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EQUIDISTRIBUTION THEORY
IN HIGHER DIMENSIONS

CHia-CH1 TUNG

Let X, Y be complex spaces, and f: X — Y a meromorphic
map. Assume in Y an admissible family % = {S,};.» of analytic
subsets S, is given. Assume f is almost adapted to 2. The
purpose of this paper is to prove that, if f satisfies certain
growth conditions, the valence of S, (for almost all S,e¥)
grows to infinity at the same rate as the characteristic of
f. Here X is assumed to carry an exhaustion function which
is, e.g., g-concave, centrally g-convex or g-quasiparabolic.

The results obtained generalize the Casorati-Weierstrass type
theorems of Chern [4] [6], Cowen [7], Griffiths-King [12], Stoll [23]
[26], Wu [31, II-III] (see also Griffiths [10]).

Introduction. It is well-known that the classical Casorati-
Weierstrass theorem is not true in higher dimensions. In fact, the
standard example of Fatou-Bierberbach [2, p. 45] gives a holomorphic
imbedding of C* into P, with a nondense image. Chern [4] first
showed that a holomorphic map f: C* — P, whose characteristic grows
sufficiently rapidly assumes almost every point in P,. This result
was generalized to subvarieties of a general codimension in a complex
manifold by Hirshfelder [13] and Stoll [21]-[23]. In Wu [31] certain
geometric conditions were given which ensure the Casorati-Weierstrass
property. For instance, if C™ is given the Fubini-Study metrie, then
a nondegenerate quasi-conformal holomorphic map f: C* — P, assumes
almost every point in P,. This in fact carries over to a balanced
holomorphic map of C™ into P, (see [10, p. 54]), whose image intersects
almost every (% — p)-dimensional linear subspace of P, (where
0 < » = min (m, n)).

Let f: X—Y be a meromorphic map between complex spaces
X, Y. Assume in Y an admissible family % = {S,};cy is given. This

means U is defined by two holomorphic maps Y — M LN (where
M is a complex space, N a compact complex manifold) such that (i)
7 is open, surjective; (ii) h is proper, locally trivial at every point
of M; (iii) each S, is the topological image of ©~*(b) under h, and S,
contains no branch of Y. Then S, is analytic of pure codimension
s in Y for all b. The main purpose of this paper is to establish the
equidistribution property that, for almost every S, ¥, the valence
of S, grows (over suitable sequence of domains) at the same rate as
the characteristic of f. The admissible family defined here is more
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general than the one given in Stoll [23]. This makes it possible to
include, for instance, the Schubert varieties as special cases. Moreover,
the Kahlerian assumption on the index manifold is no longer required
in view of the results of Dektyarev [8] and Stoll [23] (see Theorem
2.5).

The equidistribution theorems are proved in §4 for different
types of spaces. Here only the centrally g-convex type will be set
out. Let @ be a C* exhaustion function of X. Thus p: X—R isa
C* map such that the sets X[r] = {x € X|p(x) < r} are compact for
all » = 0. Let L(p) = dd°p be the Levi form of . Let g: R(0, =)-~
R be an increasing function of class C* with |[e™?|[f = Sre‘g‘“dt ~> oo

1

as +-— co, Then ¢ is said to be centrally g-convex (c. g-convex) if
X[0] has measure zero and if

L(p) = (¢'op)dp A d°p off a closed nowhere dense set.
It follows that L(p) = 0 on X (Lemma 2.1) and, setting u = ¢7¢,

@, = (uo@)[L(p) — (¢'op)dp N d°p] =0  on X — X[0].
If further
(w,)™ =0 off a compact set (m = dim X),

then ¢ is called g-semiparabolic. A logarithmic pseudoconvex ex-
haustion function (in the sense of Stoll [25]) is g-convex (with ¢ = log).
It is not clear to what extent the g-convexity generalizes logarithmic
pseudoconvexity, except in the trivial case where g = constant (see
§4 for an example).

Assume ¢ is c.g-convex. Define X(r) ={zxec X|p®) <7}, % =
L(p)*. Let k =dim N. Let wy, be the fundamental form on N of
a Hermitian metric normalized so that Sv<wN")k = 1. The fiber inte-
gration operator induced by & is denoted by h.. TFor &e A" (N),
P =k —s, define & = h,t*&. Also set 2, = (@y,) "), 0 < p < 5.
If »>2">0,9 =k—s+p, and £ = 0, define

Dy, 80 = | e A @)
A3, &) = w7\ P A s
T p(r, 7'y &) = g:)Aji,,,(t, & u(t)dt .
(The existence of the integrals will be established in §4.)

THEOREM. Assume f: X—Y is almost adapted to A. Assume
either 1,(g = m — s = 0) is semi-positive on an effective open set or
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Ye N\ F¥2, % 0. (1) Assume there exists a positive form &e A:=*(N)
such that over some p-admissible sequence o = {r;}, one of the following
conditions holds:

(@) Af.u(r, &) = 0’(T3‘;,s(?‘, 1, 2,)).

®) Diulr, &) = o (| Dutt, Qouodt + 4300, @) 1ulr).

Then there is a set N, & N of measure zero such that for every
be N — N,, the valence

N3, 7 8 = || NAX(@), Sy gttt

grows at the same rate as the characteristic T%,(r, 7, 2,) over a
subsequence (of ¢) — « depending on S,. (2) If ¢ is g-semiparabolic
and if s =1, then taking ¢ to be any @p-admissible sequence, the
same conclusion holds. (3) Assume there exists a positive form ¢¢
A7V (N) and a positive continuous 7: Ra,, o) — R with [|7u|l;, —
co such that for some constants &« > 1, B = 0,

Y1) D}u(r, &) — Bl* = 0D (1, Q) (r—— ).

Then there is a @-admissible sequence o for which the conclusion in
(1) holds.
A preliminary report of this paper appeared in [29].

