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NORMAL EXPECTATIONS AND INTEGRAL
DECOMPOSITION OF TYPE III
VON NEUMANN ALGEBRAS

HERBERT HALPERN

Let M be a o-finite type III von Neumann algebra with
separating and cyclic vector { (on a not necessarily separable
Hilbert space), let C be the center of M, let ¢ be the projec-
tion corresponding to the subspace generated by C{, and let
7(x) be the unique element in C with z(x)e=exe for 2 in M.
For X in the spectrum X of C, let o, be the canonical repre-
sentation of the state 7,(x)=t(x)"(X). The integral sz(x)dv(x)
induces the central decomposition of 3. A separable C*.
algebra B of M is found so that g,(M)”’ has a s-weakly con-
tinuous projection of norm ome on p,(B)”, and py(B)” is a
type III factor on an open dense set of X. It is shown that
oMY’ is type III and that 7, has a decomposition (in the
sense of Choquet-Bishop-de Leeuw) as an integral of type III
functionals quasi-supported by primary type III functionals
for % in the open dense set.

1. Introduction. One may write every normal (i.e., o-weakly
continuous positive linear) functional ¢ of a von Neumann algebra M
as an integral of a field of linear functionals over a base space.
Several different choices are possible. The field of states (i.e., of
positive functionals o with (1) = 1) can be taken, and the measure
can be taken to be a Borel measure quasi-supported in the sense of
Choquet-Bishop-de Leeuw by the primary functionals (i.e., functionals
whose canonical representations produce factor von Neumann algebras)
in that every Baire set disjoint from the set of primary functionals
has measure 0 [26], [37], [44], [45]. It appears there is not much
information on whether the measure is supported in some way by
functionals whose type (i.e., functionals whose canonical representa-
tions have type) corresponds to the type of the algebra M.

One may decompose ¢ in another way. The algebra M may be
considered as a Banach module over its center C. The functional ¢
can be written as (¢/C)o® where @ is in the positive cone MZ (i.e.,
O(M*) < C*) of the space M. of o-weakly continuous C-module homo-
morphisms of M into C. Defining the field of functionals {¢,]y e X}
over the spectrum X of C by g,(z) = @(x)"(¥), one gets the repre-
sentation

8(o) = \suo) dp)
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where g is the usual spectral measure on X given by 4(x) =
Soc‘(x)dpe(x) for x in C. Here z~ is the Gelfand transform of z [10].

One can also write the canonical representation p, of ¢ as the direct
integral of the canonical representations {o,} of the field of funec-
tionals {¢,} so that the Hilbert space H(g) of o, corresponds to the
direct integral of the field of Hilbert spaces of the canonical repre-
sentations p;. In the usual framework, the algebra M is generated
by C and a countable*-subalgebra {x,} of M over the rational complex
number C, and the components of the direct integral decomposition
of the Hilbert space consist of the fields {0,(x,){s};, Where {; is the
cyelic vector of p,(M) with

@ (0(x)) = (0(2)Cx, Cr) = u(20)

for x in M, and the components of the direct integral decomposition
of the algebra is the von Neumann algebra on clos {0,(«,){;} generated
by the restrictions of the operators {o.,(x,)}; (cf. [5], [14], [15], [19],
[20], [33]). Here, however, we seek information on the von Neumann
algebra p,(M)"” generated by po,(M) on H, = H(¢;) even in the general
case where the algebra is not countably generated over its center.
We have already proved that there is a map (¥) of X into disjoint
quasi-equivalence classes of representations of M such that, for every
¥ in ML with (1) =1, the canonical representation induced by
T(-)"(x) is in the class (y) except possibly for a nowhere dense set
[11]. Also if M is of type I (resp. type II), then the classes (x) are
classes of type I (resp. type II) factor representations [11], [31].

In this article, we study the classes ()) of representations for
type I1I algebras. We show that every o-finite von Neumann algebra
M has a o-weakly continuous projection of norm 1 onto a countably
generated algebra N of the same type. If M is of type III, the
algebra N can be chosen to have a weakly dense separable *-subal-
gebra B so that there is a faithful o-weakly continuous projection
of norm one of o,(M)" reduced modulo the projection g, of H, onto
clos p(M)Z; onto 0,(B),, and p«(B),, is a type III factor for all  except
possibly a nowhere dense set. For any type III algebra M, we show
that o,(M)" has a faithful o-weakly continuous projection of norm
one onto a particularly simple kind of direct sum of type III factors
except possibly for a nowhere dense set. Finally, we decompose the
states ¢, into an integral over a convex w*-compact set of type IIL
states with regard to a Borel measure quasi-supported by the type
III primary states except possibly for a nowhere dense set of X.

The main technical tool is the decomposition of generalized and
modular Hilbert algebras. The framework differs to some extent
from the recent studies of Sutherland [33], Lance [19], [20] and
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Jurzak [14], [15], in that the interest here is in nowhere dense sets
rather than sets of measure 0. However, the framework is analogous
in the sense that we have need only for the decomposition of coun-
tably generated generalized Hilbert algebras to obtain the decom-
position of B given by {0(B)}. The main contribution is the con-
struction of the correct countably generated algebra needed to obtain
information about 0,(M)”, via the relationship between p,(B)” and
0, (M)'. In any case we show that the decomposition of generalized
Hilbert algebras associated with faithful normal linear functionals
can be obtained without any countable field assumptions of Sutherland,
Lance or Jurzak. The assumptions are needed only to obtain the
information that component generalized Hilbert algebras produce
factors.

