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ON THE DIVISORS OF MONIC POLYNOMIALS
OVER A COMMUTATIVE RING

ROBERT GILMER AND WILLIAM HEINZER

For a commutative ring R with identity, denote by R<X)>
the quotient ring of R[X] with respect to the regular multi-
plicative system S of monic pelynomials over R. The
present paper determines the group of units of the ring
R<{X>. This is equivalent to the problem of determining
the saturation S* of the multiplicative system S; by defini-
tion, S* consists of all divisors of monic polynomials over
R. For a nonzero polynomial

f=fi+fiX+ -+ f,X"eR[X],

it is shown that each of the following conditions (A) and
(B) is eguivalent to the condition that f divides a monic
polynomial over R (in (B), the ring R is reduced).

(A) The coefficients of f generate the unit ideal of R
and, for each j between 0 and # and for each prime ideal
P of R, the relations fj,,, -+, f,€ P, f;¢ P, imply that f; is
a unit modulo P.

(B) There exists a direct sum decomposition

R=R ®---®DR, of R

such that if f=g, 4+ -+ + ¢,, is the decomposition of f with
respect to the induced decomposition

R X]=R[X]® - @ R.[X] of R[X],

then the leading coefficient of g, is a unit of R; for each 7.

One corcllary to the preceding characterizations is that
S* is the set of polynomials over R with unit leading co-
efficient if and only if the ring R is reduced and indecom-
posable.

Let R be a commutative ring with identity, let X be an in-
determinate over R, and denote by S the regular multiplicative
system of monic polynomials over R. The quotient ring R[X]; of
R[X] is currently receiving attention, probably because of the role
it plays in Quillen’s solution of the Serre Conjecture [6]. We use
the symbol R(X) to denote the ring R[X]s; this differs from Quillen’s
notation R(X) for this ring, but our choice of notation is based on
the fact that R(X) has traditionally been used to denote the quotient
ring of R[X] with respect to the multiplicative system of poly-
nomials of unit content [5, p. 18], [2, §33]. The aim of this paper
is to determine the group of units of the ring R(X). If S* =
{f e R[X]|f divides an element of S} (that is, S* is the saturation
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of S), then it is well known that the group of units of R(X) is
{fl9!f, g € S*}, the quotient group of the cancellative abelian semigroup
S*. Hence, the problem of determining the units of R(X) is equi-
valent to the problem of determining the set of divisors of monic
polynomials of R[X], and we approach the problem from this
perspective. An obvious family of divisors of monic polynomials is
the family of polynomials with unit leading coefficient; to wit, if
f=fH+fX+ - + f, X", where f, is a unit of R, then f divides
the monic polynomial f;'f. We denote by S/ (R[X]) the set of poly-
nomials with unit leading coefficient. The set ./(R[X]) is again a
regular multiplicative system in R[X], and S and .&°(R[X]) have
the same saturation. We are therefore concerned with the problem
of determining the saturation of .&(R[X]). There are some cases
(such as that in which R is an integral domain) where it is clear
that SZ(R[X]) itself is saturated; in Corollary 7 we prove that
S7(R[X]) is saturated if and only if the ring R is indecomposable
and reduced. In the general case we prove in Theorem 6 that a
polynomial f = f, + f,.X + --- + f,X™ belongs to the saturation of
S(R[X]) if and only if (1) the coefficients of f generate the unit
ideal of R, and (2) for each j between 0 and » and for each prime
ideal P of R, the relations f;,, -+, fo€P, f;¢ P imply that f; is a
unit modulo P. An alternate description of the saturation of .#(R[X])
is provided in Theorem 9 in the case where R is reduced.

Before proceeding further, we introduce some simplifying ter-
minology and notation. If ge R[X], then the ideal of R generated
by the coefficients of g is called the content of ¢ and is denoted by
C(g); the polynomial g has wnit content if C(g) = R. The set U of
polynomials g € R[X] of unit content forms a saturated multiplica-
tive system in R[X], and the quotient ring R[X], is traditionally
denoted by R(X) [2, (83.1)]. Since .S(R[X]) & U, the saturation of
S (R[X]) is also contained in U. If A is a proper ideal of R, then
we denote by ¢, the canonical homomorphism of R onto R/A and
by ¢% the unique extension of ¢, to a homomorphism of R[X] onto
(R/A)[X] mapping X to X. It is clear that ¢f maps S (R[X]) into
S ((RJA)X]) for each proper ideal A of R. The main result we
seek is Theorem 6; the observations of this paragraph imply that
each element of the saturation of S”(R[X]) satisfies conditions (1)
and (2) of the preceding paragraph.