1. Adaptation to admissible families. In the following, all
complex spaces are reduced, pure dimensional and have a countable
basis. A family U = {S,},.» is said to be admissible in a complex
space Y iff:

(A) The index set N is a locally irreducible complex space.

(A,) There exists a complex space M and holomorphic maps
7: M — N, h: M —Y, such that = is open, surjective, and & is proper,
locally trivial at every point of M.

(A,) For each be N the restriction h:z7'(b) —Y is injective and
S, = h(@™'(b)).

(A,) No S, contains a branch of Y.

It follows that each S, is an analytic set in Y of pure (constant)
codimension s > 0. If in addition, h: M —Y is surjective, then ¥ is
called strictly admissible (st. adm.).

To give some examples, take integers p,q,n with 0 Zp < ¢ =
n — 1. Let V be a complex vector space of dimension » + 1. Let
G,(V) be the Grassmann manifold of projective g-planes in P(V).
If yeG,(V), the affine (¢ + 1)-plane spanned by y is denoted by E(y).
Then the flag manifold
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F,,={ 9)eG(V) x G(y)| E(x) < E(y))}

together with the projections G,(V) X rF,, 5 G, (V) defines a st. adm.
family %, , in G,(V) ([22]).

The family 9, , belongs to the class of Schubert varieties. Let
A=(aya, -+, a,)eZ** with 0=, =, =<---Za,=<n—p. The flag
manifold of A is the set F(A) of all v = (v,, - -+, v,) With v; € G,;45(V)
such that E(v,) S E(v,)<S - S E(v,). For each ve F(A) the Schubert
variety

S.(4) = ( (€ G,(V)| dim B(w) N B(v)) = § + 1)

has dimension >?_,a;. It was shown in Cowen [7] that the Schubert
family {S,(4)},crw is st. adm. in G,(V). Here the total space M is
given by the irreducible complex space

S(4) :veHA)Sv(A) x {v} .

For be@G,_,_(V), define
2y = {w e G,(V)| E(x) N E(b) + {0}

(see Chern [5, p. 79]). The collection =, = {Ji}icq, ,_,on 1S @
Schubert family (see below); it is in fact also admissible relative to
Gupi(V):

LemMmA 1.1. =,, 1s st. adm. in G,(V) of codimension 1.

Proof. Let A=n—p—1L,n—mp, -, n—p)eZtt, If v=
(Voy *++, V,p) € F(A), the Schubert variety S,(4) has pure codimension
1 in G,(V) and ¥, = S,(4). The unitary group (of a Hermitian
metric on V) acts transitively and biholomorphically on F(A). It
follows that the projection p: F(A) —» G,_,_,(V) is open. Hence the

triplet G,(V) <—}E—S(A)ﬁﬁ—> G._,_(V) is admissible and defines =, ,.

Let A = {S;};.y be admissible in Y, s = codim S;, and k¥ = dim N.
Assume X is a complex space and f: X —Y is holomorphic. To obtain
the equidistribution property of f rel. to %, it is necessary to impose
a general position requirement on the image set of f. Consider the
relative fiber product (f’, k') of (f, h):
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Then f is said to be almost adapted to ¥ iff f = mof’ has strict
maximal rank, i.e., the restriction of f to every branch of X has
rank k. (Observe that if dim X < s, f is not almost adapted to %.)
Take (a, z) e NX X. The map f is said to be adapted to a at z iff
there exist open neighborhoods U, V of a, resp. z, such that the set
F7(S,) NV either is empty for all be U or has pure codimension s
in V for all be U; in the latter case, f is called truly adapted to a
at x.

Assume now f: X —Y is a meromorphic map ([1] [18]). Then
f may be thought of as a holomorphic correspondence [f}: X —Y
(see [20]). Let 'X < X xY be the graph of [f] and P:'X — X,
F:'X Y be the projections. There is a largest open set X°C X
such that P: P7{(X% — X° is biholomorphic. Define f,=F-P™: X° Y.
Then f, = [f]|X° is holomorphic. The indeterminacy I; = X — X°
is thin analytic in X. The map f is said to be: (1) nondegenerate
if F has strict maximal rank; (2) almost adapted to A if so is
F.

Define D = D(F) = {ze'X|rank, F<k}. Let GS X. If [fI(G)N
S, #= @ for some be N, then G is called effective (for A). The set
of all be N to which F is adapted at every point of 'G = P7(G) is
denoted by N, , Let G =h"(G). Then N,,= N — F@Gn D).
Hence if G is compact, N, is open. Let G be the set of all
2 € G such that F is truly adapted to some be N at some we P™(x).

LeMMA 1.2. Assume f is almost adapted to U. Then (i) for all
G € X, N — Ng,; has zero (Hausdorff) 2k-measure; (ii) an open set
G C X is effective iff G = @; (iii) for every branch X; of X, there
exists x; € X; N X° such that f, is truly adapted to some point of N
at Xje

Proof. By [1, 1.24], (D) is almost thin of dimension % — 2.
Since N — N, ; S F(D), assertion (i) follows. Assume G < X is open.
If G is effective there exists we’G such that F(w)eh(M). Then
GY 2 P(W(G — D)) = @, since D is thin analytic in ‘X ([1, 1.16]).
The converse is trivial. Now (iii) is a consequence of (ii).
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LemMMA 1.3. Assume every effective branch X; of X contains o
point x; € X° such that for every branch B of W=h"'(f(x;)), f, is truly
adapted to some point of w(B) at x;. Then f is almost adapted to A.

