
PACIFIC JOURNAL OF MATHEMATICS
Vol. 77, No. 1, 1978

A MEASURE OF THE NONMONOTONICITY
OF THE EULER PHI FUNCTION

HAROLD G. DIAMOND AND PAUL ERDOS

1* Introduction* Let / be a real valued arithmetic function
satisfying lim^*, f(ri) = + °° Define another arithmetic function
F = Ff by setting

Ff{n) = %{j < n: f(j)^ f{n)} + #{i > n: f(j) ^ f(n)} .

The size of the values assumed by the function F provides a meas-
ure of the nonmonotonicity of /. In particular, F is identically zero
if and only if / is strictly increasing.

Here we shall take / to be φ, Euler's function, and study the
associated function Fφ, which we henceforth call F.

We shall show that F(n)/n is asymptotically representable as a
function of φ(n)/n. Then we shall prove that F(n)/n has a distribu-
tion function. We shall study max f t^ F{n) and min%>x F(n) and in-
vestigate conditions on φ(n)/n which lead to large and small values
of F(n)fn.

We express our thanks to Professor Carl Pomerance for a number
of helpful comments and suggestions, and to Dr. Charles R. Wall
for his unpublished data on the density function of Euler's function.

2. An asymptotic formula for F. For 0 <; α, & <;. oo, let

φ(α, δ) = %{n^a\φ(n) ^6} .

We have

#{i < n: φ{j) ^ φ{n)} = n- Φ(n, <p(n)) + #{i < n: φ(j) = φ(n)} ,

%{3 > n: φ{j) ^ φ(ri)} = Φ(oo, φ(n)) - Φ(n, φ(n)) .

Thus

F(n) = n + Φ(oo, φ(n)) - 2Φ(n, φ(n)) + #{i < n: 9>(i) = φ{n)} .

It is known that

where ζ denotes the constant ζ(2)ζ(3)/ζ(6) ̂  1.9436 [1]; and

Φ(a?, y) = «ί τ ^

where # is a continuous, increasing function on [0, 1] which is de-
termined by a contour integral [2].
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Moreover, g is strictly concave, as we now indicate. We have
from [2, Eq. (12)] that

( 0 ) ag\a) = g(a) - Dψ(a) , 0 < a ^ 1 .

Here

Dφ(ά) = lim — %{n ^ x: φ{n) <: an} .

It is known that this limit exists and defines a continuous function
of a (cf. [6, Ch 4], [7, § 5]). Clearly D9 is nondecreasing. In fact,
it is known to be strictly increasing on (0, 1) [8, pp. 319, 323].

If we integrate the differential equation for g and use the fact
that 0(1) = 1, we obtain

g(a) = a + a[t-2Dφ(t)dt ,
JOC

and differentiating again, and differencing, we get for 0 < u < v ^

g\v) ~ g\u) - ~—D9(v) + -ίjD*(w) -
V U

ί) < {Dφ(u) - Dφ(v)}/v < 0 .

Thus 0 is strictly concave on (0, 1).
Noting that

n:

we have

n n \ n / \ n

If we set

(1) h(u) = 1 + ζ% - 2fK%)

and enlarge the error we obtain the asymptotic formula

(2 ) ^ M = h(φ(n)/n)

Below is an approximate graph of h. Note that h is strictly
convex.
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3* A distribution function*

THEOREM 1. F(ri)/n has a continuous distribution function.

Proof. Let ft0 denote the minimal value of ft and u0 the point
at which the minimum is achieved. Let ft* denote the branch of
the inverse function of ft which maps [ft0, 1] onto [0, u0], and let ft**
denote the branch which maps [ft0, ζ — 1] onto [u0,1]. Also, let
h**(a) = 1 for ζ - 1 < a ^ 1. Note that ft* and ft** are well de-
fined, even at u0, on account of the strict convexity of ft.