PROPOSITION 1. Assume that f=f, + X + +++ + fL,.X" belongs
to the saturation of S (R[X]). Then (1) f has unit content, and
(2) for each j between 0 and n and for each prime ideal P of R,
the relations fip, -+, fn€P, ;€ P imply that f; is a unit modulo
P.
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Proof. We have already observed that the saturation of
(R[X]) is contained in the multiplicative system of polynomials
with unit content — that is, that (1) is satisfied. In relation to (2),
we remark that for 7 ==, the condition is to be interpreted as
meaning that f, is a unit modulo P for each prime P of R such
that f, ¢ P. Assume that P is prime and that f;,, ---, f, € P, while
f; ¢ P. Then ¢i(f) is an element of &((R/P)[X]) with leading co-
efficient ¢,(f;). Since R/P is an integral domain, the multiplicative
system SZ((R/P)[X]) is saturated. Therefore ¢,(f;) is a unit of
R/P; that is, f; is a unit modulo P.

For the sake of brevity, we call a polynomial satisfying (1) and
(2) of Proposition 1 a (x)-polynomial. The next result shows that
f and ¢%(f), where N is the nilradical of R, are simultaneously (*)-
polynomials.

PROPOSITION 2. Let N be the nilradical of the ring R, and let
0% be the camowical homomorphism of R[X] onto (R/N)[X]. If
feR[X], then f 1s a (x)-polynomial if and only if ¢%(f) is a (x)-
polynomial.

Proof. Let f=f, +f X+ -+ + f,X". We prove that f is a
(x)-polynomial if

¢;(f) = Q\(fo) =+ ¢N(f1)X + e + ¢N(fn)Xn

is a (x)-polynomial; the proof of the converse is similar and will be
omitted. Thus, (f, ---, f.) + N =R since ¢%(f) has unit content.
Therefore no maximal ideal of R contains (f, ---, f,) and N. Since
each maximal ideal of R contains N, if follows that no maximal
ideal of R contains (f,, f, -+-, fu). That is, (f, fi, *++, f.) = R and
f has unit content. Assume that j is between 0 and » and that P
is a prime ideal of R such that f;,, ---, f,€P, while f;¢ P. Then
P/N is a prime ideal of R/N and the relations

¢N(f.1'+1): T ¢\(fn) € P/N ’ ¢;\'(fj) ¢ P/N

are satisfied. This means, by assumption, that ¢,(f;) is a unit
modulo P/N, and hence f; is a unit modulo P. Therefore f is a
(x)-polynomial, as was to be proved.

In order to prove that the saturation of .&”(R[X]) consists of
the set of (x)-polynomials of R[X], Proposition 2 and the next result
will show that it is sufficient to consider the case where R is a
reduced ring.

PROPOSITION 3. Let N be the nilradical of R, and let ¢% denote
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the canonical homomorphism of R[X] onto (R/N)[X]. If feR[X],
then f belongs to the saturation of F(R[X]) if and only if ¢3(f)
belongs to the saturation of & ((R/N)[X]).

Proof. If f divides the monic polynomial g € R[X], then ¢3(g) €
(R/N)[X] is monic and ¢3(f) divides ¢3(g). Hence ¢3(f) € L (BR/N)[X])).
Conversely, if ¢5(f) belongs to the saturation of S/ ((R/N)[X]), then
it follows that there exists a monic polynomial g € R[X] and a poly-
nomial & € R[X] such that g — fh € N[X], the kernel of ¢%. There-
fore g — fh is nilpotent. If (g — fh)* =0, then we have 0=
(9 — fh)* = ¢g* modulo (f); that is, f divides the monic polynomial
g, and f is in the saturation of .&(R[X]). This completes the
proof of Proposition 3.