Proof. Let (f,, h;)) be the fiber product of (f,, h). Take an
arbitrary branch A of X°. The map %)|A: A — X° is proper of pure
maximal rank. Hence the image A’ = h(A) is a branch of X° ([1,
1.27]). Let {B,} be the family of branches of W. Since A’ is the
intersection of X° and an effective branch X; of X, it contains a
point x; at which f, is truly adapted to a point of =(B,) for every
B,. Also, (b)) (x;)N A+ @ and contains a branch of the form
(fH"YBY) N (A *(x;). Hence there exists ze A with rank, f,|4 = k.
It follows that F' has strict rank k.

COROLLARY 1.4. Let U be a st. adm. family defined by Y£~M 5N.
Assume Y is nonsingular, connected and simply connected, and M
18 1rreducible. Let f: X —Y be a meromorphic map such that for
every branch X; of X, there is a point x;€ X; — I; at which f, is
truly adapted to a point of N. Then f is almost adapted to .

Proof. By [27, 1.3], h™'(y) is irreducible for all ye Y. Apply
Lemma 1.3.

2. The Crofton formula and the F.M.T. Let X be a complex
space of dimension m > 0. Let A%X), resp. A7"(X), denote the set
of all differential forms of class C* and degree p, resp. bidegree (q, )
on X. A form e A»?(X) is said to be nonnegative (=0) iff for any
holomorphic map a of a nonvoid open set U & C” into X, a* = 0 on
U;  is said to be strictly monnegative (>0) iff L A7 =0 for all
nonnegative forms 7 on X. The form { is said to be positive at
ac X iff { has a positive extension into a local embedding space of
X at a. Also, { is said to be simi-positive on X iff it is positive
outside a thin analytic subset of X.

LEMMA 2.1. If (e Ap?(X) is mommegative on an open, dense
subset of X, then { is monnegative on X.

Proof. Take arbitrary &;€ 4;%(X), 7 =1, ---, m — p. Then the
form P=4"""LANENE N+ ANép_pAEn_p is =0 on an open, dense subset
of X. By continuity, 7 = 0 on X,,, (the manifold of regular points
of X). It follows that 7 = 0 (hence also £ = 0) on X ([28, §4.2]).

Let M, M’ be complex spaces and h: M — M’ a holomorphic map.
If h is proper and locally trivial at every point of M, then the fiber
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integration operator %, exists, which associates to each (e A??(M),
p = r = fiber dim. &, a form h,{ e A2 "*"(M') ([28, §8.2]). Moreover,
if £ is =0, resp. > 0, then so is h,{ ([ibid.]). If » has striet rank
n = dim M’ and if ' is >0 on M’, then A*{’ > 0 on M ([ibid.]).
Assume YJLM % N defines an admissible family % in Y. Then
the linear map ¥ = h,*: AP?(N) — Ap~F+or—kis(Y) exists if p =k —s.
Assume f: X —Y is a meromorphic map almost adapted to 9.

LEMMA 2.2. Let & & e AP?(N) be real forms where p=Fk or k—1.
Let & =T(&). () If £ =0, then f*& > 0 on any open subset of X°.
(2) Assume N is compact and & > 0. Then there is a constant C > 0
such that if e Ay"(W) is =0 on an open subset Wof X, LA f¥e, <
CLN f*& on W.

Proof. Observe that £> 0 on N. Since F' has strict rank &,
fiber integration yields F'*&, > 0 on 'X{([ibid.]). This implies f*&, > 0
on any open subset of X° ([28, 4.2.5.]). To prove (2), let C > 0 be
a constant such that & < C&. Then C: — & > 0. Hence (A f*&, <
CL A f*& on W.

THEOREM 2.3 (Crofton Formula). Let L€ A} (X)) and w € A*(N).
Assume G = X is open and K = G N supp { is compact. Define '{ =
P*,'G = P7Y(G), and

NG, Su O = _ W GeNes.

Then NG, S,, ) is measurable on N and

| NG 8 00 = | C A fror .

REMARKS 1. The intersection multiplicity v% of F with S, is
included because of its appearance in the F. M. T. For the definition
and properties of the multiplicity, see [28].

2. It can be shown that for almost all S,e¥,

NG, 5,0 = |

sitspne
Proof. Since
|, LA Fror = T P,
anxo ‘G

exists, the measurable form { A f*w, is integrable over G. Moreover,
it suffices to consider the case where f is holomorphic.
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Let K=nYK),{=n*, D= D(f) and N, = {be N|w(b) # 0}.
Then

Il

SGCA Fray A R(f*rro)  ([28, §8.2])

K

Il

No S (b)n(K—D) >(0 ([28’ 5-2-1])

NKf(S —unnk C>w

=, N6, 8, 00 .

1l

K
):..f
S
S

LEMMA 2.4. Let we A¥(N) be semi-positive. Then (1) w,#0 on
Y. (2) Let f be as above and L € A" *(X). If { is semi-positive
on an effective open set G = X, then L N f*wy, =0 on G° =GN X°.

Proof. Observe that the identity map of Y is almost adapted
to U and positive form ¢’ € A2~ *(Y) (n = dimY) exists. Hence (2)
implies (1).

To prove (2), let B be a thin analytic subset of G such that
{>0o0on G— R. The open set (G)® contains a point xe P(G°).
Therefore it may be assumed w.l.o.g. that f is holomorphic. Let
weX such that f is adapted to a = f(w) at z = h'(w)eG. Let
G, € G, @ S N be neighborhoods of z, resp. @, such that f%(S;) N G,
has pure codimension s for all be Q. Then f(G,) constains a nonvoid
open subset @, of Q. Define V, = f(b) N G, for be @, and B = ' '(R).
According to [1, 1.26], the set T = {be@Q|V,N R is not thin in V;}
is almost thin in Q. Since A’ maps f'(b) homeomorphically onto
f7(S,), there is an open set H, & G, such that H, N f(S,) = #'(V,)
(for each be Q). Let Z, =(H, — R)N f(S,). Then

SGF A Fro = | NAG, S, D0

= SQ—-T(SVI,—EL‘?z >0)
= SQl—T<Sva}C>w >0.

