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THE TYPESET AND COTYPESET OF A RANK 2
ABELIAN GROUP

PHILLIP SCHULTZ

Let T and T’ be sets of types. This paper describes
necessary and sufficient conditions on (7', T”) for the existence
of a rank 2 torsion-free abelian group A such that 7 is the
set of types of elements of A4, and 7" is the set of types of
rank 1 factor groups of A. Moreover, it classifies all such
A and gives necessary and sufficient conditions for A to be
completely anisotropic.

1. Introduction. This paper describes those pairs (T, T") of sets
of types such that for some reduced rank 2 torsion-free abelian group
A, T, the typeset, is the set of types of elements of A, and 7", the
cotypeset, is the set of types of rank 1 torsion-free factor groups of A.

This completes a line of research initiated by Beaumont and
Pierce [1], to which notable contributions were made by Koehler [6],
Dubois [2] and [3], and Ito [5]. However, the methods of this paper,
unlike those cited above, can be extended to groups of arbitrary
finite rank, using the induective technique of [7].

Apart from its use in the construction of the group A, the
advantages of introducing the pair (T, T") are twofold: firstly it
provides a finer classification of rank 2 groups than the typeset alone;
and secondly in the case of groups of arbitrary finite rank it provides
a useful classification scheme for the torsion theory generated by
the group A. The details will appear elsewhere, but roughly the
idea is the following: for any abelian group A, the torsion-free class
of the torsion theory generated by A is

At = {X: X is torsion-free and Hom [4, X] = 0}.

Let (T, T') be the typeset and cotypeset of a torsion-free group A,
let C be any completely decomposable group with typeset T, and D
any completely decomposable group with typeset 7”. Then

C-c A< D*.

This yields a classification of torsion theories in terms of completely
decomposable groups.

Section 2 of this paper compares and shows the essential equi-
valence of the structure theories of [1] and [7], and §3 establishes
several invariants of rank 2 groups. These invariants are used in
§4 to develop necessary conditions on (7T, T”). The computations
which prove that these conditions are also sufficient comprise §5,
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while §6 is a proof that the group constructed does in fact realize
(T, T"). The construction of §5 is analyzed in §7 and the number
of groups realizing (T, T') is counted. Finally in §8 the completely
anisotropic groups realizing (7, 1”) are constructed.

Throughout we employ the standard notation of [4] except where
otherwise noted. One major exception is the following:

A height is a function i from the set P of primes into N U {<o}.
A type is an equivalence class of heights with respect to the usual
equivalence relation k ~ h if 3,.» |h(D) — k(p)| < . The height of
an element ¢ of a group A is denoted A (x) or A(x) if no ambiguity
results. A generalized height is a function from P into Z U {co};
for example, if » = a/b is rational, then A(+) is the generalized height
defined by h(r)(®) = hs(a)(®) — hs(b)(D).

We frequently use the ring Z, the closure in the n-adic topology
of the ring Z of integers. However we are interested only in its
algebraic structure: Z= H,.»Z, where Z, is the ring of p-adic
integers.

An arrow >~ represents a monomorphism, — an epimorphism.

2. The structure theories of [1] and [7]. Proofs of the following
assertions are in §3 of [7].

Let A be a reduced rank 2 torsion-free group, and leta—1Xa
be the canonical embedding of A into its divisible hull V = Q R A.
For any x € A, let W(x) be the pure subgroup generated by x. Suppose
{x, ¥} is a basis of A; then A/(W(x) D W(y)) is isomorphic to S =
@D, Z(p""), 0 = k(p) = .

V contains independent subgroups W(x), W(y) containing v, x
respectively, such that W(x) = A/W(x), W(y) = A/W(y) and k(p) =
hiv o (¥)(0) — ha(Y)(D) = hivy(@)(D) — hu(x)(p). There exists a cartesian
square:

A" W(x)
zfl !ﬁ
B ¥
W(y) "—7,‘» S
in which A = {ra + sy: 7, s€Q, B(sy) = v(rz)}
w(rx + sy) = sy; o(rx + sy) = rx
ker 8 = kero = W(y); ker v = ker 7 = W(x) .