2. Preliminaries. An algebra .o over the complex numbers
C with involution {— {* is called a modular Hilbert algebra if &7
has an inner product ({, ) and a complex one parameter automor-
phism group 4(\) satisfying the following axioms:

(I) ¢&&n =&

(I ) for every {e.%7, the map 7 —{% is continuous on .%;

(III ) the subalgebra .o7* generated by {» for {, 7 in .o~ is
dense in &7

(IV) (A0 = A(—N)¢* for all veC, £ in ;

(V) @G ) = (& 40m);

(VL) (4E, 95 = (9, )

(VII) (4N, m) is an analytic function of A\ on C; and

(VIII) for every real t, the set (1 + 4(¢t)) % is dense in ..
If .o is an algebra with involution # over C and admits an inner
product which satisfies (I)-(III) and the following condition, then &
is called a generalized Hilbert algebra:

(IX ) the involution is a preclosed conjugate linear operator
of &7

Let .o be a generalized Hilbert algebra. Let J4“* be the polar
decomposition of the closure of #. For each { in .o, there is a
unique bounded linear operator #({) in the completion H of .& in
the inner product such that #({)n = {» for all » in .&7. Let &’ be
the space of all { in the domain Z2(47V%) of 4% such that there
is a bounded linear operator 7’'({) of H satisfying the relation 7'({)n =
n(n)¢ for all » in .o, Let .o¢” be the space of all { in (4%
such that there is a bounded linear operator w({) such that w#({)ny =
7'(M) for all » in .7’. The sets &', 7" are generalized Hilbert
algebras with involution {* = J47% and {* = J4'*({ respectively. If
S is equal to .&7”, then & is said to be full. If &¥ is a subset
of .o7" (resp. .&"), let n(.9”) (resp. 7'(.$”)) be the set of all #({)
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(resp. 7'({)) for £ in &. Let A () (resp. Z (")) be the double
commutant 7(.o7)" (resp. 7(.57")") of 7(.7) (resp. w(.¥")) on H and
let Z(.5") be the double commutant of 7'(.%7”) on H; then £(.%7) =
L(7"") and the commutant £(.¥) of L(.) is Z(¥”’). The
algebra <~(.o7) is called the left von Neumann algebra of 7.

Now let .o be full. The operator 4* is a unitary operator on
H, for every ¢ in the set R of real numbers, that maps .& onto
&7 and

t— o,(x) = Atxd™

is a strongly continuous one parameter automorphism group for
A7) (resp. Z(")) called the modular automorphism group.
If ¢ is in .7, then o,(%()) = w(4*(), for every te R. The unitary
involution J maps .& onto .&%’, and satisfies J({9) = J)J() for
¢,m in 7. Furthermore, the mapx — JxJ is an anti-isomorphism
of (.) onto Z(.%7") and satisfies

Jr(C)J = n'(JC)

for ¢ in o7 [34].

If .7 is a full generalized Hilbert algebra, let .4 be the set
of all { in .o such that

(a) Ce{z(d)INel};

(b) 4 e.r for ve(C; and

(¢) the function » — (4*E, %) is analytic on C for every » in .o7.
One may replace (c) by either of the equivalent conditions [21]:

(¢/) the funetion N— (4'C,7) is analytic for every 7 in the
completion H of .&, or

(¢") the function A — 7(4*¢) is a holomorphic function of C into
L(.87).
The set &7 is a modular Hilbert algebra called the maximal modular
Hilbert whose involution is the involution of .97 restricted to .o
and whose one parameter automorphism group is the restriction
of 4\) = 4*. The algebra .57 is equivalent to .57 in the sense that
&7 is dense in . and 4" = & [34].

It is important to notice that the full generalized Hilbert algebra,
and its maximal modular Hilbert algebra is a module over the center
of its left von Neumann algebra and satisfies

(1) (@) = xm(Q)

for every x in the center [3, Lemma 4.10].

Let M be a von Neumann algebra on the Hilbert space H. A
weight ¢ of H is a map of H* into [0, o] such that ¢(x + y) = ¢(x) +
é(y) for x and ¥ in M* and ¢(\x) = Ng(x) for >0 and = in M".
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A weight ¢ is said to be normal if there is a family {w,} of normal
functionals on M such that lub w.(x) = ¢(x) for every x in M*. The
weight is said to be faithful if ¢(x) = 0 implies £ = 0 and semi-
finite if the set NiN, is weakly dense in M where

N, = {we M|g(z*2) < =}  [3].

Let ¢ be a faithful semi-finite normal weight on M. Let 4 = 4,
denote the linear injection of .o = Nf N N, onto a dense subset of
a Hilbert space H(¢) so that

¢(@*y) = (A(y), A(x))

for every z,y in .%. The set A(.57), called the generalized left
Hilbert algebra associated with ¢, is a full generalized Hilbert algebra
with involution # given by A(x)* = A(x*). There is a faithful normal
representation p = o, of M on H(¢) given by p(x)A(y) = A(xy) for
x,y in M. The algebra o(M) is equal to .F (). If ¢ is a funec-
tional, then p is the canonical representation induced by ¢ [6, §2].
The weight ¢ on .o satisfies the KMS boundary conditions with
respect to the automorphism group o,(x) = 4%x47% in the sense that

(1) ¢-0,=¢;

(2) if x# and y are in ., then there is a continuous bounded
function h on the strip (A €C|0 < Im X\ < 1} which is holomorphic in
the interior and satisfies the boundary conditions

h(t) = ¢(o.(2)y)
and

h(t + 1) = ¢(yo(x))

for all real ¢t ([3],[22]).
The following observation is important in our later calculations.

LEMMA 1. The maximal modular Hilbert algebra .87 of the full
generalized Hilbert algebra ¥ is tnvariant wnder (1 + 4)7.

Proof. If ¢ is in .o7, then the element
A+ DL = A+ D

is contained in . for all « in C (because .7 is a subset of .o’
[34, Lemma 8.1]), and the function

N—= (LA + D7) = (4L A+ 4y
is an entire function.