For a reduced ring R, the leading coefficient of each (x)-poly-
nomial over R generates an idempotent ideal of R; this follows from
Proposition 1 and the next result, Proposition 4.

PROPOSITION 4. Assume that R is a reduced ring and that the
element b of R is such that b is a unit modulo each prime ideal P
of R such that beé P. Then b generates an idempotent ideal of R.

Proof. It suffices to prove that the ideal (b) is locally idem-
potent. Thus, let M be a maximal ideal of R and let ¢ be the
canonical homomorphism of R into B,. If b¢ M, then (u(b)) = R, =
(m(*). If beM, then b is not a unit modulo any prime ideal con-
tained in M, and hence the hypothesis implies that b belongs to
each prime of R contained in M. Consequently, ¢(b) belongs to the
nilradical of R,, a reduced ring. Therefore (u(b)) = (0) = (u(d),

and this completes the proof that (b) is locally idempotent.

We remark that the converse of Proposition 4 also holds: if (b)
is idempotent, then b is a unit modulo each prime ideal of R that
does not contain b. We use Proposition 4 to obtain a direct sum
decomposition of the ring R; the next result, Proposition 5, describes
the behavior of the saturation of (R[X]) with respect to the
induced decomposition of R[X]. The proof of Proposition 5 is
standard, and is therefore omitted.

PROPOSITION 5. Assume that R is the direct sum of its finite
family {R}i, of ideals. Let feR[X], and let f=f,+--+f, be the
decomposition of f with respect to the induced decomposition R[X]|=
R[X]D --- DR,[X] of R[X]. Then f belongs to the saturation of
F(R[X]) if and only if f; belongs to the saturation of & (RJ[X])
for each 1.
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Proposition 5 is the final preliminary result needed for the proof
of Theorem 6.

THEOREM 6. The saturation of 7 (R[X]) is the set of (x)-poly-
nomials over R.

Proof. Proposition 1 shows that each element of the saturation
of &(R[X]) is a (x)-polynomial. Conversely, assume that f = f, +
i X+ oo + f,X" is a (x)-polynomial. To prove that f is in the
saturation of S“(R[X]), if suffices to prove that #%(f) (a (x)-poly-
nomial by Proposition 2) is in the saturation of .&#((R/N)[X]), where
N is the nilradical of R. Therefore we assume without loss of
generality that R is reduced; the proof that f is in the saturation
of &(R[X]) is by induction of n. For n = 0, it follows that f = f,
is a unit of R since f has unit content. Therefore, f is in S (R[X]).
We assume that (x)-polynomials of degree less than » are in the
saturation of SZ(R[X]). Then for f of degree =, Proposition 4
implies that the ideal (f,) is idempotent. If f, is a unit of R, then
fe P (R[X]) and the proof is complete. Otherwise, 4 = (f,) is a
proper ideal of R and R = A@ B, where B = Ann (f,). For each
7 between 0 and %, write f; = a; + b;, where a,€ A and b, B. The
resulting decomposition of f as element of R[X] = A[X]|®D B[X] is
S=g9+h, where g = 3 a,X* and h = 3 b, X. We prove that
f is in the saturation of ”(R[X]) by proving that g is in SZ(A[X])
and % is in the saturation of .&°(B[X]). Note that a, =f, and
b, = 0 since f,e€ A; hence ge.(A[X]) and % has degree less than
n. Moreover, A B = R = C(f) = C(g9) @ C(h) so that C(h) = B and
h, considered as an element of the ring B[X], has unit content. To
show that h is in the saturation of S”(B[X]) it therefore suffices,
in view of the induction hypothesis, to prove that h satisfies condi-
tion (2) of Proposition 1. Thus, assume that % has degree m < mu,
assume that j is between 0 and m, and let P be a prime ideal of
the ring B such that the relations b;,,, +-+, b, € P, b;¢ P hold. Then
A @D P is prime in R and the relations f;,,, +++, fLc ADP, f;¢APP
hold. Since f is a (x)-polynomial, it follows that f; =a; + b; is a
unit modulo 4 & P, and this implies that b; is a unit modulo P.
Therefore condition (2) of Proposition 1 is satisfied for the poly-
nomial ke B[X], and this completes the proof of Theorem 6.