The pair (8, 7) of epimorphisms may be replaced by a pair (5,7)
provided (B, 7) induces the same automorphism of S as does (8, 7).
In this case, we write (B, 7) ~ (8, 7") and denote the equivalence
class by [8, 7].
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Conversely, let {x, y} be a basis of a rational vector space V; let
S be any subgroup of Q/Z; let W(x), W(y) be independent subgroups
of V containing vy, « respectively, and let 8: W(x) — S and v: W(y) — S
be epimorphisms. Then the pullback A of (B, 7) is a rank 2 torsion-
free group containing independent pure subgroups W(x) = ker v, W(y) =
ker B such that x e W(x), y € W(y), and the diagram above is commu-
tative. If (&', 7’) is another pair of such epimorphisms, with pullback
A’,then A’ = A iff (B, v) ~ (B, 7"). Furthermore, A is quasi-isomorphic
to A’, denoted A = A’, iff the automorphism of S induced by (5, 7)
differs from the automorphism induced by (8, ¥v') by a rational
multiple. We denote this construction by (4, W(x), W(y), W(x), W(y),
S, B, 71

The details and proofs of the previous two paragraphs in [7]
deal with the more general case in which V has arbitrary dimension.
It is stated in [7] that the rank 2 case is essentially the same as
the construection in [1], and since we shall make heavy use of Beaumont
and Pierce’s results, the connection must now be made clear.

By [1, Theorem 2.10], a reduced rank 2 group A with distinguished
basis {x, ¥} determines a unique pair (¥, X), where Y is a height and
X an equivalence class of pairs (¢, 7) from ZxZ A pair (&, 7) is
equivalent to a pair (&, ') provided that

(i) A& = n&), h(n) = @),
and

(ii) W&y — &) = 2 + né) + h(y).

(Fuchs prefers multiplicative notation for “addition” of heights
and types [4, II, p. 110], but throughout, I shall conform to the
additive notation of [1].)

For given (A, z, y), the height Y is defined by

Al(W(x) DW(y)) = SQPZ(pS””) ,

and a pair (&, 7) is specified by

(i) k(&) = h(y), k() = h(x)

(ii) Vpe P,leta, b be integers with a(a)(p) = h(y)(p) = u, h(b)(p) =
h(x)(p) = v, and k an integer such that 0 < %k < 3(p). Then
p~ ¥t (ar + by)e A iff h(an(p) — bEW)(P) =k + u + v. (This in-
equality of course is suitably interpreted in case u or v is infinite.)
Beaumont and Pierce show that (i) and (ii) define (& %) up to equi-
valence, and conversely, a pair (Z, X) determines {4, z, ¥)> up to
isomorphism; the structure is denoted (4, x, ¥> — (I, X).

METATHEOREM. The structure theories of |[7] (rank 2 case) and
[1] are essentially the same.



506 PHILLIP SCHULTZ

Proof. The height Y is defined like the height %, and up to
isomorphism, ( W(x), W(y), W(x), W(y), S) can be recovered from z, y,
and Y, and vice versa. Hence in order to establish the correspondence
we must show how X determines [B, ¥] and vice versa.

Suppose (A4, z, y) — (X, X), and let (§,n)e X. Let h(x)(p) =,
h(y)(p) =wu. If vor w is infinite, then 3(p)=&p) =n(p) =0, and any
automorphism of S has zero p-component. Furthermore, any (¢, %)
from X also has zero p-component, so in this case, the p-component
of the automorphism determined by [B8, 7] is completely determined.

Assume then that w and v are both finite. For any p-adic integer
¢ represented in the form 3>\, s 0%, let e¢; be the jth segment

iZs;p’. Define p-adic units ¢(p), d(p) by ¢(p)=p"&(p), d(p)=p""9(D),
and denote their jth segments by c;(p), d;(p). For any integer j,
0=j= 3(p), define

(*) Y(p~He(p)x) = B~V (p)Y) -

This makes sense, since h(p c;(p)N(p) — p'd;(P)E(P)(P) = J +u + v
implies p~Ytve;(p)x + P~ d(p)y € A.

Now if j = 3J(p) < o, then 7(p~*¢;(p)x) is an element of maximal
order p’ in the eyclic group S, = Z(p’), and similarly B(p~Y*d;(p)y)
is a generator of S,, so the equation (*) determines the p-component
of the automorphism of S induced by (8, 7).

If S.(p) = oo, {Y(p " ei(p)x): 3 =1, 2, ---} is a set of generators
for S, = Z(p~), as is {Bp~Y*"d;(p)y):J =1,2, ---}, so the equations
(*) completely determine the p-component of the automorphism of S
induced by (8, 7).

We have shown that (& 7) determines a unique eclass [B, 7].
Suppose that also (&, ¥')e X, and let ¢'(p), d'(p) be the corresponding
p-adic units. Since AEMDY () — F@NP)P) = 2 (P) + u + v,
p~9e(p)e + p~UTd(p)y € A, so B(p~ T ci(p)x) = Y(p~ U Md(p)y), i.e.,
(&, 1') determines the same class [G, 7] as does (§, 7).

Conversely, suppose given (4, W(x), W(y), W), W(y), S, [B, 7])-
Let B:W(x)/W(y) — S, ¥: W(y)/W(x) — S be the isomorphisms induced
by (B,7)e[B,v]. Let peP and let u = h(y)(p), v = h(x)(p). If u
or v is infinite, S, =0, so for any choice of (§ 7) we must have
&p) = 0 = n(p). Thus we may assume u and v are finite.