Let 22°(R) be the algebra of all continuous complex-valued
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functions 2 on R whose support supp % is compact. Let & be the
subset of 22 (R) given by

& — linear span {h*lc(s) - Sh(t)k(s — b)dt|h, keﬁf(R)} .

Let !, (n =1,2,---) be the function equal to 1 on [—n,n], 0 on
(—c0, = —1)U (n + 1, ) and linear in between. Letk,(n = 1,2, --+)
be a function .2#(R)* with suppk, contained in [—»7!, n™'] with
k.|, =1. Let &, be the smallest subalgebra of & over the field
of rational complex numbers C, containing functions of the form
l.h,*l,h,, where h,, h, are polynomials with coefficients in C,, that is
invariant under the involution h— k% given by h(t) = h(—t)~ and
multiplication by the functions %,. For any /2 in & there is a
sequence {h,} in &, and a compact subset in R such that all the sets
supp h, are contained in this compact set and such that lim || 4, —2]|.=0.

DEFINITION 2. A subset of a modular Hilbert algebra is said to
be invariant (resp. quasi-invariant) if it is invariant under J,
Anel), h(log4) (he&) and (1 + A~ (resp. J, #(neC,), h(log 4)
(he &,), and (1 + AH)™).

We note that the maximal modular Hilbert algebra of a gene-
ralized Hilbert algebra is invariant.

Our constructions in §4 are based on the following observation.

LEMMA 3. An invariant subalgebra of a modular Hilbert algebra
Z 18 a modular Hilbert algebra whose modular operator and unitary
wnvolution are the restrictions of the corresponding operators of Z&.

Proof. The subalgebra satisfies all the properties for modular
Hilbert algebras with the possible exception of properties III and
VIII. However, property III holds due to Lemma 5.1 of [34] while
property VIII holds since the subalgebra is invariant under i(log 4)
(he &) (cf. [34, proof p. 55]).

Let &~ be a subset of the generalized Hilbert algebra .o~ (resp.
"), the C*-algebra generated by 7($”) (resp. 7'(&”)) will be denoted
by #*(&”) (resp. #*(S”)). If & is an invariant subalgebra of
&, then w(&”) (resp. 7'(S”)) is a*-subalgebra of <~(.94) (resp.
B()) and so L *(.F) (resp. A *(S”)) is the norm closure of 7(.&”)
(resp. ©'(S7)).

3. Decomposition of modular Hilbert algebras. In this section
we consider the decomposition of a modular Hilbert algebra formed
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from a faithful normal functional on a von Neumann algebra. Let
M be a von Neumann algebra with center C on the Hilbert space
H. If ¢ is a maximal abelian projection in the commutant C’ of C
on H, then there is, for every « in C’, a unique element z,(x) = t(x)
in C such that z(x)e = exe. The map 7 is in the set CF of o-weakly
continuous C-module homomorphisms ¢ of C’ into C such that ¢(x*x)=0
for all xeC’. Let ) be a point in the spectrum y of C, let [x] be
the closed two-sided ideal in C’ generated by y, and let x(y) denote
the image of « in C’ in the algebra C'(3) = C'/[x] under the canonical
homomorphism. Then the set C’e(y) is a Hilbert space under the
inner product

(we(X), ye(x)) = (y*x)" (1)

and the map z — x()) defines a representation of C’ on the Hilbert
space C’e(y). The representation is the canonical representation
- induced by the state 7,(x) = (x)"(x) on C’. The restriction p, of this
representation to M on its invariant subspace H, spanned by the
vectors Me()) = {xe(x)|x € M} is the canonical representation induced
by the state 7, restricted to M. If A is a *-subalgebra of M, the
von Neumann algebra p,(A)’ generated by p,(A) will be denoted by
A, [10]. A more abstract equivalent interpretation of M, can be
found in [31] and [32].

Let ¢ be a faithful normal functional on M. The canonical
representation o of M on H(p) is a o-weakly continuous isomorphism
and the image p(M) = o(M)" of M has a cyclic and separating vector
¢, such that @ - 0 = ¢ where w = w,,. We now identify M with o(M),
H with H(p) and ¢ with w, thereby assuming that M has a cyclic
and separating vector {, on H. Let ¢ be the maximal abelian pro-
jection in C’ whose range is clos {x{,|# € C} and let = = z,. We notice
that w -7 = .

The next proposition may be viewed as a generalization of the
results of Sutherland [35], Lance [19] and Jurzak [14] in that no
assumption about the existence of a countable field is made.

PROPOSITION 4. Let M be a von Newmann algebra with center
C on the Hilbert space H, let {, be a separating and cyclic vector for
M, and let <& be an invariant subalgebra of the maximal modular
Hilbert algebra .4 of the generalized Hilbert algebra M, Let
e be the maximal abelian projection in C' corresponding to the
subspace generated by CL,, let x be in the spectrum of C, and let
» = D, be the projection of C'e(y) onto its subspace K = K, generated
by L *(B)e()). Then the projection p isin F*(Z )y NB*(Z )X N
{47*(0)Y, the vector e(y) is a cyclic and separating vector for the alge-
bras A= _F*(Z)Y), and B*(F )Xy, the maps ol(x) = 4*(Q)wd ()
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(te R) form the modular automorphism group of the generalized
Hilbert algebra Ae(y), and the commutant of A is B*(Z)y),.

Proof. If { is in <#, then the relation
n(Q)xl, = '(Q)al,

holds for every x in C; consequently, the element w({)e()) is equal to
7'(Qe(y) and the subspace K is identical with the subspace generated
by Z*(Z)e(x).

