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SURJECTIVITY RESULTS FOR ^-ACCRETIVE
SET-VALUED MAPPINGS

D. J. DOWNING

Let X and Y be Banach spaces. A mapping /:X-»2r is
said to be locally strongly ^-accretive if for each y0 e Y
and r > 0 there exists a constant c>0 such that if zef(X)Π
Br(Vo) and xef~ι{z), then for all u sufficiently near x and
wef(u): (φ(x~u), {w-z))^c\\x-u\\\ where φ: X-*F* is a
suitably restricted mapping. A number of surjectivity
results are obtained for this class of mappings, along with
some other basic results.

In this continuation of the study of surjectivity results obtain-
able by application of refined versions of the fixed point approach
of Caristi [5], we turn our attention to analogues of the results of
Kirk [11] for set-valued mappings.

1. Preliminary results. One of the applications we have in
mind requires the following minor reformulation of the fixed point
theorem of Downing-Kirk [7]. (Recall that a mapping /: X —• Y,
where X and Y are metric spaces, is said to be closed if the condi-
tions xn —> x, xn 6 X, and f(xn) -> y imply f(x) = y.)

THEOREM 1. Let {X, dt) and (Y, d2) be complete metric spaces,
g: X -* X an arbitrary mapping, and f: X-+ Y a closed mapping.
Suppose there exists a closed subset S of Y for which f~~ι(S) Φ 0
and g:f~\S)-^f~ι{S), and suppose there exists a lower semiconti-
nuous mapping φ: f(X) Π S —> R+ (the nonnegative reals) and a
constant c > 0 such that

m a x { φ , g(x)\ cdJJ(x\ f(g(x)))} ^ <p(f(x)) - φ{f(g(x))\ xe f~\S).
Then g has a fixed point in X.

The above theorem reduces to the theorem of Downing-Kirk
[7] if S — Y and to the original formulation of Caristi [5] if S =
Y = X and / is the identity. Indeed, because / is a closed mapp-
ing, the set f~~XS) is complete relative to the metric p defined by

p(u, v) - max {d^u, v), cdz(f{u), f(v))} , u,ve f~\S) .

Thus Theorem 1 is a direct consequence of the original version of
Caristi's theorem applied to the space (/"^S), p). This observation
is due to W. L. By num.

We also remark that Caristi's original theorem is essentially
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equivalent to a theorem of Ekeland [9] and that the proof given
in [7] is along general lines implicit in Brondsted [2]. (For an excel-
lent discussion of the relation between the work of Brondsted, Caristi,
Ekeland, and others, along with a simple constructive proof of
Caristi's theorem, see Brezis-Browder [1].)

Before turning to our applications of Theorem 1 we recall some
definitions: a set-valued mapping / : X—> 2F is said to be upper semi-
continuous (u.s.c) [resp., lower semicontinuous (l.s.c)] if for each
xoeX and each open set G in Y such that f(xQ) £ G [f(x0) ΓΊ G Φ 0 ]
there exists a neighborhood JV of x0 such that xeN implies f(x)£*G
[f(%)Γ\GΦ0];f is said to be demi-closed if the conditions xn-*x
weakly in X and yn-^y with yn e f(xn), imply y e f(x).

We derive our results for ^-accretive mappings from the follow-
ing more abstract result.

THEOREM 2. Let X be a complete metric space, Y a Banach
space, and f: X —> 2F a mapping of X into the nonempty closed
convex subsets of Y with f{X) dense in Y. Suppose that one of
the following two conditions holds:

( i ) Y is reflexive and f is either demi-closed or u.s.c.
(ii) Y is arbitrary and f is a single-valued closed mapping.

Suppose in addition that for each yoeY there exist constants r>0,
c>0 such that:

(a) If x e X with dist (y0, f{x)) ^ r, then for each z e f(x), there
exists δ == δ(z) > 0 such that y e Bδ(z) Π f(X) implies

diat(x, f-\y))£c\\z-y\\ .

