(p) is connected for every p 6 dB.

Proof. Suppose that B is locally supported and B\C(p) is
connected for every pedB. Fix pedB, and suppose further that
the set B(p): — {q e B\C(p): [pq] c B} is nonempty. For a fixed
qeB(p), no point of (pq] falls on dB, since the existence of a last
such point would contradict the local support hypothesis. We may
choose ε, by Proposition 1, so that every component of B Π B(p, ε)
is convex; in particular, the component C containing an initial seg-
ment of (pq] is convex. Then (pq] c C U U where U is a neighbor-
hood in B of (pq]. Consider a sequence of points qi e B\C(p) con-
verging to q. For i sufficiently large, [pq€] contains a subarc

c U where rteC Γ\U. Since G is convex, then [pr^ c C and
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hence [ ^ ] c 5 . It follows that B(p) is open in B\C(p). Clearly, B(p)
is also closed in B\C(p), and so B(p) = B\C(p).

Now suppose 7 is a minimal geodesic in M joining any q, q' e B.
If Ύ ςt B then Ύ ςt B. But then the interior of 7 contains a point
p 6 dB, where q, qr e B\C(p), [pq] c B, and [pq'] qt B. Thus B{p) is
nonempty and properly contained in B\C(p), and we have just shown
that this is impossible. Therefore 7 c B and B is weakly convex.

Conversely, if B is weakly convex, then for any pedB and
q, r 6 B\C{p), B contains [qp) and (pr]. Since B is locally convex,
it is clear that q and r may be joined by a path in B\C(p).

For a locally convex set U, Proposition 2 yields a condition for
global convexity which involves only the boundary of B:

PROPOSITION 3. Let B be a connected, locally convex, open sub-
set of M, and set H = dB. If H\C(p) is connected for all pe H,
then B is weakly convex.

Proof. By Proposition 2, it suffices to observe that B\C(p) is
connected for each peH. Suppose instead that B\C(p) = Sλ U S2,
where the St are nonempty open separated subsets of M. Then
H\C(p) = Tx U Γ2 where Γt = dS\C(p). Assume p e Tλ. For any
q 6 S2, since Ŝ  and S2 are separated and [pq] Π C(p) = 0 , [pg] con-
tains a point of T2; thus Γ2 is nonempty also. By assumption, there
is a point r in Tx Π dT2 or 92^ Π T2. Since r has a neighborhood U
in Λf not intersecting C(p) and such that B Π Z7 is connected, by
local convexity, it follows that St and S2 may be joined by a path
in B\C(p), which is impossible.

REMARK 1. The example of a weakly convex open ring on a
cylinder illustrates Proposition 2 and shows that the converse of
Proposition 3 is false.

PROPOSITION 4. Let Bbe a connected, locally convex open subset
of My and set H = dB. If H is connected and compact and does
not intersect its own cut locus, then B is bounded and strongly
convex.

Proof. (Assume B Φ 0.) By Proposition 3, B and therefore B
are weakly convex. Since H is an imbedded topological hypersurf ace
of M, then by Theorem 2, M\H consists of two open components
Ax and A2 with boundary H, where Ax is bounded and C(AX) c A2.
Since B is open and connected and dB — 8Aif B coincides with At or
JΆ.2.

Suppose B = A2. Let 7 be a geodesic ray from some pedB
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having an initial segment in Ax\ such a 7 exists by local convexity
of B. If there exists a cut point r of p along 7, then reB. There-
fore there is a subarc [pq] of 7 such that p, qeH and [pg] does not
lie in B. This contradicts weak convexity of B. On the other hand,
if 7 contains no cut point of p, then since A1 is bounded, again 7
must enter B, in contradiction to weak convexity of B. Therefore
B — A19 Since C(B) Π B = 0 and I? is weakly convex, it is immediate
that B is strongly convex.

THEOREM 3. Let H be an imbedded, compact, connected topological
(n — lymanifold in M which does not intersect its own cut locus.
By Theorem 2, M\H consists of two components, each with boundary
H. If a component B of M\H has a local support element at every
point of H, then H is homeomorphic to S%~1 and B is bounded and
convex.

Proof. By Lemma 1, B is locally convex. Therefore by Pro-
position 4, B is bounded and convex, and is the inside component
of M\H. Furthermore, the boundary of a nonempty, bounded,
convex, open set is homeomorphic to S*"1 [6].

REMARK 2. Theorem 3 was proved by Karcher under the added
assumption that B is the inside component of M\H, in which case
the theorem is a direct consequence of Theorem 2 and Proposition 1.
We have shown that the outside component of M\H in Theorem 2
can never be locally supported.

COROLLARY 1. Let H be a compact, connected Riemannian
(n — ΐ)-manifold, and i:H-^M be an isometric imbedding such
that i(H) does not intersect its own cut locus. If sectional curva-
tures satisfy KH(σ) > KM(i*σ) for every 2-plane σ tangent to H, then
H is homeomorphic to Sn~ι and i(H) is the boundary of a bounded
convex open subset of M.

Proof. By assumption, the second fundamental form of i is
positive definite with respect to a continuous unit normal field.
Therefore if N is a tubular neighborhood of i(H) in M, a fixed
component of N\i(H) is locally supported at every point of i(H), as
Bishop has shown [1]. Thus a component of M\i(H) is locally sup-
ported at every point of i{H), and Theorem 3 applies.
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