If k(p) < o, there is a rational p-adic unit ¢(p) such that

B(p~*»+we(p)y + W(y)) = Y(p~ ¥z + W(z)) ,

since these elements generate S,; ¢(p) is unique modulo p**.
If k(p) = o, there is a unique p-adic unit ¢(p) such that, for all
i=12, ...,

B~ (e )y + W(y) = ¥(p ¥ + W) ,
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since those elements form a canonical set of generators for S,.

Now let &(p) = p*c(p), n(p) = p” for all p, and let X be the equi-
valence class of (&, 7); from the construction we have {4, =z, ¥) —
2, X).

Suppose now we start with [8, 7] and construet (&, ) € X as above.
An application of the method of the third paragraph of this section
yields ¢(p) = p™“&(p), d(p) = 1 for all p, and hence the original [B, 7]
is recovered.

Conversely, starting with (¢, ) € X yields a pair (B8, v) by equa-
tions (*). Now for all primes p and j < 2(p), d;(p) acts as an auto-
morphism on S, such that

Bp™ e, (p)d;(p) ™y + W(y)) = T~z + W()) .

The method above yields (¢, '), where &(p) = p*e(p)d(p)~", 7'(p) = p°,
and a short computation shows (&, 7)€ X. Thus applying the con-
structions consecutively in either order recovers the initial invariants,
as was to be proved.

COROLLARY 1. Given {4, x, y), there is a unit ¢ of Z such that
(a) if k(p) < oo, ¢(p) 15 uniquely determined modulo p** and

p"(k(ﬂ)'('v)x + p—(k(m+u)c(p)y GA, and
(b) if k(p) = o=, ¢(p) 18 unique and for all j,

p—(j-l-v)w + p—(j+u)cj(p)y e A .

3. Invariants of rank 2 groups. Having established the cor-
respondence between the two theories, we can use [1] to list some
useful invariants of a rank 2 group A in terms of the structure
theorem of [7].

ProrosITION 1. [1, §4]. Let {x,y} be a basis of A, with cor-
responding invariants S = @,.p Z(*?), ¢ eZ as in Corollary 1.

(a) t{x) A t(y) is a quasi-isomorphism invariant of A, henceforth
denoted t,.

(b) tx) + tly) + t(k) is a quasi-isomorphism invariant of A,
henceforth denoted s,.

(¢) For any zc A, define Y(z) € Z by x(z)(p) = pM2® | (interpreted
as zero if h(z)(p) = ). Let {', y'} be a basis of A with 2’ = rx +
sy, ¥ =1z + s'y, wherer,s, r’,s’'€Q. Letc e Z be the corresponding
invariant as in Corollary 1. Then

@) (sxWe — ry(@) + x@NSA(We — 'y (@) = s,
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COROLLARY 2. The irrational c¢(p)’s defined in Corollary 1 are
a quasi-isomorphism invariant of A; that s, 1f ¢ corresponds to a
basis {x, ¥y} and ¢’ to {x', ¥'}, then for any »e P, ¢(p) is irrational
off ¢'(p) is irrational.

Proof. Let k, k' be the heights corresponding to {z, y}, {’, ¥'}.
(See Proposition 1 for notation.) If s,(p) is finite, then k(p), k¥'(p)
are both finite so ¢(p), ¢'(p) are necessarily rational.

Assume then that s, (p) = o, and ¢’(p) is irrational. This implies
that k' (p) = -, and that « = h(y')(p) and v = h(z')(p) are finite.
Let u = h(y)(p), v = h(z)(p); by Proposition 1(e),

t((p*'c'(p)(sp e(p) — rD*) + p” (s e(p) — r'P*)(P) = oo,

so p¥'c'(p)(sp e(p) — rp’) = —p”(s'p c(p) — r'DY).

If u = =, then p**'r¢’(p) = p”**»', which is rational, so v = .
But then every element of A has infinite p-height, contradicting the
finiteness of «/, so w and similarly v are finite. Hence ¢(p) = 0 and
k(p) = .

Now sp¥c(p) — rp° =0 iff s'p*c(p) — r'p° = 0, contradicting the
linear independence of {x’, ¥'}, so neither are zero and

c'(p) = —p” ' (s'p c(p) — r'p")/(sp c(p) — rP°) -

Since ¢'(p) is irrational, so is ¢(p). Reversing the roles of ¢(p) and
¢'(p) throughout yields a proof that if ¢(p) is irrational, so is ¢'(p).

We now use Proposition 1 and Corollary 2 to identify certain
sets of primes which are quasi-isomorphism invariants of A.