Let f: X —Y be a meromorphic map. Relative to a family of
subvarieties in Y, say % = {S,};cx, the so called First Main Theorem
for f measures the difference between the valence of S, and its mean
value on N. The theorem requires the existence of certain differential
forms {4,},.» (where 4, is singular on S,) with special properties.
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For instance, if A = A, (the family of projective g¢-planes in P(V)),
the explicitly constructed Chern-Levine forms ([4] [22]) suffice for
this purpose. In general, if 9 satisfies (A,)-(A,), the forms 4, may
be obtained by fiber integration from a singular potential » on N.
The latter means that A is a set of forms {\;},.y depending infinitely
smoothly on b such that (i) A, is =0,C~ on N — {b} of bidegree
(k — 1,k —1); (ii) N, is singular at b as described in [23, p. 55, (2)-(3)]
(128, 7.2.1] if N is singular); (iii) dd°\n, extends to a nonnegative,
C~ form on N independent of b. For a compact Kahler manifold
the existence of such forms was proved by Wu [31, I, II], Hirsch-
folder [14] (see also [13]), and Stoll [23]. By the method of elliptic
operators, Dektyarev [8] [9] constructed similar forms without requir-
ing the Kahler condition. Actually, combining [8] and [23], the
following can be proved:

THEOREM 2.5. Assume N is a connected, compact complex manifold
of dimension k> 0. Let w be a volume form on N normalized so

that S ®w = 1. Then there exists a singular potential N = {Ny}yey such
N
that dd°», = ® on N — {b}.

Proof. By [23, 5.8], there exist differential forms {\;},.y depend-
ing infinitely smoothly on b such that A} satisfies the above conditions
(i)-(ii), and for some C* ¢g: N X N— R,

dd°'NE = g, on N —{b}.

(Here g,(x) = g(zx, b) if x € N.) Take a positive form &e A5+ *(N).
Consider the linear operator E on the space Z*(N) of real-valued
C=-funetions such that for u e &=(N),

(Bw)w = dd°(ué) .
The adjoint operator E* is given by
(E*u)w = dd°u A & .

Then E and E* are elliptic. By the maximum principle, the kernel

of E* consists of constant functions. The residue theorem ([23, 6.4])

applied to the identity map of N gives S g.w =1 for be N. Hence
N

the equation
Eu=1—g,

has a solution u,e & *(N) depending infinitely smoothly on b (see,
for example, [15, 10.5.3]1[19]). According to [8, p. 961], the form
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& can be chosen so that dd°¢ = 0. Hence for some positive constant
C, Ny = (C + uy)€ + M defines a set of forms with all required properties.

If G is an open subset of the complex space X, there exists a
maximal open subset dG of 0G N X, such that dG is a smooth,
(oriented) C~-boundary manifold of G in X,,. A relatively compact
open set G € X is called a Stokes domain iff 0G has locally finite
(Hausdorff) (2m — 1)-measure and G — dG has zero (2m — 1)-measure.
A bump (g, G, ) in X is given by Stokes domains G and ¢ in X
with @ S g< G and a continuous function +: X — R[0, =) such that
(i) supp v S G; (i) ¥|G — g is of class C% (iii) +|F = Max |G > 0
(if g = 2).

THEOREM 2.6 (F.M.T.). Let f: X —Y be a meromorphic map of a
complex space X of dimension m > 0 into a complex space Y. Assume
A = {S,}ren s admissible in Y with ¢ = m — codim A = 0. Assume
w € A%(N) is nonnegative and M = ey 18 a singular potential with
ddn, = @. Define 4, =T\,) onY — S, and 2 =¥(w)on Y. Assume
xeArY(X) is closed, strictly nonnegative. Let (g, G, ) be a bump
in X, and K =G Nsuppy. Then for every be Ny,

THG) — N4(G, b) = ms(I", b) — ms(7, b) — DG, b) .
Here

S vy 'y (valence)
)N’ ’
S ¥4, N drp A\ =0 (exterior proximity)
ms(7, b) = S F*A, A dp A =0 (interior proximity)

Ty(G) =\ ¥ 2N X (characteristic)

Dy(G, b) = SG A A ddi Ay (deficit)
are continuous fumnctions of b on Ng ;5 'G, '+, resp. 'y, denotes its
lifting to 'X; I’ = 4G, v = dg, and d*+ = i(@ — 9) = —d".

REMARKS 1. If, in the F.M.T., f is almost adapted to %A, the
hypothesis “y > 0” can be weakened to “y = 0 in a neighborhood of
G —¢”. 2. The theorem was proved in [28] for a holomorphic map;
the case of a meromorphic map is an easy consequence.

3. Integral averages. Some general assumptions shall be stated
here for later reference.



EQUIDISTRIBUTION THEORY IN HIGHER DIMENSIONS 535

(I) X is a complex space of dimension m > 0 with at least one
noncompact branch.
(II) A = {Si}scx is admissible in a complex space Y, where N
is compact, connected and nonsingular. Let & = dim N, s = codim S,,
and ¢ = m — s.
(III) f:X—Y is a meromorphic map almost adapted to 9.
(IV-a) we A%(N) is semi-positive, normalized so that S w =
N
1; (\)sey is a singular potential with ddn, = w. Define 4, = T(\,),
2 = Wwy.
(IV-b) wy, is the fundamental form on N of a Hermitian metric
normalized so that g wt, =1, Define 2, = (W5, 01 < s.
N
(V) If ¢=0, let x =1, if ¢ > 0, assume y e A»Y(X) is closed,
nonnegative.
(VI) Either y is semi-positive on an effective open subset of X
or Y A f*Q2 %0 on X"

Assume (I)-(IV-a). For a measurable function w on N, define
I(u) = S uw (if the integral exists). By [23, 6.3], the integral average
N

Ay) = SNa)(b) ® M), ¥ € N, defines a nonnegative form 4 e A->1(N).