COROLLARY 7. The multiplicative system S (R[X]) is saturated
iof and only if R is indecomposable and reduced.

Proof. Assume first that R is reduced and indecomposable. If
f=r,f:X is in the saturation of SZ(R[X]), where f, # 0, then
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S is a (x)-polynomial. Since R is reduced, the ideal (f,) is idem-
potent. Therefore (f,) = R since R is indecomposable. It follows
that f, is a unit of R, and hence fe . ¥ (R[X]). We conclude that
S (R[X]) is saturated if R is indecomposable and reduced.

We prove, conversely, that S/ (R[X]) fails to be saturated if
either R is decomposable or R is not reduced. If R is not reduced
and if 7 is a nonzero nilpoint element of R, then 1 + X is a unit
of R[X], hence an element of the saturation of .<“(R[X]), but
1 4+ »X is not in “(R[X]). If R is decomposable and if 1 =e¢, + ¢,
is a decomposition of 1 into nonzero orthogonal idempotents, then
e, + ¢,X is in the saturation of .S7(R[X]) since (e, + ¢,X)(e, + ¢, X) = X,
but e, + ¢,X is not in .&“(R[X]). This completes the proof of
Corollary 7.

COROLLARY 8. The rings R(X) and R(X) coincide if and only
if R is zero-dimensional.

Proof. Let U be the multiplicative system of polynomials
feR[X] of unit content. We note that R(X) = R(X) if and only
if U is the saturation of .“(R[X]). Hence, in view of Theorem 6,
Corollary 8 is equivalent to the statement that each element of U
is a (x)-polynomial if and only if R is zero-dimensional. This is the
form of Corollary 8 that we choose to establish.

Assume that R is zero-dimensional and that fe R[X] is a poly-
nomial of unit content. To prove that f is a (x)-polynomial, it is
sufficient to consider the case where R is reduced. A zero-dimen-
sional reduced ring is von Neumann regular [3, Exer. 12, p. 63],
however, so each ideal of R is idempotent. It then follows im-
mediately from the definition that condition (2) of Proposition 1 is
satisfied for the polynomial f—that is, f is a (x)-polynomial. To
prove the converse, we show that if dim R > 0, then U contains
polynomials that are not (x)-polynomials. Thus, let P and M be
proper prime ideals with Pc M, and choose me M — P. Then f =
1+ mXeU, but f is not a (x)-polynomial since, for example, ¢%(f)
is not in the saturation of .&((R/P)[X]).

An analysis of the proof of Theorem 6 yields a strong form of
the converse of Proposition 5 in the case when R is reduced. The
resulting characterization of the elements of the saturation of
S (R[X]) is given in the statement of Theorem 9.

THEOREM 9. Assume that R is a reduced ring, and let f = f, +
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fiX+ oo + fLX"eR[X]. The following conditions are equivalent.
(1) The polynomial f belongs to the saturation of < (R[X]).
(2) There exists a direct sum decomposition R =R, --- DR,
of R such that if f=g,+ +++ + gn s the decomposition of f with
respect to the induced decomposition R[X]=R[X]|P:--P R,.[X]of
R[X], then g,€ & (R,[X]) for each 1.

Proof. That (2) implies (1) follows from Proposition 5. To
prove the converse, we use induction on degf. If degf =0, then
f = f, 1s a unit of R since f has unit content, and hence fe .&7(R[X]).
We assume that the desired conclusion holds for deg f < k and we
consider the case where f has degree k. By Proposition 4, the ideal
(fw) is idempotent. Let A = (f,), let B = Ann(f,), and for each 1
between 0 and k, let f, = a;, + b, be the decomposition of f, with
respect to the decomposition R = A@P B of R. Note that a, = f,
and b, =0 since f,€ A4, and f, is a unit of the ring A since f,
generates the unit ideal of A. Let g = >\ a;X*€ A[X] and let
h=3¥,b0X eB[X]. The observations just made show that ge¢
S(A[X]) and deg h < k. As h belongs to the saturation of S#(B[X])
by Proposition 5, and since B is a reduced ring, the induction
hypothesis implies that there exists a direct sum decomposition
B=B&--- B, of B such that if h=~h, + --- + h, is the de-
composition of with respect to the induced decomposition of B[X], then
h,e & (B,J]X]) for each i. By considering the decomposition R =
AP B DH---P B, of R, we obtain condition (2) for the polynomial