A prime p is called accidental if sy(p) = o > ¢,(p). An accidental
prime p is flat if for any choice of basis, ¢(p) is always irrational;
it is sharp otherwise. Note that Corollary 2 implies that the flat
primes are a quasi-isomorphism invariant of A; the sharp primes are
not: for example, if p is sharp for some choice {x, y} of basis, then
there is an element z with A(z)(p) = o, and {z, z} is a basis with
respect to which p is not even accidental.

We shall also need Lemma 9.1 and Corollary 7.4 of [1], which
translated into the notation of Proposition 1 become:

PROPOSITION 2. Let {x, y} be a basis of A, and let z = rx + sy €
A, r,seQ. Then h(z) =min{h(sy(y)e — rx(x), &+ h(y) + h(s), k +
h(x) + h(1r)}.

COROLLARY 3. h(z)(p) = oo iff k(p) = o and r[s = p*P P ~h=@e(p);
in particular, if h(z)(p) = o, then h(r/s)(p) = h(y)(p) — h(x)(p).
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PROPOSITION 3. Let {x, y} be a basis of A.
Define pc Z by

c(p) +f h(x)(p) = h(y)(D) ,

olp) = 0 otherwise

and

f xp)#0
if x(p) =0.

Let ze A\{W(x) UW(y)}; then t(z) = tlax + by) for some mnonzero
coprime pair (a, b) of integers. Let r = a/b, and let

~ 0
4: Z — {0, o} by A(x)(p) =

t, =tk A (h(r — 0) + Alry(x) — ex(®))) -
Then t(z) =t, + t,, and T(A) = {t(x), t(y), t, + t.: 0=rcQ}.

The following lemmas show how accidental primes affect the
typeset of A. !

LEMMA 1. Let p be a sharp prime. Then there exists ze A with
h(z)(p) = co, but for all we¢ W(2), h(w)(p) < eo.

Proof. For some choice {z, ¥} of basis, h(x)(») and h(y)(p) are
finite, k(p) = = and ¢(p) = a/b for coprime nonzero integers a, b each
prime to p. Take z = ay(y)(p)x + bx(x)(p)y € A. By Proposition 2,
h(2)(p) = oo.

If we W(z), {w, 2} is basis and £, = t(w) A t(2), so h(w)(p) < .

LEMMA 2. Let p be flat prime. Then for all 0 = z€ A, h(z)(p) <
oo; for each basis {x, y} of A, k(p) = co; there are infinitely many
pairwise independent z, with h(z,)(®) < h(z;) (D) whenever 1 < j.

Proof. Let ¢ be the invariant corresponding to any basis {z, y}.
Since ¢(p) is irrational, for all z = 0, h(z)(p) < =, by Proposition 2,

and k(p)=oco. For j=1,2, ---, define z;=c;(p)x(y)(p)x+x(®)(D)y € A.
Then

Mz;)(p) = @)(p) + MY)D) + Me(p) — ci(p))(D)
= h(@)(®) + h(H®) + 7 -

Hence there is a subsequence (z,) of the (z;) satisfying h(z;)(p) <
h(z;)(p) if © < j. The (z;) are pairwise independent, for if az, = bz;
for integers a,b with ¢ < 7, then (ac,(p) — be;(w))x = (b — a)y, so
a = b and z;, = z;, a contradiction.
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4, Admissible typeset-cotypeset pairs. For any group 4, the
typeset of A, T(A), is the set of types of rank 1 pure subgroups of
A, and the cotypeset of A, T"(4), is the set of types of rank 1 torsion-
free factor groups of A. In case rank A = 2, (T(A4), T'(4)) is the set
of pairs of types of the form (¢, '), where for some 0 = xcA4,t is
the type of W(x), and ¢’ is the type of A/W(x). A set (T, T") of pairs
of types is called admissible if for some rank 2 group A4, (T, T') =
(T(A), T'(A)). The following necessary conditions for admissibility
follow immediately from §§2 and 3.

ProrosiTiON 4. If (T, T') is admissible, then:

(1) (T, T"| is finite or countable.

(2) There is a type t, such that, for all t, = t, in T, t, A\ t, =1,

(3) Thereis a type s, such that, for all (¢, t')e (T, T'), t + t' =s,.

(4) If (t, t) # (b, t) (T, T), then t, < t.. If (T, T') = {(¢, t)},
then t = t'.

We now wish to show that the conditions of Proposition 4 are
also sufficient for admissibility; we can make the computations less
onerous by means of the following lemma, which allows us to assume
t, = (Z )-

LEMMA 3. Given {4, W(x), W(y), W), W), S; [B, 71>, let h, =
h(x) A\ R(y); let G be that subgroup of Q containing 1 in which
h(1) = h,. Let A’ be that subgroup of V containing {x, y} in which
h(x) = hy(x) — hy, and h(y) = h,(y) — hy, but otherwise A’ has the
same invariants S and [B, 7] as A.