LEMMA 3.1. Let G < X be a relatively compact open set. Assume
{e Artv9vY(X). Then the integral

DG 0 = | reanc
exists and

3.1) I@ﬁmA@=m@©.

Proof. The existence of Ds(G; {) follows from the continuity of
F*A, A'C on 'G. By [28, 7.2.2 and §8.2], the integral S FEAy A E

is a continuous functioNn of b on Nz, Also by [28, §9.1],GF*/1,,>>0
on ‘X — F(8S,). Let { =r*(0). If {=0 on G, then

1§, 7710 €) ={ (7 A 8o
~ S,GF*AY A'C.

If { is real, there exists a positive form 7€ A{**"(X) such that
7 +¢>0on G. Then (3.1) holds for » and 7 + {, hence also for .
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If { is complex-valued, a splitting into real and imaginary parts
yields the result.

LEMMA 8.2. Let e Ay (X) and G X be a Stokes domain.

Assume +p: X — R is of class C* with +|0G = 0, and, for some neigh-
borhood W of 0G, either | WNG =0 or wW|W —G=0. Then

I<gdaf*/1b A dp A X) B Sdaf*/ly AR Ay
= Dy(G; dd*(y0)) -

Proof. For each be Nz ,, it was proved in [30] that the following
residue formula holds:

|vreny=\ fandiwn) = NaG, S, - | ot ndwnr.
Therefore (3.1) and the Crofton Formula yield
1({ f°4 A &% A7) = DAGs ddi) -
a6

Now assume y = Oina neighborhood of G. Let I = 3G, 'I" = P™'(I"),
I' = W'(I"), ete. By [23, 8.2 and AII, 4.11, 4.6],

Il

I(gwf*/l,, A dp A x) <S F*4, \ &7y A x)

Il

X g F*M/\d°«lf/\x>
N
S F*dy A dp A '
=\ reanayny.
The general case follows the same way as in Lemma 3.1.

Assume (I)-(IV-a) and (V). Assume (g, G, ) is a bump in X.
Let T;, Ny, my, and D; denote the associated value distribution func-
tions. Let + be a C*extension of 4 on X. Then Lemma 3.2 applied
to 4, resp. (¥|g) — v, shows that the mean proximities m (") =
Ilm (I, b)) and m(v) = I(ms(7, b)) exist. Moreover, with G, = G or g,

(3.2) m(3G,) = Sda Fdy A dip A = DAG; d°dF A ) -

Hence

(3.3) my(I") — mp(7) = IDs(G, b)) -
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4. Equidistribution theorems. Let X be a complex space of
dimension m > 0. A semi-exhaustion function of X is an upper semi-
continuous map ¢: X — R_, = RU{—} such that the half spaces
X[r] = {xre X|p(x) < r} are compact for all » = 0. An exhaustion
Sunction of X is a semi-exhaustion ¢: X — R_, which is C* outside
a compact set.

Let @ be a semi-exhaustion function of X. If »>7" = — oo,
define X(r) = {x € X|p(x) < 7}, X[/, r) = X(r) — X(+'), X(2', r) = X(r) —
X[7'], ete. Assume U: R[r, r)— R is absolutely continuous and let
u=U'. For r >+ =, define

(x>~10 , if x e X[r, o)
Pl = Uy — Ulgpo(@)) , i e X() -

Here ¢p.1(x) = Max (+', p(x)). Define U, = Uogp.

LemmA 4.1. (Cf. [23, 8.3][25, 10.6].) Assume { is a locally
integrable 2m-form on X. Take a,€ R[— >, r). Define

v(t)=§ Z, v[t]sg o> a).

X[ag,t) Xlag,t]

Then if r > v = Max (a,, 7o),

| ot = | souiar
(4.1) o ’
— Uryo(r) — UG w[r'] — SX UL.

(r’,7)

Proof. Observe that @,,., is bounded, measurable on X. W.l.o.g.
assume ( is real. There exist nonnegative, integrable forms {;(j =1, 2)
on X,.[r] such that {, — ¢, = {. Hence it may be assumed that { =0
on X,.[r]. Likewise assume u = 0. Let C(x, ¢) =1 if p(x) < ¢, and
Cz,t) =0 if p(x) = t. Then

SX[ao,oo)(PrTluC - Sx[ao,n(S;[,,](z)u(t)dt)‘:(x)
S:’(SX[ao,r)C(x’ t)c(x))“(t)dt

- Sr,v(t)u(t)dt )

fl

On the other hand,

q)rr’u( = S 0

Xleg,r

[U() = Ul @)I@)

Sx[ao,oo)

— UGr)o(r) — U@ yo[r'] — g UL.

X(r',r)
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Assume (I) and let ¢: X — R_. be an exhaustion function. Call
r > — oo p-admissible if X(r)is a Stokes domain. A strictly increasing
sequence {r;}7, is said to be gp-admissible if each »; is @p-admissible
and 7; > co. The set of non-p-admissible values >¢’ has measure
zero in R[+’, ) for large »' (cf. [28, 7.1.6]). If @ is C* on X, this
is true for arbitrary +'.