We now show 4%(y) commutes with p. First we notice that 4%
is in €’ and thus 4%(y) is an operator in the algebra <& (C’e(y)) of
bounded linear operators on C’e(y). Since

A*mQe(y) = 4*m(Q)d™* e(x) = n(4*L)e(x)

for ¢ in <&, we have that 4%(y)p is equal to p4*(y)p and so p com-
mutes with 4%(y).
The functions

(%) = dtxd™ (teR)

are automorphisms of <#*(<#) due to the invariance of <# (cf. [34,
Corollary 9.1]), and the automorphisms {o,} form a one parameter
automorphism group strongly continuous in the sense that, for every
x in F*(F#), o(x) converges to « in the norm topology whenever
t tends to 0. We show that the positive linear functional 7, of
F*(#) satisfies the KMS boundary conditions with respect to the
automorphism group {o,}. First the functional 7, is invariant under
o, since

T (o)) = (@wd™*e()), 47" (X)) = (we(Y), e(X)) = 7,(2)
for all 2 in &*(<#). Now given {, 7 in <&, we have that
1) = t(@(430)a(n)
is a holomorphic function of C into C such that

h(t) = =(@(4* Om(n)) = t(o(m(Q)m(n))
and
h(t + 1) = t(&(4*7On(1) = t(w(Po(n(L)))
for all real ¢t due to the fact that
(@4 Om(ale, YCo) = (@(4* 7 O)m()aler YCo)

= (m(@))Cor (T4 (Y0)Eo)
= (2, J4*7/2yL)
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= (4*yC, J4"*am)
= (¢(m(M)o(7(L)))2Co ¥Co)

for all z, y self-adjoint in C (cf. relation (1)). The funection A(\) is
bounded on 0 < Im X =1 because

ROV = e[ Tub {[| (LD -1 =B <0} < + o0
and so

RO = )| 1) ]

by the Phragmen-Lindelof theorem. For every z, ¥ in & *(<#), there
are sequences {{,}, {7.} in & with limn(,) = «, lim7(»,) = y and
Izl = ll2ll =)l = |lyll. Consequently, there is a bounded
continuous funection Z(\) of 0 < Imx =<1 into C, which is holomorphic
on 0 < Imx <1 and which satisfies the boundary conditions

k) = c(o(®)y)
and
k(t + 1) = t(yo(x))

for real t due to the Phragmen-Lindelof theorem. The function
EOW)() is continuous and bounded on 0 <ImX =1 and it is analytic
on 0 < Im )\ < 1 since the existence of limit of the difference quotient
(v + h) — EQW)/h in the norm of C implies the existence of

lim (k(\ + B)"(0) — k(W) QO)/R

Hence, the functional 7, on *(<#) satisfies the KMS boundary
conditions with respect to {o.}. Since the representation x— x(y)p
of &#*(<#) on K is identified with the canonical representation of
F*(<#) induced by t,, the vector e(y) is separating and cyclic for
A= F*Z)Y), and the modular automorphisms {o}} for A with
regard to w, = ®,, are given by

(2) o (pr(X)p) = po(B)X)p = 4*Pr()P4~*(1)
for z in <#*(<#) [34, Theorem 13.3], and thus,
oi(x) = 4*(xd™(X)

for © in A. Setting 4, equal to the modular operator of Ae(y), we
have that 4%(y)p = 4% for every t in R because each 4“(y)p leaves
e(y) invariant.

In order to show that the commutant A’ of A is equal to
BHF YY) v, we show that the unitary involution J, of the gener-
alized Hilbert algebra Ae(y) is given by J,w({)e(x) = m(JC)e(y) for
in <. For this we also need to consider the modular operators.
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There is a positive self-adjoint operator a; (j = 1, 2) on K satisfying
(3) a;n(Qe(x) = m(4L)e(x)
for { in <#. For z,y in C, we have that

(z(m()* m(40))aley YCo) = ((L'2L)Eo, 7T(y7)Co)
= (4(20), ym)
= (€, 4N)y7)
= (c(@(4m)*m(Q))ale Co)

for every £, 7 in <& and » in C since .%4 is a C-module and 4
commutes with every element of C. This means that

(w())*n(4790)) = t((w(4/in)*n ()
and that
(m(Q)*rn(479)) =z 0
for j =1,2. Hence, reducing this modulo y, we see that relation
(8) defines a positive symmetric operator on the dense linear manifold
(< )e(y) of K, and a; can be set equal to its Friedrichs extension

(cf. [25, §124]). There is also a positive bounded operator b on K
such that

(4) b(Qe(x) = n((1 + 4)7*C)e(x)

for all ¢ in &#. Indeed, because (1 + 4)"'<# is equal to <&, argu-
ments similar to the preceding ones give a positive symmetric operator
on K with domain 7(<#)e(y) satisfying (4). The operator is bounded
because

(e(m((L + H7O* (L + 470l #80)
= |1 + N7 @@l |* = || (2, ||

for all { in <& and « in C implies

lz((X + H7 el = [z Qe

for all {, and so the operator has a unique extension b satisfying (4).
Considering the fact that

(L + a)br(Q)e(x) = 7(Qe(x)

for every { in<#, and the fact that self-adjoint operators are maximal,
we see that 1 4+ a, is equal to b™'. Thus, the operator a, is equal to
the closure of the restriction of a, to #(<#)e()). Again, by considering
the restrictions to 7w(<#)e(y) and the maximality of self-adjoint
operators, we get that a: = a,. This means that a, = a’? due to the



NORMAL EXPECTATIONS 301

uniqueness of the positive square root, and consequently, that the
closure of a, restricted to n(<Z)e(y) is a,.