Since Dφ and ft are continuous, for ft0 ^ a <* 1 we have

D9(h**(a)) - Dφ(h*(a)) = lim — %{n <, x: h*(a) ^ φ(n)/n ^ ft**(α)}

= lim — %{n ^ α;: k(φ(ri)/ri) ^ α} ,

a continuous function of a which vanishes at a = ft0 and equals 1
for α = 1.

Given ε > 0 we have

lim A

X

n
lim l

l imi

x:

^ « + el.

It follows that if ft0 ^ ct ^ 1, then

αl = D9(h**(a)) - Dφ(h*(a)) .
)

Further, DF(a) = 0 for α < ft0 and !),(«) = 1 for a > 1. Thus F(n)/n
has a continuous distribution function.
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4* Upper estimates* We shall exploit the observation, based
on the graph of h, that F(n)[n is near its largest when φ{n)\n is
near 0,

LEMMA 1. For all large x there exists an integer nQ = no(x)
such that x — x log"1 x < n0 ^ x and

(3 ) φ(no)/no ~ β~r/log log x ~ min φ{m)jm .

Proof. Let pr denote the rth prime (in the usual order) and
P(r) the product of the first r primes. Choose r' = r\x) to be the
largest integer for which P(r') ̂  x/log x. The prime number theorem
implies that

Σ log V ~ Vr> ,

and hence, by an easy calculation, pr, ~ log x.
Set n0 = [x/P(r')]P(r'). Then x - P(r') < n0 ^ x and

pr/ log logo?

It is known (cf. [5, Th. 328]) that

min φ(m)/m — e~r/\og log x .

THEOREM 2. As x-> oof

max F(n) = x — (ζe~r + o(l))xfiog log x .

Proof. Let a0 (presently to be specified) be a small positive
number such that h(a) ^ h(aQ) < 1 for a0 < a < 1. Suppose first
that φ(ri)/n ̂  α0. Then there exists an ε > 0 such that F(n) < (1 — e)n
for all sufficiently large n and if α? is large, F(n) < (1 — ε)x for αϊZ
^ ^ x and satisfying φ(ri)/n ̂  a0-

For small positive values of a we use the approximation

g(ά) = ζα + 0{exp (-exp l/(fcα))} ,

which holds for some absolute constant k [2, Lemma 4]. If we
combine this estimate with (1) and (2) we obtain

(4) ZW = 1 _.ζ2(Φ + o)e X p(-e X p-4-)l
n n i \ kφ(n)/)

4)
kφ(n)/

The function α h-> 1 — ζα + c exp {—exp l/(fcα)} is decreasing for small
positive a. Choose a0 to be positive but so small that the function
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is decreasing for 0 < a < α0 and h(a0) > ζ — 1.
Now for <p(n)/n < a0 we use the inequality

φ(n)/n ^ (e~~r + o(l))/log log x , 1 <; n <; x,

to obtain the bound

log x) , l ^ n ^ x .

The o(l) term tends to zero as x -» oo (independently of w).
On the other hand, taking w0 as in the lemma yields

F(nQ) = no{l - (ζe-^ + o(l))/log log x}

= OJ{1 - (Cβ-' + o(l))/log log α;} .

Define a sequence {nfc} of "new highs" of F by the condition
•F(n) < F(nk) for all n < nk.

We note for later use that φ(nk)/nk ~ e~rβog log nk as k —» oo.
We can see this by noting first that φ(nk)/nk -» 0 by the first para-
graph of the proof of Theorem 2. Then we write (4) with n = nk

and Theorem 2 with x = nk and equate the expressions to obtain

1 (l + o(l)) + O ( e ) 1
nk log log ?ιfc

Theorem 2 has two immediate consequences.

COROLLARY 1. F{n) < n for all sufficiently large n.

COROLLARY 2.

Wjb+i — Wfc = o(nk/log l o g ^ f c ) , A > c>o .

Proof. For ^fc ^ x < 7tfc+1 we have

max F(n) = F{nk)

or

log logo? )

Let α? -> nk+1~ to obtain the corollary.

REMARK. The size of n or nk plays a vital role in the two
corollaries. The first corollary is false for small n as the examples
F(18) = 13 and F(7Z) = 75 show.