LEMMA 4.2. Let L(p) = dd’p be the Levi form of ¢ on X — X[r,]
(where ¢ is C*). Assume U: R[r,, «)— R is of class C* and v =U".
Let e A X). Q) If r, " are p-admissible with r» > v > »,, then

wn | dpnt—uen|  aent
(4.2) ax(r) dx(r’)
—_:S L(Uw)/\C+§ (1. dat)uwar.
X{r’,») »! Xy
(2) Assume ¢: X — R is C* and { is d’d-closed. Then for all r >
> 7,
@3 | Loy nc-uw| Leac=| wLuyAc.
X(r) X(r) Xir’,

Proof. By Lemma 4.1, if 7, 7’ are p-admissible with » > »" > »,,

then

X[r X(r’,r)

r’ dd°C Ju(t)dt = U(r) dd¢ — U(") ddC — U,ddC
r X&) X(r) 1

- SX(T’,r)d( USD) /\ doc

= SJL’(#",'I')dC /\ dc( qu)

= u(,r) de(r)d‘:@ /\ (: - u(,r,) S r’)d‘;@ /\ C

axt

Now assertion (2) follows from (1) by repeated application of the
Stokes theorem ([28, §7.1]) and the left-continuity of w(t) 28 X

X(¢)
(where y € AIn(X)).

Let ¢: X — R_., be an exhaustion function. If there exists an
increasing g: B(c,, o) — R (¢, = 0) of class C' such that

(1) L) = godp N d°p on X.oy — X[oo],

(ii) [le7|[f,— o= as r— oo,
then @ is called g-convex. If instead of (i),

(i) L(p) £ gedp A d°p on X, — X[e,],
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and (ii) hold, then ¢ is called g-concave.

A g-convex exhaustion function may not be logarithmic pseudo-
convex. As an example, consider the variety A = {ze¢C"|z, + ---
+2,., =0}, m>1. Let|z|? = 2%2Z;, 2€C". Then ¢ = log||z||** A—
R_., is pseudoconvex (i.e., g-convex with g = constant). Let Z =
{zeC"|z,=+++ =2,_, =0} and ¢: Z— A be the inclusion. Then

on Z — A[0] (where z, = x, + ty,). Hence @ is not logarithmic psc.
(=log — convex). Similarly, one can construct a g-concave exhaustion
function which is not pseudoconcave.

Assume g: R(c,, =) — R (¢, = 0) is of class C' and v = ¢™?. Let
U, be a primitive of %? on R(e, ) for pe Z[1, m]. Define

(4.4) 0, = w[L(p) — gudp N d°p]
off a compact set, say Xlc], ¢ = ¢,. Setting x, = L(p)!, (4.4) yields
(4.5) (0,)" = dd(Uyop) N\ Ap—1 on X — Xle].

Now assume (I) and the exhaustion ¢: X — R is C°. Let (e
A?2?(X) be ddc-closed; if p = 0, set { = 1. Define

a5 =y CA L, e
For » > 1" > ¢, (4.3) yields

A - axen =\ CA@am.

X[r
Hence if ¢ is c.g-convex (¢, = 0) and if { =0, A%0) = lim,_,, A7)
exists and

(4.6) Ax(r) = A%0) + SMC A @) (r>0).

A c.g-convex exhaustion ¢ of a complex space X is called g¢-
quasiparabolic if

[, @ =ollul)  (r—> ).

Consider the following example. Let M < P, be a projective
variety of dimension m — 1> 0. Let U be the restriction of the
universal line bundle (over P,) to M. There is a proper, holomorphic
map o of U onto an algebraic set A in C"™ such that ¢:U — ¢7*(0) —
A — {0} is biholomorphic. Let y»=1+||z|** A—> R and p=0*y:U—R.
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With g = log 7 in (4.4), the (1, 1)-form ®, is =0 on U and >0 on
U — 07%0). Moreover,

|, @)=\  @ogwy=01) — ).
Ulr) A,./’(*r)

Thus the exhaustion ¢ of U is log-quasiparabolic but not parabolic
in the sense of [25].

LemMmA 4.3. Assume u, A: R[r, o) -> R where w is positive,
continuous, and A = 0. Assume

4.7 There exists a continuous a: R[r, «)-— R(0, ) such

that ||ually, — o and Ala is increasing in 7.
Then

ludlly, . AG)
fuall, == )

Proof. Let G(r) = [[ux|l},. For all » >+ > r,

Ay _ G(T')] < Hudllr, o Alr)
a@)L G 1™ G T a

From this the lemma follows.

THEOREM 4.4. Assume (I)-(IV-a), (V)-(VI). Let ¢: X —R_. be
an exhaustion function. Let U: R[r, ) R be of class C* with
U=u>0. Forr>nr=nr, define

N3, 17, 8 = | NAX®), S Du@®)dt , (b€ Nagss)
Tir, 7', @) = | o "N L,
and for gp-admaissible r > 17,
mi(r) = wu(r) de(ﬂf”“/ly A do N\ % .

Assume one of the following holds:
(1) L(U)A % =0 off a compact set, and

(4.8) mj(a) = o'(THa, 7o, 2))

over some @-admissible sequence o = {a;}3., (this fact is denoted by
“O"’).
(2) L(U)A % =0 off a compact set and THr, v, 2) — . Let
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o = {a;} be any p-admissible sequence.
Then there exists a set N, & N of measure zero such that for
every be N — N,, there is a subsequence {r.} = o, r,— =, for which

. N¥r,, r, Sy
hm S\ py Ty | —
e i G )

Proof. There exists a,, = r, such that that on X — X[e,_ ] @ is
C~ and L(U,) A x = 0(or =£0). Define N = N2, Nyp;,r- Let G; =
X(@;), Vi = Puja; associated to the bump (Gy, Gy, ¥y), § > I, there are
the deficit Ds(a;, b) = DG, b), proximity ms(a;, b) = m;2G;, b), ete.,
for all be N1, Observe that

my(a; b) = u(a;) ng(a.)f*Ab A dp A Y Ggz.
For be NI, define

45(aj, b) = | Dy(as, b)| + my(az, b) + me(a, &) (7> 10).
Then it follows from (3.3) and (4.8) that
I(4s(aj, B) = o(Tr(a;)  (G—— o).
Define

iu = {be N dy(aj b) =27 Te(a)} (G =z p>1),
N® = N,.

jz¢

Then N is measurable, and since
I4fas, b) 2 2+ Tap) | o
N
each N has measure zero. Define

= (N — N U ] N .
u=l+1
Then N, has measure zero. For each be N — N,, there exists a
subsequence {r.., & ¢ with a, < 7, < 7,— oo such that
Af(qﬁw b) = O(Tf(/r;t)) (/“ - Oo) .