Then A =GR A, the invariant t, of A is t(Z), and T(A) =
{t + t,: te T(A")}.

Proof. There is a canonical injection A’ — G @ A’ such that
hoga(1 @ @) = he(l) + ho(2) = hy(x), and hepo(1 Q@ ¥) = hu(y).

Let W'(x), W'(y) be the pure subgroups of A’ generated by x and
y, and let W'(x) = A'/W'(x), W (y) = A’'/W'(y) be the corresponding
complementary subgroups of V, as in §2. Since hw,(x) = he(1) +
b (@), iz (¥) = he(l) + hip(¥), and G Q S = @,.» (G R Z(p*?)) =
S, there is an exact commutative diagram derived from §2, in
which the unlabelled oblique arrows represent isomorphisms:
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A W(x)

/! !

W) —/~—~8

GRA— >~ GRW'(2)

Ve

GRW'(y)—=S

Hence ¢ is also an isomorphism. Then the statements about ¢, and
T(A') follow from Proposition 2.

5. The construction. Let (T, T") be a set satisfying conditions
(1)-(4) of Proposition 4. By Lemma 3, we shall assume that for all
t=t'eT, t ANt' =tZ); (or, if T = {t}, that ¢t = &(Z)). Let 0 = h, €
t, = t(Z); choose any (¢,t)e(T,T) and let s, =¢, + t;. Choose
hy€s,, and let h, €t such that h, < h,. Let h{ = hg — h, €t (Where
we take co — o =0).

If (T, T") = {(t,, t)}, let (hy, h;) = (hy, hi) and k = h; — h,. Otherwise,
choose (%, t;) # (&, &) from (T, T"). Since t, A t, = t, and £, < ti, for
any het, ({p: 0 < hy(p)} N {p: 0 < h(p)}) U {p: hi(p) < h(p)} is finite, so
there exists h,e?, such that i, < h;, and for all p such that 0 < 2,(p),
hyp) =0 or . Let k=~h; —h, and let h;=h, + ket,, From V
take an independent pair {x, y}, and set h(x) = h,, h(y) = h,; we have
now established our cadre (W(x), W(y), W(x), W), S = @,.» Z(0"?))
as in §2. In order to construct A realizing (T, 7"), it remains to
find a suitable ¢(p) for each prime p. In the process, we shall also
find for each pair (¢, t') a rational » = a/b such that z = ax +byc A
and t(z) = t, t(A/W(Z)) = t'.

Let (¢;) be any ordering of T, note that foralli = 1,2, ¢, < =
t(h, + k) and ¢, < t(h, + k), so t; < t, + t(k). Assume that for all j,
8 < j <1, we have found (h;, h}) € (t;, t;) satisfying vpeU,<; {p: 0 <
h(D)}, hj(p) = 0 or o, and foralll <j, h; < hand h; = k. If (T, 1)
is exhausted, we are done; otherwise, for any het;, {p: 0 < h(p)}N
(Uj<i {0: 0 <hi(2)}) U Ui {02 RH0)< R(0)} U {p: k(D) > k(p)} is finite, so
there exists h;et; such that, for all j <4, h, <h}, h, < k, and for
all peU < {p:0 < h(p)}, hi(p) =0 or . Let hi=h—h,et. By
induction, we have found, for all 1, (h,, ki) € (¢, t;) satisfying

(1) Vj<it,h;=h]

(2) VpeUi«{p:0 < hi(®)}, hi(p) =0 or o
and

(8) h =k
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Having found suitable (h,, k) for all 7, we proceed to partition
P with respect to these heights.

Let S(0) = {p: k(p) = 0}, and S’'(0) = {p: k(») #= 0 but Vi, h(p)=0}.
For i =1, let S() = {p:0 < hy(p) < =}, and R(z) = {p: h;(p) = }.
Note that the S(¢) and S’(0) are disjoint for all < = 0; by Lemma 1,
R = U, R(7) is the set of sharp primes, and the set of flat primes
is {p: k(p) = = but p ¢ R}. Furthermore, P = U, (S(t) UR(%)) U S’'(0),
and R(1) U R(2) < S(0).

For 1 =1, let U) = U« (S() N R(¢)), so the U(s) are finite and
disjoint, perhaps empty.