The existence of a conjugate linear isometry J, of K onto K such
that J? =1 and

Jir(Qe(x) = m(JC)e(X)

for { € % is verified in the same manner as the previous paragraph.
We can now verify that J, and a, are the respective unitary involu-
tion and modular operator J, and 4, of Ae(y). We have that

Jia;w(Qe(x) = n(J4*0)e(x) = m(&)*e(x)

for every { in <. Given an element x in A4, there is a sequence
{C.} of elements in <& such that {n({,)e(y)} converges to xe()) and
{m(C)*e(x)} converges to wx*e()). Because J? is the identity and
because a, is a closed operator, the element wze(y) is in the domain
of a, and

Jiawe()) = x*e(y) = J, 4/ xe())

for all « in A. We showed earlier in the proof that the closure of
the graph of a,|n(<#)e(y) is the graph of a,; it is also known that
the closure of the graph of 42| Ae(y) is the graph of 4Y% [34, Lemma
9.1]. Therefore, we get that = (4}*) = Z(a,), and that

Jua, = J, 4

on the common domain. The uniqueness of the polar decomposition
proves that J, = J,.

We now can show that 4’ is equal to .Z*(<Z)(x),. It is known
that J,AJ, = A’ by the theory of modular Hilbert algebras [34,
Theorem 10.1]. However, noticing that

(5) J o QWpT m(e(x) = pr'(JOOOPT(M)e(X)

for ¢, 7 in <&, we see that Z*(<F)(y), contains a weakly dense
subset J,pn(Z)()pJ, of A’ and consequently, A’ itself. Since the
reverse inclusion relation is apparent, we conclude that A4’ and
BHF)X), coincide.

A linear map ¢ of a C*-algebra B onto its nonzero *-subalgebra
D is said to be a projection of norm one if e is bounded of norm
one and if e(x) = x for every x in D (cf. [38]). The projection ¢ of
norm one is said to be faithful if e(x*x)=0 implies « = 0 for x in B.

A von Neumann algebra B is said to be compatible with its von
Neumann subalgebra D if there is a faithful o-weakly continuous
projection of norm one of B onto D [1, 6.1.4]. It is important for
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the sequel that only type III algebras are compatible with their
type III subalgebras ([40, Theorem 3], [29, 2.6.5]). An explicit form
for a o-weakly continuous projection ¢ of norm of B onto D can be
given: B can be represented as a von Neumann algebra on a Hilbert
space so that there is an isometry v in the commutant of D (on the
Hilbert space) such that &(z) = v*xv for « in B ([2], [18], [30]).

We preserve the notation of Proposition 4 in the next corollary.

COROLLARY 5. The projection q = q, of H, onto the subspace
generated by M,e()) is in the algebra (F*(F#),) N M, and there ts
a faithful o-weakly continuous projection ¢ = ¢, of norm one of the
von Neumann algebra (M,), onto its wvon Neumann subalgebra
(F*(H#),), such that ®,, € = ®,y. In particular the set p'M,p’
18 equal to F*(#), ', where p' = p), is the projection of H, onto
K,.

Proof. We first show that ¢ is in the commutant of .&Z*(#),.
Denoting the projection of C’e(y) onto H()) by s, we have

M) = (M. = M,

[5; I, §2, Proposition 1]. For x in M(}) and { in <%, the vector
0,(7(0))sxse(y) is in M,e(y) since

P(m(Q))swse()) = sm(L)(x)swse())
= sxr()e())
= s’ ()e(x)
= sart’ () (se()) »

and so every ¥ in F*(&#), maps qH, into itself. This means that
q is in (F*(#),)’, which we denote simply as £*(<Z);.

The central support of the projection p’ of H, onto K in the
algebra &*(<#), is the same as that of q. In fact, the central
support of p’ corresponds to the projection of H, onto the closure of

LHRBNLN(B)e() = L(F )5 R * (B ) X)se())

which is simply the closure of <#*(<#).e(y), while the central support
of ¢ corresponds to the projection of H, onto the closure of
F*#), M e()), which again is simply the closure of Z*(2);e(X)
(ef. [5, 1, §1, Proposition 7, Corollary 2]). Since it is known [5, ],
§2, Proposition 2] that there is an isomorphism @ of p'.&#*(<#),p’
onto q. ¥ *(<#),q given by

O(p'zp') = qaq
for x € &¥*(#),, it is only necessary to show that the set »'M,p" is
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equal to p' ¥ *(<#),p’ in order to complete the proof. In fact, the
map & is then as the composition of two o-weakly continuous maps
@ and x— p'xp’ given by

e(x) = O(p'xp’)
so that ¢ satisfies the relation
W, (e(x)) = (D(p"xp")p'e(X), P'e()))
= (p'xp’e(X), e(x)) = w,»(x) ,

which also implies that ¢ is faithful. Now it is sufficient to show
that p'o,(x)p’ is in the weakly closed set p'#*(<#),p" for x in M
because p’0,(M)p’ is weakly dense in p'M,p’. We have that

2O (OQ) = 7' ()

for every { in <&, and thus, by reducing to the subspace K, we
have

p'0,(x)p " (O(QVPE = pr()pr' () Xpé
= pr' (O px(X)Pé
= pr' Q) (v’ 0, (2)p"¢

for every & in K since the projection p of C'e()¥) onto K is in
BHZ)y) (Proposition 4). However, the algebra Z*(<Z)(X), is
equal to £*(<#);. Therefore, the element p'p,(x)p" is in F*(F),.

The next corollary will be used later.

COROLLARY 6. For every x in F*(.%) and y in M there is a
bounded continuous function h of the strip I ={NeC|0<=Im) <1}
wnto C, which is holomorphic on the interior (L\e C|0 < Imx <1} and
which satisfies the boundary conditions

h(t) = t(o(®)y) and h(t + 1) = t(yo,(x))
Sor all teR.

Proof. Let {{,} be a sequence in .%7 such that {z({,)} converges
to . The function k, (n =1, 2, ---) defined by

ha(\) = o(w(44E,)y)

on C is holomorphic due to the existence of a Cauchy integral repre-
sentation and bounded on the strip I due to the fact

lhu(a + i)l < 1yl lub {[|z(4#C) 0= B =1} < F-o0 .