The proof of Theorem 2 implies that φ(nk)/nk —> 0. as & —> oo.



88 HAROLD G. DIAMOND AND PAUL ERDOS

Numerical computation shows that the nk's are primes for all nk ^
500 (the limit of the calculation). The explanation of this anomaly
(apart from the effect of the error term) is as follows. Let ux be
the number in (0, 1) for which h(Uj) = ζ — 1 (cf. (Fig. 1)). It appears
from (4) that ^ ^ .03. Simple estimates show that φ(n)/n > .03
for all n < eel8. Thus for n of modest size, the largest values of
h(φ(n)/n) occur for <p(n)/n near 1.

We conclude this section by establishing a lower bound inequality
for nk+ι — nk.

THEOREM 3. For any ε > 0

Proof. Given ε > 0 and nkf let p* = p*(k) denote the largest
prime such that ΐ[p^p* p ^ nk. The prime number theorem and
simple estimates imply that p* ~ log nk. We shall show that at
most εp*/log p* primes p 5̂  p* fail to divide nk. Similar estimates
apply for nk+1 and thus nk and nk+1 have at least π(p*) — 2[εp*/log p*]
prime factors in common.

Let w be an integer such that

Π P"1.

Then we

Also,

and so

have

π(w)

nk+1 - \

^ log p ^

= 7Γ(p*) -

(log P*)[TΪ

- nk

We introduce the integer

N = ΓΛ* Π p-lΊ\ Π P
L 3><P* Jj><2>*

Since N<>nk we have F(N) ^ F(nk). We can estimate F(N) and
F(nk) because of the special form of JV and nk. Also, N is not much
smaller than nk. These facts will enable us to show that

Let v denote the number of primes p ^ p* such that p \ nk.
We suppose that v > εp*/log p* and shall deduce a contradiction.
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At most v + 1 prime divisors of nk (counting multiplicity) can exceed
p*, as we now indicate. Suppose that there were at least v + 2
prime divisors of nk exceeding p*. For each of the v primes pt tS- p*
with Pi X nk associate a prime p[ > p* with pi | nk. Each of the p"s
can be used at most as many times as it occurs in the factorization
of nk. We have

y

nk> n' = nkΐl pjpl

further n' is divisible by each prime not exceeding p* and by at
least two primes exceeding p*. Thus nk> nf > p*2 ΐ[p^p*p. On the
other hand the definition of p* implies that nk < 2p* ΐlP^p* p, con-
tradicting the last inequality.

Let y and z denote composite numbers such that π(p*) — π(y) = v,
π(z) - π(p*) = v + 1. Then

nk

Letting v = ̂ p*/logp*, ε < ΎJ ^ 1, we have

π(#) = π(j>*) - v = (1 - )? + o(l))

and so # = (1 - η + o(l))p*. Similarly » = (1 + 77 + o(l))p*. Thus

^Π(i-i) Π ( i - i f π (i-l).
P^P*\ p / y<pύp*\ pJ p*<p<z\ p/

π (1 -1) π (1 --M=

Differentiation shows that, for fixed q, the function

log ((1-57)9) log ((1+ ?)«)•

is increasing for 0 < η < 1. Thus

(logp*)' ^
(log ?/)(log z) ~ log ((1 - ε)p*) log ((1 + e)p*)

s'/2 + O ^ ) ] - 1 ^ , s - ε*/2 + O(βs)|
logp* ) ί logp* ί

i _ e + s/2 + O ^ ) ] ^ , s - ε/2 + O(βs)|-1

ί ί

log p* \log p* log2

Thus

Π (1--Γ ΠΠ ( i Γ Π ( i ) ^ i + o l
y<pύp*\ p/ p*<p<z\ p/ 2 log
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provided that k is sufficiently large and ε sufficiently small. It
follows that

nk V 2 log p*

We have φ(N)/N ~ e~r/log log N because of the form of N, and
φ(nk)jnk ~ e~r/log log ^fc by the argument following the proof of
Theorem 2. It follows from (4), that for some a > 0,