Next, we choose rationals » such that T = {¢, ¢, £,: 0 = r € Q} as
in Proposition 3. Suppose that for all j with 3 < j < ¢, distinet »;
have been chosen satisfying:

(4) YpeR(), h(r;)(p) = h(y)(®) — h(x)(D)

(42) Vg eUi<; Uk), h(r;)(@) #* R(y)q) — h(x)(Q)-

Now choose 7, different from all previously selected r; satisfying (3,)
and (4,). Such a choice is always possible in Y, different ways, since

(a) VpeR®), h(y)p) = 0 = h(x)(p) except for p in the finite set
X = (S(1) U S(2)) N R(2),

(b) U;«.U(9) is finite and disjoint from R(:), and

(e) if R(i) = P, then A is not reduced.

For example, let m be an integer not in R(7) such that

vge JUG), kim)(@) > h(y)(a) — h@)a) ,

and let n = [,y p"® M= For any positive integer a, let s* =
m°n; then {s*:a =1, 2, ---} is an infinite set of integers satisfying
(¢,) and (i,) of which at most finitely many have previously been
chosen as r;’s.

By induction, we have defined a 1 — 1 funection ¢+ 7, for all
1 =3 such that for all 7, », satisfies (¢,) and (¢,). Furthermore, we
have shown that if T is finite, such a function can be chosen in 3,
ways, while if T is infinite, it can be chosen in 2% ways.

We now assign values to the ¢(p). For p e S(0), let ¢(p) = 0.

For peS'(0), let ¢'(p) be an integer prime to p such that 0 <
¢(p) < p*, and let ¢(p) = ¢'(p) + pu, where u = 0 if k(p) < o, and
# is an arbitrary irrational p-adic unit if k(p) = o. Let these c¢(p)
be chosen to be distinet, which is possible in 2% ways if at least one
k(p) = o, in infinitely many ways if S’(0) is infinite, and otherwise
in finitely many ways.

For p e R(1), let ¢(p) = pt? 070, — p~kropp - a rational p-adie
unit. Because of conditions (i,) and (j,), if » € R(1) and q € R(j) with
1 % 7, then ¢(p) # c(q).

For pe S()\R, let ¢'(p) be an integer prime to p such that 0 <
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¢ (p) < p*®, and, in case 1 = 3, ¢'(p) = p ", (mod p*); since
h.(p) £ k(p), these conditions can be fulfilled. Let ¢(p) =¢'(p) if k(p) <
oo, and c¢(p) = ¢'(p) + wp, where u is any irrational p-adic unit, if
k(p) = . Note that for p #= qelUJ; S(@®\R, it is not necessary to
require ¢(p) # ¢(q).

We have now assigned, for each prime p, a p-adic unit ¢(p) such
that

(1) Vi, Vpe R(i), ¢(p) = p~"%r,

(2) Vi, vp e S(), ¢(p) = p~"*'r (mod p"*’)

(8) if p is flat, ¢(p) is irrational; otherwise ¢(p) is rational.
Thus we have all the data required to construct A.

6. Proof of admissibility of (T, T"). To show that A realizes
(T, T"), we shall use Proposition 3 in the form T(4) = {t(x), t(y),
t,.0=7recQ). For any 0=+7recQ, let h, be the generalized height
defined by:

h.(p) = min {k(p), h(r — 0(p)) + A(rx(x)(D) — c(P)X(Y)P))} 5

so t, = t(h,).

Firstly, suppose » = r, for some 7. Then:

(1) For peS(0), h,(p) = h(p) = 0.

(2) For peS(0), either ¢(p) = r which can happen for at most
one p, and h,(p) = k(p), or ¢(p) # r, in which case h.(p) = min {k(p),
hr)(p)}. Now if peS'(0) and k(p) = , then p is flat, so ¢(p) = 7;
hence in either case, h,(p) is finite and zero except for finitely many
primes.

(8) For pe U(), k(p) = o and rx(@)(p) = c(p)x(¥)(p), so k(p) =
oo = hy(p).

(4) For peRE)\NUGE), k(p) = o, x(®)(p) = x(»)(») =1 and r =
c(p);, 80 h(p) = o = hy(p).

(5) For peR(j), i+ j, k(p) = e and ¢(p) = r; # r;, 507 — P(P)
is a nonzero p-adic integer while A(ry(x)(p) — ¢(P)x(¥)(P)) = 0. Hence
h,(p) = h;(p) = 0 except for finitely many primes where both are finite.

(6) For peSA)US@\R, 0 < k(p) < = and either c¢(p) =
pph@@ k@) - in which case h,(p) = min {k(p), k(r)(p)}, which is zero
except for finitely many primes, or ¢(p) = rpt®® =t " in which case
h,(p) = k(p). But since h(x)(p) > 0, or h(y)(p) >0, this can only
happen for finitely many primes, so for all but finitely many primes,
h(p) = 0 = hy(p).

(7) For peSHN\R, 1= 3,0 < k(p) < e and

c(p) = p"h(ri)(l’)?i(mod phi(?)) ,

while k(x)(p) = h(y)(p) = 0. Either h(r)(p) = 0 and h,.(p) = min {k(p),
hy(D)} = hy(p), or h(r)(p) # 0, and h(r)(p) is finite. But the latter can
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occur only for finitely many primes.