The boundary conditions
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ho(t) = v(0,(x(C,))y) and h,(t + 1) = (yo.n(,))

(t € R) are satisfied because for every z, w in C there is an entire
function

k() = (o(m(428,)y)l0, wko) = (w4 w*L,))2yle, &)
that satisfies the boundary conditions

kt) = (0, (m(w*L,))2ylo &) = (ha(t)2C,, W)
and

k(@ + 1) = ((y)o(m(w*L,))o &) = (t(yo(w(C,)))280 wEs)
for te R so that

(ha(t + 1) — T(yo(w())))2C, wE,) = 0
for te R.
Now the Phragmen-Lindelof theorem implies that

Hha(V) — R || = [|72(C0) — w(Ca) Il 9]

for all » in I. Therefore, the sequence {h,} converges uniformly on
I to a bounded continuous function h of I into C, holomorphic on
the interior of I, and satisfying the required boundary conditions.

4. Projections of norm one. In this section until further notice,
let M be a von Neumann algebra with center C on the Hilbert space
H, let X be the spectrum of C, let {, be a cyclic and separating
vector for M, and let ¢ be the maximal abelian projection in C' with
range clos C{,. Let 7 = 7, and let p, be the canonical representation
on the Hilbert space H, induced by 7, on M for every x in X. We
show that M has a faithful o-weakly continuous projection of norm
one onto its countably generated von Neumann subalgebra of the
same type. If M is of type III, we show the subalgebra can be chosen
as the weak closure of a separable C*-algebra of the form £*(<%),
with <& an invariant subalgebra of the maximal modular Hilbert
algebra of the generalized Hilbert algebra M(¢,, so that o, (&F*(#))”
is a type III factor except for perhaps a nowhere dense set of ¥
in X. Then the algebra p,(M)”" = M, reduced to the closure of
0. (M) e(x) has a faithful o-weakly continuous projection of norm 1 on
its type III factor subalgebra due to the results of §3, and con-
sequently the algebra M, is type III. We show that every normal
functional on a type III von Neumann can be written as an integral
of a continuous field {¢,} of functionals, whose canonical representa-
tions are in certain equivalence classes of type III representations.
Furthermore, we show the functionals ¢, can be represented in the
sense of Choquet-Bishop-de Leeuw as integrals over w*-compact sets
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of type III functionals of M whose extreme points are primary
functionals.

We now begin the construction of the countably generated
algebras.

LEMMA 7. Let % be a generalized Hilbert algebra and let &7
be the maximal modular Hilbert algebra of . If &7 is a coun-
table subset of &%, then there is a countable subalgebra .7 of
over C, and a subalgebra Z of .57 such that

(1) I Ccw;

(2) 7 s quasi-tnvariant;

(8) Z 1is invariant; and

(4) 7w(F) is demse im FL*%).

Proof. For any subsets .7~ of .94 and & of & and any sub-
field C, of C, let a(9, ., C,) be the subalgebra of .94 over C,
algebraically generated by the set

AT, 7, G
= {J*1 + A)h(log )} #L|Le T ;he F ;0eCpk, 1 =0,1}.

The set A (7, 7, C,) is invariant under J and 4* (A eC,) for C,
equal to C, or C and & equal to &, or & because 4\)J = J4(—X),
and so the algebra a(7, ., C,) is invariant under J and 4* (A eC,)
because J((7) = JnJC and 4YL) = L4 for {,n in &4 Letting
7, = %, be the countable sets a(.s”, &, C,), we define inductively
two increasing sequences

j-; = a(j;—n &0 Cr) ’ U = a<%i—1) &, C)

(1 £1 < o) of subalgebras .97 over C, and C respectively such that
7,7z, for all i. We verify that n(.7,) is dense in ¥*(%,,) and
that #'(.77,) is dense in <2*(%/,). Recalling that x is a homomorphism
of .97 into the algebra of bounded operators, we see that it is sufficient
for us to show that the closure n(.7,, &, C.) of n((7,, Ly C.))
contains (S (%, &, C)) using the fact that n(7,) and #n'(7,) are
dense in 7(%/,) and ©'(Z/,) respectively. The density of #'(7,,.) in
B Z y) follows from this because the map #n'({) — #n(J) for { in
. can be extended to a conjugate linear isometric isomorphism of
F () onto £ () carrying n'(7,,,) and (%, onto n(7,.,) and
(% 1) Yespectively.

Let he &, and N e C,; we show first that m(J*1 + 4)"*h(log 4)4*C)
is in (.7, &, C,) for every (e Z/,. Because the elements n = 4%,
JAC and 47*C are in %,, there are sequences {(,} and {£,} in .7,
such that
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lim 7(£,) = =(J7)
and
lim z'(¢,) = #'(4'*7) .
We have that
(1 + NH7IEC,) — =X+ H79)|
=277 JC. — )|
= 27w — I
and

I7(JA + NH7a7%,) — a(JJX + 79|
= ||Z(JA + (L, — 7)*|]
= ||7(4™2 (1 + AL, — )|
= 27|76, — 47|
[34, Lemma 8.1], and consequently, that

lim z((1 + 4)7'J¢,) = o((1 + 4)™'p)
and
lim n(J(1 + N7 47%,) = n(JJ1 + H7)) .