h O{exp(-logαcc)}

holds for x = i\Γ and cc = wfc.
We combine the formulas for ί^n*) and F(N) with the bound

we obtained for φ(nk)/nk, the inequalities

nk ^ N= Γ- i-Ί U P>nk- U p^ nJl - -L)
Π p P<P* P<P* \ p /

L0<3>* J

and φ(N)/N ^ Πί><2>* (1 - P"1) to obtain

F{nk) £ —^—jl - ζ(l + S Y ^ - ; ) Π (l -
Jlί V 21ogp*/ ^* \
p*

p

< Nil - ζ Π ( l - - ) - cexp(-logαiV)i ^ F(N) ,

where c is a positive constant. This inequality is impossible, since
the nks are the new highs of F. It follows that at most εp*/log p*
primes p <; p* fail to divide wfc and hence our lower bound for
ttn+i — f̂c holds.

5* Small values of F(n)/n. We have shown in § 2 that F(n)/n ~
h(φ(n)/ri). The function fe attains a minimal value h0 at an interior
point u0 of (0, 1), as we presently shall show. The point u0 is unique
by the strict convexity of h. Thus F(n)/n is, asymptotically, near
its minimal value h0 when φ(n)/n is near u0.

Numerical data suggest that u0 is near 1/2 and h0 is near 1/3.
We shall show that .473 < u0 < .475 and .321 < h0 < .324.

LEMMA 2. Λ'(0) = - ζ , Λ'(l) = ζ.

Proof. We have by (1) that h\u) = ζ - 2βr'(tt). The estimate
(cf. [2], Lemma 4)

g(u) = ζu + 0{exp(—explftku))}
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implies that g'(0) — ζ, and hence fe'(O) = — ζ. Equation (0) implies
that g'(ϊ) = 0, and hence Λ'(l) = ζ.

Thus the minimum of h is achieved in the open interval (0, 1).
We shall now establish a formula which will lead to estimates

for #(1/2). This will be useful because of the close connection be-
tween g and h and the proximity of u0 to 1/2.

LEMMA 3.

Proof. We estimate

%{n <Lx:n odd, φ(ri) ^ y} ,

a problem closely related to the main theorem of [2], The generating
function

= Π{i + P~3(P - lΓ'O- + P''"" + p~ΐ3~2z +
P

= Π {l - p-°-° + PΛP - i)-}«β + 2)

was used in [2], and the function # was represented by

2ττi Ji/2-ioo z{\. — z)

The formula is valid at the end points by uniform convergence of
the integral.

We delete the even integers and write

F*(8, z) = Σ n~8φ(n)~z

fi odd

The functions F(sf z) and ^(s , z) have the same singularities in the
region

{(*, «) e C x C: Re s + 3 > 0} ,
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because any singularity of the new factor (1 — 2~~s~~z)/(l — 2~s~z + 2~s)
is cancelled by a zero of Π (A s), and the new factor has no zeros
in this region.

It now follows, mutatis mutandis, that

go(a) = lim —%{n ^ x: n odd, φ(n) ^ ax}

= — (1/2+ΐ

2πi Ji/2 -i

z{l-z)

If we note that go(ΐ) = 1/2 and sum the series ζ/4 — ζ/8 + ζ/16
we obtain the lemma.

Now g is concave and g(ε) — ζε as ε —> 0. Thus the series in
the formula for #(1/2) is alternating with terms decreasing to zero,
indeed at a geometric rate. To further exploit our formula we
must first estimate Dφ(t) for t near 0.

LEMMA 4. DΨ(t) < 12t\ 0 < t < 1.

Proof. By Chebychev's inequality

< /*• y W < fI — /-8 v 1 < v ( n V

and we estimate the last sum by writing

where * denotes multiplicative convolution and β is a nonnegative
multiplicative function satisfying β(p)^(p*-(p-~iy)Kp-l)\ β(pa) = 0
for all primes p and all exponents a ^ 2.