(8) For peSUN\R, 5 = 3, h(z)(p) = h(y)() =0, so h.(p) =
min {k(p), h(r —c(p))(p) + 4(r —c(p))(p)}. Since »+#c¢(p), this is finite and
zero except for the finitely many primes p for which hA(r — ¢(p))(p) > 0.
Since k,(p) = 0, h,(p) = h,(p) for almost all p.

We have considered all primes, and can conclude that ¢, = t,.
Next, suppose 7 == r,.

(1) For peS(0), h.(p) = h(p) = 0.

(2) For peS'(0), just as in the case » = r;,, we have that h.(p)
is finite and zero except for finitely many primes.

(8) For peR(®1), k(p) = o = hy(p), but rx(@)(p) # c(p)X(¥)(p), so
h,(p) = h(r)(p) or h(r — ¢(»))(p), which is finite.

(4) For p = S@), h(p) = hy(p) iff p~* 7Py = p~"7 Py (mod p™*),
but this can happen for only finitely many primes.

Hence ¢, # t, unless both are ¢, We conclude that ¢, = ¢, if and
only if » = », or » # r; for all j and ¢, = ¢,.

Since the group A so constructed has the height & and the ac-
cidental primes completely determined by (T, 1), not only T = T(A),
but also T'(A) = T’. This answers Question 2(a) of [1].

7. Number of groups realizing an admissible (T, 77). We saw
in §3 above that for fixed W(x), W(y), and k, distinct classes [B, 7]
of epimorphisms produce nonisomorphic groups A. FEach class [8, 7]
yields a distinet ¢ € Z, where ¢(p) is unique modulo p*® if k(p) < o,
and conversely if A corresponds to ceZ, and A’ to ¢/, then A is
quasi-isomorphic to A’ iff ¢ differs from ¢’ by a rational multiple
(modulo p** if Ek(p) < o).

Thus, the number of groups realizing (7T, T') is equal to the
number of possible choices of the e¢(p), given a fixed ordering (¢,)
of T.

THEOREM 1. Let (T, T') be a pair of sets of types satisfying con-
ditions (1)-(4) of Proposition 4, and let ¢(T, T") denote the number of
isomorphism classes of rank 2 groups realizing (T, T'), and ¢'(T, T")
the number of quasi-isomorphism classes. Then, in the notation of
§6:

(1) If S=@,.,Z»"”) is finite, ¢(T, T') < number of units
of S, considered as a wnital cyclic ring and ¢'(T, T') = 1.

(2) If S is infinite, there are no flat primes and {tc T:3p
with t(p) = co} is finite, then ¢'(T, T') < W, = (T, T").

(3) Otherwise, ¢(T, T") = 2% = (T, T).

Proof. Since A is a subset of a 2 dimensional rational vector
space, we certainly have ¢ (T, T") < (T, T") < 2%,
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(1) In the construction of §6, we chose ¢ among the units of
S. If a,a, are any automorphisms of S, a, is a rational multiple
of a,, so ¢'(T, T") = 1. In fact, each A realizing (T, T") is quasi-
isomorphic to W(x) P W(y).

(2) Let H= {i: R(1) * @} be a finite set. For each 71¢ H, we
chose 7, from an infinite set of candidates, and each such choice
determined a unique ¢(p) for all p € R(7). The remaining c¢(p) were
each chosen from a finite set, so all in all, there were R, possible
choices for ¢, so ¢(T, T") = W,

(8) If any p is flat, an arbitrary choice of an irrational p-adic
unit was made in the construction, so ¢(T, T') = 2%,

If {¢t:3p with ¢(p) = } is infinite, an infinite number of choices
of distinet », were made, each from an infinite set, and each such
choice defined a unique ¢, so ¢(T, T') = 2%,

Of these 2% possible ¢, at most W, can be related by a rational
multiple, so ¢'(T, T') = 2%,

ExampLE. Classification of rank 2 homogeneous groups:
Let (T(A), T'(A)) = {(¢, t')}; by Lemma 3, A= GX A’, where G
is a rank 1 group and (T(4"), T'(4")) = {(t(Z), t(k))}. Let

B = {p: k(p) = <} = S'(0).

If B+ &, there are 2% possibilities for the quasi-isomorphism class
of A’; if B= @ but S’(0) is infinite, there are W, possibilities for
the quasi-isomorphism class of A’; otherwise A"’ = Z P Z.