Then f(X) = Y.

Proof. Fix η > 1 and suppose there exists yQ e Y such that
yo£f(X). Let r be the constant of condition (a) relative to y0, let
x e X be such that dist (y0, f(x)) ^ r, and suppose z e f(x) satisfies

| | y o -* l l = dist (»0,/(a?)) > 0 .

(Such a choice is always possible under assumption (i) because Y is
reflexive and f{x) is weakly closed.) Select w e seg [z, y0] so that
z Φ w Φ yQ and 0 < \\w — z\\ < δ(z). Since w ef(X), there exists a
sequence {y5} Q f{X) with yά —> w and since

0 < \\w-z\\ = p - V o l l - Ilw — yo\\

we may choose j sufficiently large so that

(1) 0 < \\z - Vj\\ <: V [ \ \ z - yo\\ - \\Vj
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and

By (a), there exists v e f~\y$) with

(2) d(x, v) £ c \ \ z - Vi\\ ^ oη[\\z - y,\\ - \\yό - yo\\] .

We note by (1), that since dist(j/0, /(#)) = l|z — 3/oll ^ f> dist(j/
f{v)) ^ r also. Moreover, (2) implies

( 3 ) d(x, v)£c\\z-yj\\£ctfdist (Vo - /(&)) - dist (y0, /(*))] .

0,

Case (i): We claim the mapping φ:X-*R+ given by
dist (#0, /(α?)) is l.s.c. This is well-known to be the case i f/is u.s.c.
(cf [12]), so we suppose / is demi-closed. Let x0 e X and suppose
xn —> x0. Choose a sequence z% e f(xn) such that

113/0 - « ll = <pM

If {a J is unbounded, then for all n sufficiently large, dist (y09 f(xo))i£
11 l/o — «»ll which implies φ(x0) ^ lim inf Λ <p(xn). Hence we may assume
{zn} is bounded. In this case, because Y is reflexive, we may choose
a weakly converging subsequence {z5}ζ={zn} such that

limp,- - 2/0II = lim inf II sΛ — 2/01 i

where {̂ } converges weakly to zo,zoeY. Since / i s demi-closed,
zQef(x0). Now weak-l.s.c. of the norm implies

dist (#0, /(&o)) ^ II Vo ~ z*II ̂  lim inf | | ^ - y,\\

= lim II Zi -
i-+oo

= lim inf II z
W-> oo

establishing l.s.c. of φ at a?0.
Now let X1 = {x e X| dist (/(α?), y0) ^ r l Note that since φ is a

l.s.c. map, Xx is a closed set. For each x e X1? define a function
#: Xt —> Xt by gr(x) = v, where v is selected as in (2). Then (3)
implies

d(x, g(x)) % cη[φ(x) - φ(g(x))]

so by Caristi's theorem (Theorem 1) g has a fixed point, which is a
contradiction to (1).

Case (ii): Since / is single-valued, we may make the identifica-
tions z = f(x) and y3- = /(v). Define g: X-* X by
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g(χ) =

where x0 is some fixed element in X such t h a t \\y0 — f(xo)\\ ^ r .

Also define φ\ f(X) Π Br(Vo) —> ^ + by

Then by (2) we have max {d(x, g(x))9 c\\g(x) — f(g(x))\\} ^ φ(f(x))~
φ(f(g(x)))f so by Theorem 1 with S = Br(y0), we again have a fixed
point of # and hence a contradiction. Hence, in either case, yoef(X).

2* ^-Accretive mappings* Let X and F be Banach spaces, φ:
X—> Y* a mapping with 0(X) = F * which satisfies ||0(α&)|| = ll#i!>
and φ(ξx) = ί^(x) for all # 6 X, f ^ 0. A mapping /: X —> 2 r is said
to be locally strongly φ-accretive if for each yQe Y and r > 0 there
exists a constant c > 0 such that the following condition holds: If
z e f(X) Pi Br(y0) and α e/" 1 ^), then for all u sufficiently near x and
w ef(u):

(φ(x — u), (w — z)) ^ c\\x — u\\2 .