Thus

, | . β{n)

Now
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= ζ ( 2 ) a

It is easy to check that for all p 2> 3

We have

and

7 Σ 2>~3 < 7 (V 8 dί = .035 .
PέΠ JlO

Thus 7 ^ 12, and jD9(ί) satisfies the claimed bound.

We combine the last two lemmas with numerical data of Charles
R. Wall [10] on the density function Dφ to obtain upper and lower
estimates for 0(1/2).

LEMMA 5.

JL + L - .00154 < 0(1/2) < A + i - - .00075 .
2 Ό Δ Ό

Proof. The alternating series representation of 0(1/2) leads to
the inequalities

W-Kί-«(*))-(I-<!))+(&-<(£))}

The differential equation (0) has the solution

(5) u'ιg(u) = ζ - [%Dφ(t)r*dt .
Jo

The constant is evaluated here by noting that 0'(O) = ζ. The integral
converges at zero by the preceding lemma. Thus we have

Dψ(t)t~2dt .

It follows that
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1 (1 / 4n mdt Λ. 1 ίι/β n a\dt ju 3 Γ n m *
= — \ JJφ{t) — + — I l ^ ί ) — + — 1 ^ ( ί ) —

4 Jl/8 ί 2 8 Jl/16 £2 1 6 JO t

We estimate the three integrals from above, using the bound of the
preceding lemma for 0 ̂  t <; .007 and the upper bounds of Wall for
.007 < t £ .25. We obtain the upper bound .00154.

Similar treatment of

(ί - »(i)) - ( I - »(D)
leads to the lower bound .00075.

LEMMA 6. (Main formula.)

S l/2

r'dD^t) ,

where .00075 < R < .00154.

Proof. We have by (5)
ψ

u0 1/2

From (1) and the fact t h a t h'(u0) = 0 w e get g'(uo) = ζ/2. Combining
this with (0) we obtain

g(iL) = ^oC/2 + Dφ(u0) .

This expression, Lemma 5, and the preceding integral yield

^ώίsλ - l + JL + 2i2
uQ 6

Integrating by parts we get the desired expression.

THEOREM 4. u0 > .473 and h0 < .324.

Proof. Starting from Lemma 6, we write

475 J « 0

^ i{I>f(.5) - 2>,(.499)} + i

- D9(.475)}
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Note that this inequality is valid regardless of whether u0 <; .475
or not.

We rearrange terms, isolating Dφ(u0):

.475

If we use the upper estimate for R and the lower estimates of [10]
for A>(.475), •••, D/.499), we find that Dφ(u0) > .3380.

The stated inequalities follow at once from this bound. First,
we have from [10] that Dφ(Λ73) < .3362, and thus u0 > .473. Next,
it follows from Equations (0) and (1) that h0 = 1 — 2Dφ(u0). Thus,
h0 < .324.

We also have bounds for u0 and h0 in the opposite directions.

THEOREM 5. u0 < .475 and h0 > .321.

Proof. Using Lemma 6 again, we write

1 + + 2 R

This time we express the first integral as an upper Riemann-Stieltjes
sum and sum by parts to obtain

.475

Thus

~ .475

where

I = 1 - -§- - 25 + (-±- - -^W.5) + + ( J L - JLW.476) .
b \.4yy .0/ \.475 .47b/

We estimate / from above by using the upper bounds for
DP(.476), •• ,A>(.500) from [10] and the lower bound for R from
Lemma 6. We obtain the inequality

( 6 ) jΛ- ιdZ? f(ί) ^ ^ ' 7

4

5

7 5 ) - .7145 ,
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from which both assertions of the theorem will follow.
The bound Dφ(A75) ^ .33969 from [10] implies that

S .476

t-ιdDφ(t) > .0006 > 0

and hence u0 < 475.
Next, since u0 > .473, we obtain from (6)

UjD,(.475) - Dφ(u0)} ^ D*[f® - .7145 .
Λίό

This inequality and the bound £^(.475) < .34166 from [10] yield
Dφ(u0) < .3394. Thus, we finally obtain h0 = 1 - 2D?(u0) > .321.