Estimating the norms, we see that
[|m(h(log H(L + NH7(ICm — 9D
= [l atliz@ + 7, — )i

for every i, and thus, that
lim 7((1 + 4)7h(log HJC,) = a((L + 4)"'h(log H)4%C) ,
and similarly, that
lim 7(J(1 + 4)*h(log 4)4/%&,,)
= lim w(h(log 4)J(1 + 4)~'4%¢,,)
= n(h(log 2)J1 + 4)™p)
= w(JA + 4)*h(log 0)4C) .
It is now clear that n(.7,, &, C,) contains all elements of the form
(6) n(J*1 + 4)"h(log 4)'4%)
for (e, he &, NnelC,, k, 1 =0,1.
For { e %, the map
N—— (J¥1L + 4)h(log 4)'4%C) = w(LT*QA + 4)*h(og 4)C)

is continuous since J*(1 + 4)'h(log 4)'C is in .&4. Here B is N if k is
0 and B is —X if & is 1. Hence, every element of the form (6) for
{eZy, neC and h in &, is in #(T7,, &, C,).
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We now can show every element of the form (6) for arbitrary
ez, neC, heZ, k,1=0,11is in n{7,, &, C.). It is sufficient
to show that there is, for given { in %4 and & in &, a sequence
{r,} in &, with

lim 7(h,(log 4){) = n(h(log 4)¢)
due to the fact that Ja(log4) is equal to Z(log 4)J and that &, is
invariant under the involution ~. There is a sequence {h,} in &,
and a closed bounded interval I of R with supph, Csupph + I and

Nhw — Blle <m™ for m=1,2, ---. The convolution k,*h of the
approximate identity k&, with & is in & and

|(h(log A)Q) — m((kypxh)(log HO)|| = 2O II[(h — kpx k)"l -

The sequence {(f — k,*h)"} tends to 0 in L'R) by the Dominated
Convergence Theorem. Indeed, we have that

limsup||(h — kn*h)"||e < limsup|lk — &, k|, =0,
and that
[(h — kurh)| < (k] + )| R
< Ik, ll, + D|h] < 24|

for every m. Then we get that

| 2(h(log 4)C) — (e * hy)(log A)D)||
< |a((h ~ knxB)og DO|| + [|2(kn o — e xh,)(log A)0)]]
S NN B = knx k)|l + [Ealh — B,)11)
and
1o = )l = (| Enllil| (B = B) "l
< 1kl — R,
= »'k,|, meas (supph + I).

Thus, by choosing m and then p, we can get n((k,*h,)(log 1))
arbitrarily close to w(h(log 4){). This proves n((%,, &, C)) is con-
tained in #(7,, &, C) and completes the induction step.

We now let 9 = U9, and % = U %,. It is clear .9 is a
quasi-invariant countable subalgebra of .%4 over C,, that % is an
invariant subalgebra of .o7, that & 9 < %, and that n(9") is
dense in F*(%).

The next lemma is needed in order to construct factor repre-
sentations.

LEMMA 8. Let N be a weakly dense *-subalgebra of M and let
& be a countable subset of M. Then there is an open dense subset
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X, of X and a countable subset 7~ of N with the following pro-
perties: given %,y in &7, X in X, with xe(}) #0, and >0, then
there s a finite subset u,, U, -+, U, 0of 7 and a finite subet
Vy, Vg v, v, 0f M’ such that

(i) X uvwe()) — ye(Q)ll <e

and
(i) X w20 = llyeQO /| ze(X)1| -

Proof. Let x and y in .&“. The subset
X(w, m) = clos{y e X||[xe(x)|| > m™}

(m=1,2,---) is an open and closed subset of the hyperstonean
space X due to the continuity of the map yx—||xe(¥)|| [8, Lemma 9].
For natural numbers m, n, we show that there is an open dense
subset X(x, ¥y, m, n) = X' of X(x, m) and a countable subset .7 (x, v,
m,n) =.7  of N, such that for every ) in X', there are finite
subsets {u;} of .7’ and {v,} of M’ such that

[[ S uvxe(y) — ye(x)|l < n™
and
2 w001 = yeQO /|| we(X)1] -

Let p be the projection in C whose Gelfand transform is the charac-
teristic function of X(x, m). There are partial isometries % and v
in C, with u*u = e¢p and v*v < ¢p, and there are elements ¢ and d
in C, with xep = cuep and yep = dvep due to the polar decomposition.
Because |¢™(x)| = ||xe(y)]| for x in X', there is a ¢’ in C, with ¢’c = p.
There is a sequence {w,;} in the unit sphere of the strongly dense
*_algebra of C’ generated by N and M’ such that

lim w,uu*p = vu*p (strongly)

on account of the Kaplansky Density Theorem and the fact that the
abelian projection uwu*p corresponds to the closure of the linear mani-
fold Cupl,. There is a sequence {p,} of orthogonal projections of C
of sum p and subsequences {w,;} of {w;} such that

lim w, ;uu*p; = vu*p, = vu*(uu*p,)

in the norm for each 4 [11, Lemma 1]. Because w,; can be written
as

w; = > {w;v;]J € L}

where the u, are in N, the v, are in M’, and I, is a finite index set,
the totality .77’ of all such u,; is a countable set. Furthermore, the
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set X’ of all ¥ in X such that p;(¥) = 1 for some 4 is an open dense
subset of X(zx, m).

We now show that .7’ and X' have the correct properties. Let
% be in X'. Thers is no loss of generality in the assumption that
d"(x) # 0. There is a p, with »;(x) =1 and a w,; with

Hwue(y) — ve(O ] = I (wiuw™ — vu*)p; || llue(n) || < (n]d” DN .
Setting w equal to d°(x)¢'"(Y)w;;, we have that

wre(x) — ye(Il < n™*
and

HwOO Il = 1d”01/1e” O 1 = TyeQ ll/llze(0)]] -

Thus .77’ and X’ have the correct properties.
The countable subset

'9"":{j_(xyy9myn))|x’ye&c/’myn=1y2’ "'}
and any dense open subset X, of the set
n{U{X(.’,U, Y, m, n)lm: 1’ 2} "'}UX(Q’?)ICL', yetc/’n = 1, 2’ "'} ’

whose complement is nowhere dense, satisfy the conditions of the
lemma. Here X(2) is the complement in X of the closure of the set
{xe X|||lze(x)|| > 0}.

We are now able to prove the main construction lemma.