This is a localized version of a definition formulated by Browder
[4] in an attempt to link the theory of strongly monotone mappings
for which Y = X* with the theory of strongly accretive mappings
for which Y = X. (The strongly i£-monotone mappings introduced
by Petryshyn, e.g., [14, 15], constitute a similar unifying class.)

In order to obtain surjectivity results for mappings of the
above type by application of Theorem 2 it is necessary to determine
conditions under which such mappings will have dense range and
satisfy condition (a). The following theorem, based on Theorem 3
of [4], gives sufficient conditions for denseness of the range. In
this theorem Y is assumed to admit nearest points. By this it is
meant that for each closed subset A of Y the set A0—{ye Y\ there
exists aeA with \\y — α|| = dist(#, A)} is dense in Y. Recall also
that the duality mapping J: Γ—> Γ* (cf., [3]) satisfies (Jy, y) =

THEOREM 3. Let X be a topological space and Y a Banach
space for which the {single-valued) duality mapping J: Y—> Y* is
lipschitzian on bounded sets. Suppose Y admits nearest points
and suppose f:X—>2Y is any mapping such that for each
there exists a constant r > 0 with

( i ) Br(y0)nf(X) Φ 0 ;
(ii) If yo& f(X), then for each

y 6 Br(y0) Π f(X) there exists vef(X) such that
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( J ( V o ~ V ) , (V - y ) ) > M\\ v - y | |2

where M is the Lipschitz constant of J on Br(y0). Then f(X) is
dense in Y.

M. Edelstein has shown [8] that if Y is uniformly convex, then
Y admits nearest points. By a result of J. Smulian (see, e.g., [6])
the fact that the duality mapping J is lipschitzian on bounded sets
suffices to guarantee that Y is uniformly smooth. A Banach space
Y is said to satisfy property (H) ([10]) if the following condition
holds:

(H) If {xn} is a sequence in Y which converges weakly to x
and if \\xn\\ —> \\x\\, then {xj converges strongly to x.

D. E. Wulbert (cf. [16], [17]) has observed that every uniformly
smooth Banach space which has property (H) admits nearest points.

We might also point out that the duality mapping J: Y~> Y*
may be characterized by:

where G(y, •) is the derivative of the norm of Y at y given by

G(y, h) = l imr ι [ | |y + th\\ - | |y||] (he Y) .
t-+Q+

If the norm of Y is twice differentiate with bounded derivatives
then it is easily seen that the mapping y H> G(y, ) is lipschitzian on
bounded sets (cf. [13, pg 175]); hence that the mapping J is lipschi-
tzian with Lipschitz constant depending on the bounds for | |y| |,
\\G(y, )ll and on the Lipschitz constant for the mapping y H-> G(y, •)
As a result of these facts, which are generally known, any space
Y whose norm is twice differentiate with bounded derivatives and
which has property (H) will satisfy the assumptions of Theorem 3.

We now state our generalization of Theorem 4 of [11]. The
major improvement here lies in the fact that even in the single-
valued case the assumptions on / are not sufficient to imply conti-
nuity.

THEOREM 4. Let X and Y be Banach spaces with Y and F*
uniformly convex, and suppose the duality mapping J: Y-» Y* is
lipschitzian on bounded sets. Suppose f:X-*2Y is locally strongly
φ-accretive and maps points of X into the nonempty closed convex
subsets of Y, suppose f"1: f(X) —> 2X is lower semincontinuous, and
suppose f satisfies either one of the following continuity assumptions:

( i ) f is either demi-closed or u.s.c.
(ii) f is a single-valued closed mapping.
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Suppose in addition that f satisfies the condition:
(b) For each u, v e X and y e f(u),

lim inf dist (y, f(xt))/\\xt - u\\ί/2 = 0
t-vθ

where xt = u + tv.
Then f(X) = Y.