6* Lower estimates for F. The sequence F(n) tends to infinity
with n, since

F{n)jn ~ h(φ(n)/n) ̂  hQ > 0 .

In this section we are going to establish

THEOREM 6. As x-± oof

min F{n) ~ hox .
n>x

This estimate follows easily from the following

LEMMA 7. Let a e (0,1) and let ε > 0 be given. Then there
exists an X (depending on ε and a) such that for each x ^ X, the
interval (x, x + ex] contains an integer j with \φ(j)/3 — &\ <. ε.

Proof. The argument proceeds in two steps. First we obtain
some integer jQ (not necessarily in (x, x + εx]) composed of at least
two distinct prime factors, for which | φUo)IJo — & I < ε Then we
show that a suitable multiple of j0 lies in (x, x + εx] and satisfies
the same φ estimate.

Let a = aQ. Let qx be the smallest prime pv for which 1 —
Pΰ1 > OLQ. Set ax = ao(l — qϊ1)"1 and jx = qx. Repeat the foregoing,
choosing q2 to be the smallest prime pv exceeding qx for which
1 - pΰ1 > (it. Let i 2 = qtq2 and a2 = αx(l - q^1)"1. If 1 > α2 > 1 -
e/(α + ε), we can stop here. Otherwise we continue until we obtain
an integer j r = q^ qr, r = r(α, ε), such that

/ir < a + ε .

This is possible to achieve since 1 — p~x —• 1 as v —> oo and
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Set j \ = j * and consider the sequence {j*qa

1q
b

2: α, b — 0,1, 2, 3, •}.
Clearly

It suffices to show that for each large x the interval (x, x + ex]
contains some q\q\, α, δ ^ 0.

I t is well known that the sequence {qΊql: a,beZ} is dense in the
positive reals for qί9'q2 distinct primes. Choose α > 0 and — b < 0
such that 1 < qlqϊ1 < 1 + ε. Given x, set

8 = [(log aO/(log ίi?.)] ,

and ak = gi+*βgΓ*δ, (0 ^ fc £ t).
We have

and

Thus there exists some k e [1, t] such that x < g«+feαg|-fcδ < # + eXφ

Finally, we must insure that the exponent a — kb ^ 0. This we
do by noting that a, b, and t depend only on ε and are fixed, while
s —> oo with x.

LEMMA 8. Given ε > 0 there exists an X = X(ε) swcfo ί&αί /or
each x ^ X the interval (x, x + ex] contains an integer j with

h + 2e.

Proof. Since h is convex and differentiate we have

= ζ , 0 ^ x ^ 1 .

The mean value theorem and Lemma 7 imply that there exists an
integer j in each far out interval (x, x + ex] such that

- uQ
ζε < 2ε .

3

Proof of Theorem 6. On the one hand,

min F(n) = min {nh(φ(n)/n) + Oίwβ"^15^)
> >

= hox + o(x) .

On the other hand, for given ε > 0 and all sufficiently large x there
exists an integer m such that
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x < m <; x + εx , h(φ(m)/m) < h0 + 2ε .

For this integer m we have

F(m) < (hQ + 2ε)m

and hence

min F(n) ^ ^(m) ^ (λ0 + 2e)(x + ex)

<; hox

Let {mfc}*Li be the sequence of discontinuities of α;κ min%>a.
(Set m1 — 2.) We can deduce from Theorem 6 the following

COROLLARY 3. mk+jmk-^l as fc—> oo.

Proof. For m& <£ x < mfc+1 we have

min F(n) = min F(n) .
n>mk n>x

Thus hQmk ~ hox. Let x —> mk+1-.

7* General arithmetic functions* We conclude by showing that
rather general arithmetic functions ψ possess an associated mono-
tonicity measuring function F = F+. Our argument is related to
one occurring in [4] It appears unlikely that there are general
analogues of our numbered theorems in §§ 3-6 which are valid with-
out more specific arithmetic information.

It is convenient to estimate the two components of F separately.
Let

#{m < n: ψ(m) ^

F2(ri) = #{m > n: ψ(m) ^ ψ(n)} .