S

The analogue of the ring R(X) for polynomials in more than
one variable is well known. In fact, the set U of polynomials fe
R[{X}:c ] of unit content is a saturated regular multiplicative system
in R[{X;}], and the quotient ring R[{X;}], is denoted by R({X;}). It
would be interesting to have an analogue of the ring R<(X) for
polynomial rings in several variables; for the purpose of this discus-
sion we restrict ourselves to a polynomial ring R[X, ---, X,] in
finitely many variables. Since

R(Xn 0y Xi+1) = R(Xu ) Xt)(X1,+1) ’

where R(X,, ---, X,)(X,,,) denotes the quotient ring of the polynomial
ring R(X,, ---, X,)[X,.,] with respect to the multiplicative system of
polynomials in X,,, of unit content, a natural definition for
R(X,, ---, X)) is R(X,, -+, X,_(X,>. We note at once that order
of the indeterminates is, in general, pertinent in the definition of
R{(X, ---, X,», while this is not the case for R(X,, --+, X,). That
is,
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R(Xu °t Xn) = R(Xa(l)y ) Xa('n.))

for each permutation ¢ of {1,2, ---, n}, but R(X,)(X,> need not
equal R(X,>(X,>, for example, for an arbitrary ring R. The next
result gives precise information concerning this question of order
of the indeterminates.

ProPOSITION 10. Assume that {X;}i-, is a set of indeterminates

over R, where n > 1, and let T and o denote distinct permutations
of {1, 2, ---, n}.
(1) If R is zero-dimensional, then

R<Xr(1)7 ) Xr(n)> = R(Xu Tty Xn) = R<Xn(1), M) Xu(n)> .
(2) If dim R > 0, then
R<Xr(1)7 ) Xf('n)> * R<Xa(1): ct % Xa(n)> .

Proof. There is no loss of generality in assuming that 7 is the
identity mapping on {1, 2, ---, n}. To prove (1), we first prove that
for R zero-dimensional, the ring R(X,, ---, X,) is also zero-dimen-
sional (see [1, Lemma 1]). Since

R(Xn M) -Xn) = R(Xv ct Xn——l)(Xn) ’

it suffices to consider the case where n = 1. Let P be a proper
prime ideal of R[X]. Since R 1is zero-dimensional, the ideal
M = PN R is maximal in R. Moreover, it is well known that either
P = M[X] or P = (M[X], f) for some monic polynomial f€ R[X] that
is irreducible modulo M. It follows that the set of proper primes
of R(X) is {M,[X]|R(X)}, where {M,} is the set of maximal ideals of
R. Hence dimR(X) =0 if dimR = 0.

We proceed to establish (1) by induction on n. For = =1,
Corollary 8 shows that R(X,> = R(X,). If we assume (1) for n = £,
then

R<Xa(1)9 ) Xc(k+1)> = R<Xa(1), c Xa(k1><Xa(k+1)>
= R(Xu(l)) ct Xu(k\)<Xu(k+1)> .

Since R(X, ., -+, X, is zero-dimensional, it follows that

R(Xo(l)’ % Xa(k))<Xa(k+1)>
= R(Xa(l)) M) Xa(k)! Xa<k+1)) = R(Xn M) Xk+1) .

Therefore
R<Xo(1)! M) Xa(n)> = R(Xli ccy Xn)

if R is zero-dimensional.
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To prove (2), we choose 1, j such that ¢+ < j, while ¢7(2) > 7'(j).
Let M and P be proper prime ideals of R such that Pc M, and
choose me M—P. To prove that R<(X,,---, X,> and B{(X,,**+, Xoim)>
are distinct, we show that f= X, + mX; is a unit of the second
ring, but not of the first. Since ¢7%(j)<o7'(4), the integer j precedes
7 in the listing o(1), 0(2), ---, 6(n). Hence f, as an element of

R<Xa(m S} Xa(a“l(i)—1)>[Xa(a‘l(i))] ’

is monic in X,;. Therefore f is a unit of R{(X,,, -+, X,m)>, as as-
serted. We prove that f in not a unit of R(X, ---, X,>. Proposi-
tion 1 shows that the only elements of R that are units of R<(X)
are the units of R. Hence, it suffices to show that f is not a unit
of