Condition (b), which in the single-valued case reduces to a
weak Holder condition of order 1/2 along line segments* is the
mildest condition we can state under which our proof of Theorem
4 carries through. It is not known, however, whether any such
condition is necessary*

Proof of Theorem 4. It suffices to show that f(X) is dense in
Y and that condition (a) of Theorem 1 is satisfied. To obtain density,
we let yoe Y be fixed, choose yef(X), and apply Theorem 3.

Since φ(X) = Y*, we may choose v e l s o that | |v | | = \\y — yo\\
and φ(v) = J(y0 — y) Condition (i) is satisfied with r = \\y0 — y\\.
Let c > 0 be the constant given by the definition of locally strongly
^-accretive with respect to y0 and r, let uef~\y), and let xt = u +
tv. Then for all ί > 0 sufficiently small, rechoosing c if necessary,

(φ(xt - u), O - y)) ^ cI]xt - u112 (we f{xt)) ,

which in turn implies

(J(Vo - V), (w-y))^ct\\y-yo\\2 (we f(xt)) .

Now since yef(u), (b) implies there exists wef(xt) such that

\\w - y\\* ίk e(t)\\xt - u\\

= e(t)t\\yQ~y\\

where lim inft^0 e(t) = 0 Hence given M > 0, we can select t > 0
so t h a t Me(t) < c \\y0 — y\\; hence

M\\w - y||2 < (J(y0 - y), (w - y)) ,

which implies (ii) of Theorem 3 and proves f(X) is dense in Y.
To see that (a) holds, select xeX such that dist(y0, f(x)) ^ r.

Since / is locally strongly ^-accretive at x9 then for zef(x)f

(φ(u — x)j ( w — z)) ^ c\\u — x\\2

for all wef(u) where ueX is sufficiently near a;. Therefore
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c\\x — u\\2 ^ (φ(u — x), (w — z))

^ \\Φίu-x)\\-\\w-z\\

= \\w - z\\- \\u - x\\ .

Thus c||ίc — u\\ <; \\w — z\\, where wef(u) and u is sufficiently near
x, say ueJSe(#) for some ε > 0. Since / - 1 is l.s.c, there exists
δ = δ(z)>0 such that if w 6 ΰ a ( 2 ) n / ( I ) , there exists uef~\w)
such that u e Bε(x). So for such w,

\\χ — U\\ ^ G^Ww — Z\\

which, since z is any element in f(x), implies (a).

Finally, we append a proof of Theorem 3. The details differ
only slightly from those of Browder [4].

Proof of Theorem 3. We claim that f(X) is dense in Y; hence
that f{X) = Ύ\_Ύo see this, let Yo = {yoe Y\lyef(X) with ||y0 -
y\\ = dist (yOf f(X))}. Since Yo is dense in Y, we need only show
that Y0Qf(X). Suppose this is not the case and choose yo£ Yo with
y0 ί f(X). Let y e f(X) be the point such that

(vef(X)).

Then for all vef(X),

+ (J(Vo - v), (v - y)) - (/(m - v), (yϋ - v))

- v)f (v - y)) = (J(i/o - v), (yQ - y))

Hence

(J(»o - v), (v - y)) £ 0 .

This in turn implies

(J(Vo - »), (^ - V)) ̂  (e/(m - 1/), (v - y)) - (J(̂ /o - v), (v - y))

= (J'd/o ™ ») - J(Vo ™ v), (v - y))

^ \\J(Vo - V) - J(Vo - v)\\\\v - y\\

^ M \ \ v - y \ \ >

where M is the Lipschitz constant for J on Br(y0). Since this is
true for all v e f{X), (ii) is contradicted. Hence f(X) is dense in Y.
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