Hence from this and the F. M. T. the theorem follows.

THEOREM 4.5. Assume (I)-(III), AV-b), (V). Let ¢, U, w be the
same as tn Theorem 4.4. Assume A(r) = S F*2, N\ # 0 and (4.7)
holds for (u, A). Assume { = L(U,) A\ Y = O oﬁr a compact set. (1)
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If

(4.9) g Frae NC=0/(THr, o, 2)
1‘0'1‘

(over some @-admissible sequence o = {r;}), them Im[f] intersects
almost every S,e U with

< » N7, 70, Sp)
4.10 1 YTy Tey By 1.
(410 e e, 7o, 2,)

Here r runs over a subsequence (of 0)— oo depending on S,.
2) (Cf. Griffiths-King [12, 5.3].) If @y, ®%,, are cohomologous
Kahler forms and if there exists a positive form &e A Y(N) such
that

(4.11) F*ex N L= o' (THr, 14 2,))

SX(T(,,T)

(over o as above), then

- T, 1, 24)
4.12 lim L4 "0 98/ — 1,
(4.12) i T3, 70y 2,)

Proof. By (4.1) and Lemma 4.3, T%¥r, 1, 2,) — . (1) Let », 7’
be p-admissible with » > »" > r,. By (3.1) and (3.3),
[ sanc=0w+| ot nddp..ny
X(rgsr) X(r'y7)
=0Q) + mi(r) — mi@’) .

Thus (4.8) follows from (4.9) and therefore (4.10) holds. (2) Lemma
2.2 and (4.11) yield

(4.13) SX( o2y A= 0(THr, 7y 2))
ot

There exists 1 € A5 *(N) such that dd*p = 0y, — },,. Assume 7,7’
are p-admissible, » > " > r, and { = 0 on X — X[+']. By (4.2),

un |, dpAFOUAL=00+ | LTI Af O AT

Xl(rg

Observe that on dX°r),
dp N\ f*ny A X = const. d°p N\ f*2,_, \ X
(23, 3.2]). Therefore (4.2) yields
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T}(’I‘, 7',’ Q;) - T?("”& ')"’, ‘Qs)
=0 +utn | _ dp A S Ax -

ax X(r

’ ‘r)f*y]y /\ C

=0Q) + const.g )f*.Qs_l NC.

X(rg,r

Now (4.12) follows from (4.13).

COROLLARY 4.6. Assume (I)-(IV-a), (V)-(VI). Assume ¢ is a C*,g-
convex exhaustion function of X. If (with w=e~? defined on R[r,, o))

W)\ FA A A = (T ),

then for almost every S,c¥,

., Nur, r, Sy)
4.14 1 VAT o Mo/ ]_ .
(414) = T, vy Q)

Proof. If r > r, is p-admissible, Lemma 3.2 yields
DX A=\ A AdpAy.
Hence Theorem 4.4 concludes the proof.

COROLLARY 4.7. Assume (I)-(IV-a), (V)-(VI). Assume ¢: X — R_,,
18 a g-concave exhaustion function. Let o = {r;} be an arbitrary
p-admissible sequence. Then there is a set N, & N of measure zero

such that (4.14) holds for every S, with be N — N,.
Proof. Apply Theorem 4.4.

Let W —Y be a holomorphic vector bundle of fiber dimension
» =1 over a complex space Y. Assume I'(Y, W) contains an ample
linear subspace V (see[17]) of dimension n +1=2. Take g¢e
Z|0,n — p]. For beG,(V), define Z, =) {Zero (0)|occ E(b)}. Let
d(q, n) = dim G,(V). Let w,, be a normalized Kahler form on G (V)

such that, setting w;,;, = wi{™, ( )a)m =1. The classifying map
GV
¢r'Y — G,_,(V) is given by !
E(ev(y)) ={oeV]ay) =08 (yeY).

It can be easily shown that Z, = ¢;'(S;) for every S, e, ,,. Here
S, has codimension s = p(q¢ + 1) in G,_,(V) (see [27]). Define

“Qp.q = ;¥ (W) € AL(Y)
Then 2,,> 0 and d@,, — 0.
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COROLLARY 4.8. Assume X satisfies (I) and ¢: X - R_., is a ¢-
concave exhaustion function. Let W, V, q be as above, and f: X =Y
be a meromorphic map. Assume for every branch X; of X there is
a point (x; b;) € (X; — I;) X G (V) such that codim,; fi'(Z;) = s.
Assume Y€ Ay =™ (X) 1is closed, nonnegative, and ¥ > 0 at some
point of X, (if m = s, take y =1). Then for almost all be G,(V),
fo'(Zy) has pure codimension s and

snt N"('r T Z)
lim" =22 o 20— 1 |
v THr, 7oy 25,4)

(Cf. the definitions in Theorem 4.4.)

Proof. The meromorphic map ¢yof: X—G,_,(V) is almost adapted
to U, by Corollary 1.4. Hence Corollary 4.7 yields the result.

THEOREM 4.9. Assume (I)-(III) and (IV-b). Assume ¢ is a c.g-
convex exhaustion function of X such that (VI) holds with y = ¥,
and 2 = 2,. (1) Assume for some positive form (€ A “**N), one
of the following conditions holds (over a @-admissible sequence o):

(a) A%, (r, &) = o’(T?;,s('r, 1, 2,)

() Dy &) = o'(| Dralt, Qoutrdt + 43,0, 2)1ull).