8. Completely anisotropic groups. Beaumont and Pierce [1,
Definition 7.8] define A to be completely anisotropic (c.a.) if no two
independent elements have the same type. They show that for any
rank 2 group, the only type which can possibly be the type of two
independent elements is ¢, and hence if ¢,¢ T(A4), then A is c.a.;
furthermore, if T(A) is finite, then A cannot be c.a. They prove
the existence of c.a. groups but do exhibit an example; indeed the
first explicit example in the literature occurs in [5, Theorem 1],
although Dubois [3, Theorem 1] gives a necessary condition for a
typeset to be realized by a c.a. group, and both he and Koehler [6]
exhibit an infinite admissible typeset which cannot be realized by
a c.a. group. Ito [5] gives a sufficient, but not necessary condition
for a typeset to be realized by a c.a. group.

The following proposition provides a necessary condition for a
group to be c.a., and the next theorem proves that it is also sufficient.

PROPOSITION 5. Let A be a rank 2 group for which t, = t(Z).
If A s c.a., then for any basis {x, y} with h(x) A\ h(y) =0, there
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are infinitely many types t in T(A) satisfying:
Vo, if i(p) = e, then h(y)(p) — h(z)(p) = 0.

Proof. Since A is c.a., there is a prime p with A(y)(p) # h(x)().
Let 7, = ptw@ k@@t oo {p i k=1, 2, ...} is an infinite set of rationals
such that h(r,)(qQ) # h(y)(q@) — h(x)(q@) for all ¢ for which h(y)(q) —
h(x)(@) = 0. Let 7, = a,/b,, where a,, b, € Z.

By Corollary 3, the elements z, = a,x + b,y satisfy: if h(y)(p) —
h(x)(p) #= h(r,(p), then h(z,)(p) # . But since A is c.a., the z,, being
pairwise independent, all have different types, so there are infinitely
many types t in T(A) such that if ¢(p) = oo, then A(y)(p) — h(x)(p)=0.

The following theorem provides a solution to Question (2)(b) of

[1]:

THEOREM 2. Let (T, T') be a pair of sets of types satisfying
conditions (1)-(4) of Proposition 4 (with t, = t(Z)), and

(5) Foranyt,t,cT,leth,et, hyet,. Then there are infinitely
many te T satisfying:

(c.a.) Vp, if t(p) = oo, then h,(p) — hy(p) is finite, and zero almost
everywhere.

Let d(T, T') denote the mumber of isomorphism classes of c.a.
rank 2 groups realizing (T, T'), and d'(T, T') the number of quasi-
wsomorphism classes. Then:

(1) If there are no flat primes and {te T:3p with t(p) = oo}
is finite, then d'(T, T') < W, = AT, T").

(2) Otherwise d'(T, T") = 2% = (T, T").

Proof. In §6, it was shown that for every nonzero rational
r, t,€ T without repetitions iff the funection ¢, — 7, in §5 is surjective.
Hence by Theorem 1 above, it suffices to show that if condition (5)
holds, we have the right number of surjective funetions.

Let L = {t € T: t satisfies (c.a.)}, so L is infinite. Let M be the
complement of L in T, and order T so that M occurs before L.

We have seen in §5 that {r;:¢t,€ M} can be chosen to leave an
infinite complement in Q. But then we have ¥, unused rationals
and W, {7, t;e L} slots to fill, each of which is constrained by only
finitely many conditions. Thus in case (1), we can choose Y, functions
to be surjective, and in case (2), we can choose 2% surjective.

9. Acknowledgments. I gratefully acknowledge the hospitality



THE TYPESET AND COTYPESET OF A RANK 2 ABELIAN GROUP 517

of the Mathematics Department of the University of Washington,
where this paper was written during my sabbatical leave.

REFERENCES

1. R. A. Beaumont and R. S. Pierce, Torsion-free groups of rank two, Mem. Amer.
Math. Soc., 38 (1961).

2. D. W. Dubois, Applications of analytic number theory to the study of type sets of
torsion-free Abelian groups I, Pub. Math., 12 (1965), 59-63.

3. , Applications of analytic number theory to the study of type sets of torsion-
free Abelian growps II, Pub. Math., 13 (1966), 1-8.

4. L. Fuchs, Infinite Abelian Groups, Vol. I and II, Academic Press, New York and
London, 1970, 1973.

5. R. Ito, On type-sets of torsion-free Abelian groups of rank 2, Proc. Amer. Math.
Soc., 48, 1 (1975), 89-42.

6. J. Koehler, Some torsion-free rank two groups, Acta Sci. Math., 25, 1-2 (1964),
186-190.

7. P. Schultz, Torsion-free extensions of torsion-free Abelian groups, J. Algebra, 30
(1974), 75-91.

Received June 6, 1977 and in revised form November 1, 1977.

UN1vERsITY oF W. A.
NEDLANDS, WESTERN AUSTRALIA
AUSTRALIA, 6009