R(X, -+, X = R(X,, + o0y Xy (X

If f were a unit of R{(X, ---, X; ){(X;>, then it follows from
Propositions 1-4 that m generates an idempotent ideal of R(X, ---,
X;_ modulo its nilradical. Since PR{(X,, ---, X, ,> is prime in
R(X,, ---, X;_, it follows that m generates an idempotent ideal
modulo PR(X,, ---, X;_,>. Hence either m € PR{(X,, ---, X;_)NR=P
or m is a unit modulo PR{X,, --+, X;_,>. By choice of m, we have
m & P, and m is not a unit modulo P{(X,, ---, X;_,> since m belongs
to the proper ideal M<{X,, ---, X;_,» of R(X,, ---, X;_,>. Consequent-
ly, f if not a unit of R(X,, ---, X;_>(X,>, and this completes the
proof of Proposition 10.

Although the order in which the indeterminates are taken in
forming R{(X,,---, X, is significant in general, the ring R(X,,---, X,>
nevertheless provides a natural analogue of the ring R(X,>. In
fact, let Z, denote the additive semigroup of nonnegative integers,
and let E, =Z,p --- P Z, be the direct sum of n copies of Z,.
The semigroup E, is totally ordered under its reverse lexicographic
order—that is, (a,, +--, a,) < (b,, -+, b,) if a, < b, for the last co-
ordinate in which the two elements differ. The polynomial ring
R[X, --+, X,] is isomorphic to the semigroup ring R[X; FE,] of
E, over R under the isomorphism @ that sends #»Xo ... X:» to
pXerme) for each r ¢ R and for all ¢, ---, ¢,€ Z,. The elements of
R[X; E,] can be expressed in the form » X + ... + #,X'n, where
r, e R for each 7 and ¢ <t < --- <t, Hence, the concepts of
“leading coefficient” and “monic” are meaningful in B[X; E,]. More-
over, if S is the set of monic elements of R[X; F,], then S is a
regular multiplicative system. The results previously proved for
the saturation of $“(R[X]) carry over to the saturation of S; in
particular, this is true of Theorems 6 and 9. For these results,
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the significant property of Z, in considering R[X] as the semigroup
ring of Z, over R, is that there exists no infinite strictly decreasing
sequence u, > U, > --- of elements of Z,; the semigroups FE, share
this property, and hence proofs of the theorems extend. The set
@7'(S) is the regular multiplicative system in R[X,, ---, X,] corre-
sponding to the set of monic elements of R[X; E,], and it is not
difficult to verify that R[X|, ::-, X,]o-usy = B{X,, ---, X,>. The
elements of @7'(S) can be described recursively as follows: the element
of R[X,] in &7%(S) are monic polynonials; given fe R[X,, ---, X,], we
write f as a polynomial in X, with coefficients in R[X,, ---, X,_,],
and fe®(S) if and only if the leading coefficient of f is in @7}(S).

In order to clarify the statement of the analogues of Theorems
6 and 9 for semigroup rings, we provide an explicit statement of
the extension of these two results.

THEOREM 11. Assume that E is a totally ordered abelian semi-
group with zero, and with the property that there exists no infinite
strictly decreasing sequence of elements of E. Let S be the multi-
plicative system in R[X; E] consisting of monic elements, and denote
by S* the saturation of S. For an element

f=AX"+ - + fLX"cR[X; E],

where e, < e, < -+- < e,, the following conditions are equivalent.

(1) feS*.

(2) The coefficients of fgenerate the unit ideal of R, and for
each j between 1 and n and each prime ideal P of R the relations
fivey oo+, fu€ P, f;¢ P imply that f; is a unit modulo P.

Moreover, if R is reduced, then (1) and (2) are equivalent to
(3).

(38) There exists a direct sum decomposition R =R, P --- P R,
of R such that if f=g¢,+ -+ + g, ts the decomposition of f with
respect to the induced decomposition

R[X; E] = R[X; E]|® --- @ RIX; K],

then the leading coefficient of g, is a unit of R, for each 1 between
1 and k.
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