Then there is a set N, C N of measure zero such that for every be
N — N,

. N (7, 70, Sy)
415 i’ Zope ey =
(4.15) e T (7, 7y 2.)

1.

(Here 1, > 0 is an arbitrary constant.) (2) If ¢ is g-semiparabolic
and if s =1, the above conclusion holds for every ¢-admissible
sequence a.

Proof. For fixed »’ > 0, T%,(r, 7', 2,) — « by (4.7), Lemmas 2.4
and 4.3. Let & ¢ A5 *(N) be a d°d-closed positive form ([8, p. 961]).
Then (4.6) and Lemma 2.2 imply

Dy, \(r, &) < const. A%, (7, &) .

Therefore (a)= (b). (Similarly (b)= (a).) Now (4.5) and Theorem
4.5 yield (4.15). Clearly (2) is a consequence of (1).

COROLLARY 4.10. Assume (I)-(III), (IV-b) and A is strictly adm.
of codimension 1. Assume @ is an exhaustion function of X such
that one of the following holds:

(a) o is c.g-convex and
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AS(r) = o' (Thu(r, 1, 2))) .

(b) @ is g-quasiparabolic.
If m>1, assume Y, *0. Assume either Y is compact, or dwy,,=0
and Y has a finite number of connectivity components. Then (4.15)
holds for all S, with be N — N,. (Here N, has measure zero, and
in the case of (b), ¢ is an arbitrary gp-admissible sequence.)

Proof. Since y, = 0, %, = 0 implies ¥, > 0 at some point of X,.,.
Also, by hypotheses, 2, is a bounded function on Y. Hence the
corollary follows from Theorem 4.9 and Lemma 4.3.

LEMMA 4.11. Let V,W: R|c¢,, =)— R[0, ), where W s increasing
%0, and V is measurable, locally bounded. Let u,: R[e,, o)— R(0, o)
be continuous functions with ||vu|l;,—oo. Assume for some constants
a>1,B=0,

7)) V(r) — Bl* = O(W(r))  (r—>c0).

Let E < Rc,, ) be a set of measure zero. Then there exists a
sequence {r;} in Rc, <) — K tending to infinity such that

Viry) =0([wWli) (G —— ).
Proof. Put H(r) = ||vull;, and let J be the inverse function of
H on R[0, ). There exist constants K > 0, », = ¢, such that

Y| V(r) = Bl*= KW(r) (rz=r).

For a > a, = H(r,) define Q(a) = [V(J(a)) — Bl*, and P(a) = [[Q][s,
The case P(a) = 0 is trivial, hence assume P(a) > 0 for @ > a,. Then
with ¢ = H(r) > a,,

|V(r) — B| = K[(PT*@)@]"“[[u W]}, .

Since P~*Q € L'([a’, «)) for large a’, there exists a sequence {r;} in
R[c,, =) — E tending to infinity such that (P~*Q)(H(r;)) < 27/ for
every j. From this the conclusion follows.

COROLLARY 4.12. Assume (I)-(I1II) and (IV-b). Assume @ is a
c.g-convex exhaustion function of X such that (VI) holds with x = ¥,
and 2 = 2,. Assume there exists a positive form &e AF*(N) and
a positive continuous v: Rla, ) — R with ||vul|;, — oo such that for
some constants o > 1, B = 0, one of the following holds:

@) ()| D},i(r, &) — B|* = O(D3},i(r, 2,)).

() 7(r)|Af,e-i(r, &) — B|* = O(A},,(r, 2,))-

Then there exists a p-admissible sequence o for which (4.15) holds
for almost every S, € 9.
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Proof. Apply Lemma 4.11 and Theorem 4.9.

To give some applications of the preceding results, consider the
following:

1. Let f: X—G,(V) be a meromorphic map (where V has dim n+1)
and % = =,,. If n =1, assume f is nondegenerate; if n > 1, assume
every branch of X contains a point x ¢ I; for which there is a X, ¢
=, ., with dim, f;1(2,) = m — 1. Assume @: X — R is an exhaustion
function such that either 4.10 (a) or 4.10 (b) (with 2, = ¥'(w,_p-11)
holds. If m > 1, assume Y%, % 0. Then (4.15) holds for almost every
2 € Dy e

2. Theorem 4.6 of Stoll [26] for a family {S,},cz of Schubert
zeros holds for a c.g-convex space (X, @) (under conditions similar
to (4.8), ibid.) in the stronger sense that the valence of almost all
S, grows at the same rate as the characteristics of f. Especially,
the theorem holds if @ is g-quasiparabolic and ¢ (see [26, assump.
(13)])) = m — 1. This can be proved using Theorem 4.4 and Lemma
3.2.

3. (Cf. Stoll [23, 9.5].) Assume (I)-(IV-a) with X nonsingular,
connected, and ¥ strictly admissible of codimension 1. Assume y €
Ar~tm(X) is closed and positive. Let ¢ = {G,}7, be a sequence of
domains in X such that @ # G; € G;,,, X — G, has no compact com-
ponent, dG; = dG;, and UG; = X. Then there exist functions 4;: X —
R (7 = 1) solving the Dirichlet problem

X/\dd‘qh:() on Gj'—‘éo,

with v;|Go =1, v;]X — G, = 0. The capacity of G; (relative to %)
is defined by

J

cGy=\ _xndwmndy, GzD.

It follows that +; < 5., and 0 < C(G;,,) < C(G;) ([23, 9.3]). Assume
either (2) C(G,)— 0 or (b) TyG,) = SG-“"”'X A f*@— co. Then for
almost every S,e¥, ’

lim’ NGy, Spy 45X _ 1.
gooo TH(Gy)

This follows from (8.3), Lemma 2.4 and the proof of Theorem 4.4,
observing that for 7 =1,

Sd Fdy A diap; A 7 < const. C@G;) .
Go
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