In both cases we assume that ψ is positive valued and that ψ(n)/n
has a distribution function Dψ.

THEOREM 7. Let ψ be as above. Then, as n-> °°,

(7 ) F^n) = ψ (n)[° {1 - Dt(t)}f2dt + o(n) .
Jt=ψ(n)/n

Further, assume that there exist positive numbers c and δ such that

(8) #{m e (x, 2x]: ψ(m)fm < y} ^ cxy1+δ

holds for all y e (0, 1) and all x ^ 1. Then



A MEASURE OF THE NONMONOTONICITY OF THE EULER PHI FUNCTION 99

9) F2(n) = ψ{n)^{n)/%Dψ{t)Γ2dt + o{n
Jό

REMARKS. A. It is a simple consequence of hypothesis (8) that
there exist at most a finite number of integers n for which ψ(n)
assumes any one value. Also, (8) implies that the integral in (9)
converges at the origin.

B. For application to the Euler φ function, the estimate

Σ (m/ψ(m))2 < n

(cf. [4]) guarantees that (8) holds with 8 = 1. Condition (8) is
vacuous for the sum of divisors function σ, since σ(n) ^ n for all
n ^ 1.

C. Can we replace the equal sign in (7) or in (9) by " ~ " and
drop the o-term? This is not generally permissible for (7) as one
can see by the case in which Dψ(a) = 1 for some finite a, ψ(n)/n ^ a,
and there exists at least one integer m < n such that ψ(m) ^ ψ(n).
The conjecture is also generally false for (9) as well, as we can see in
the case where Dφ(t) > 0 for all t > 0. By Remark A there exists an
infinite number of integers n for which F2(n) = 0, and for these n
the asymptotic relation would fail.

Proof. We shall show that (9) holds. The proof of (7) is similar
but simpler, and is omitted.

Proof. We introduce a partition of (n, oo). Let ε > 0, KeZ+

with εK > 1 and let nf = n + ψ{ri). Write

K

(n, oo) = \J (n + (i — l)εn'f n + iεn'] U (n + Kεn\ oo) .

For the finite intervals we use the following estimates, which
are valid for 1 ̂  x < y < oo .

#{m e (x, y]: ψ(m) ^ mψ(n)/y}
def

^ #{m 6 (a?, y]: ψ(m) ̂  mψ(n)jx},

and hence

(y - x)Dψ(ψ(n)/y) + o(y) ^ #' <: (y - x)Dψ(ψ(n)/x) + o(y) .

If we set

Σ = en9 Σ DΨ(ψ(n)/(n + iεn'))



100 HAROLD G. DIAMOND AND PAUL ERDOS

and

F2{a, b) = #{m e (α, a + b]: f(m) ^ f(n)} ,

then we obtain

Σ + Ko(Ken') ^ FM(n, Ken')

^ Σ + εn'Dψ(f(n)/ri) - εn'Dψ(ψ(ri)/(n + Ken'))

+ Ko(Ken') .

Now Σ is a n approximating sum for the Riemann integral

l(n + tεn'))dt

s=ir(n)/(n+Kεn')

and since the integrand in the first expression is monotone, we get
11 — Σ l < εn\ The hypotheses on ψ(n)/n imply that

Thus

S ψ(n)/(n+Ken') fly nU™\ \ δ C

o δ \n + Ken' / δ

Combining these estimates we find that

Ft(n, Ken') = φ(n)[*{*)/%D+(!b)t-*dt
Jo

+ O(sn') + Ko(Ken') + O((Ke)-δnf) .

Now we treat the unbounded interval. For each x ^ 1 we have

F2(x, x) ̂  #{m e (x, 2x]: ψ(m)/m ^ φ(n)/x}Thus

F2(w + Ken', oo) ^ Cψ(n)1+δ(n +

< ψ(n)(Kε)-δ .

It follows that

Ft(n) =

+ O(en') + K2so(n') + O((Ke)~δn') .

If we first choose ε small and then K so large that {Ke)~δ is small,
we obtain the desired asymptotic.
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