LEMMA 9. Let & be a countable subset of the maximal modular
Hzilbert algebra 57 of the generalized Hilbert algebra MC,, and let
{6} be a strongly continuous one parameter automorphism group of
M. Then there is a countable subalgebra &~ of .o over C,, a sub-
algebra 7z of o7, and an open dense subset X, of X with the fol-
lowing properties:

(i) LI cw;

(il) 7 1is quasi-invariant;

(ili) Z s invariant;

(iv) 7w(Y7) is dense in L *(%);

(v) &%) 18 invariant under {0,}; and

(vi) 7, restricted to F*(Z) ts a primary state fox every ¥
mn X,.

Proof. We may assume that {, is in .. By induction we con-
struct sequences {7} and { 7;} of countable subalgebras of .97 over
C., a sequence {%,} of subalgebras of .94, a sequence {N,} of von
Neumann algebras, and a sequence {X,} of subsets of X such that
forall w =12, ---
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(1) ¥ CT.CTWC T s

(2) TWC U C Ui

(8) =n(7,) is dense in &F*(%,);

(4) &) <N, cz*(72)"

(5) 7, is quasi-invariant;

(6) %, is invariant;

(7) N, is invariant under 6, (t € R);

(8) X,DX,,, and X, is open and dense; and

(9) given z, ¥y in 7( 7,), ¥ in X, with xe(y) # 0, and € > 0, then
there are 2, +--, %,, in 7(7,,,) and ¥y, ---, ¥, in M’ with

12 xyae() — ye(QDl < e
and

12 2y:001 = llye@D /[l we(O] -

Let .7, be a quasi-invariant countable subalgebra of &7 over C,, and
let %, be an invariant subalgebra of .94 such that & C .9, Cc %,
and such that n( 7)) is dense in *(%,) (Lemma 7). The von
Neumann algebra N, generated by

{0t(x) ] re 7(7(.,7:), t € Rr} ’

where R, is the field of rational real numbers, is invariant under

the automorphism group {4,} and is equal to the von Neumann algebra
generated by

{0 (x)lxe X (Z)),teR,}.

There is a countable subset of .94 and thus a countable #-subalgebra
7 over C, of .94 containing .7, such that #( 77)" contains N,
(Lemma 7). There is a countable subset 977 of %4 and an open
dense subset X, of X such that, for any «, ¥y =n( 7)), xe X, with
ze(y) # 0, and any ¢ > 0, there arex,, «--, z, in (7)) and ¥, ¥y ==+, Yn
in M’ with
12 zywe(y) — ye(|l <e

and

122001 = llyeQO 1/ xe(O)] -

Let .7, be a quasi-invariant countable subalgebra of .94 over C,
containing 77U %;. We may now repeat the construction starting
with .7;. So we may assume that sequences of algebras satisfying
(1)-(9) have been constructed.

We show that 9 = U.9, and % = U %, satisfy conditions
(i)-(vi). From (1) and (2) we conclude that .7~ and % are subalgebras
of %7 over C, and C respectively and from (1), (2), (5), (6) we conclude
that .7 is quasi-invariant and that % is invariant. Since each 7(.7,)
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is dense in &#*(%,), the set n(7") is dense in ¥*(%). For each
teR and x in &¥*(%,), wo have that 6,(x) is contained in &L*(%)"”
on account of (1), (2), (4), (7). Because &¥*(%) is weakly dense in the
weakly closed algebra &*(%)" and because 6, is weakly continuous,
the algebra #*(%)” is invariant under 4,.

Finally, we verify statement (vi). Because X is hyperstonean,
the intersection of the sets X, contains an open dense subset X,.
We show that 7, is a primary state of &*(%') for every x in X,.
Let z, y be in n(7;) with xze()}) nonzero. There are z, ---, z, in
(T ) and Yy, Yo, + o+, Y, in M’ such that

120 a;y,5we(X) — ye(OIl < e
and
HZ%—%(X)II < |y I|/lwex) |

from (9). Each operator ;()) on C’e()) is in the commutant &Z*(Z)(y)
of the von Neumann algebra Z*(Z)(x)”. Setting p equal to the
projection of C’e(y) on the subspace K, generated by Z*(Z)(X)e(x),
we get that the operators z; = py;()p are in (L*(Z)(X),), and
satisfy the relations

13 pr;(X)pzae(y) — ye(N) <e

and

122 pe;00p2; 1] = [lye(O /|21 -

Thus, the von Neumann algebra on K, generated by #*(Z)(y), and
its commutant is transitive on K,. Indeed, the arguments of [16]
(cf. [24], Chapter 4, §9) can be applied to the dense subset U 7(.77)e()
of vectors in K,. We have already identified the action of &Z*(Z ) (%)
on K, with the canonical representation of z,. Thus, the functional
T, on ¥*Z/) is a primary state.

We now analyze the center in the situation deseribed by the
previous lemma.

PRrOPOSITION 10. Let <Z be an invariant subalgebra containing
&, of the maximal modular algebra of the generalized Hilbert algebra
MC,. If the set of y in X such that the restriction of ©, to F*(F)
18 not a primary state is nowhere dense in X, then the center of
the von Neumann algebra F*(<#)' generated by F*(<F) on H is
contaitned in C.

Proof. The C-module <#’ generated by <& is an invariant
subalgebra of .97 and the algebra <©*(<#’) is equal to the C*-algebra
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generated by #*(<#) and C (cf. relation (1)). The state 7, is a
primary state on $#*(<#) if and only if it is a primary state on
F*(#") since the Hilbert spaces of the canonical representations
of both functionals can be identified with the closure of <#*(<Z)(x)e(X)
in C’e() and the images of both canonical representations is &Z*(<#)(X)
restricted to this invariant subspace. We notice that the center of
F*(Z)' is contained in that of <#*(<#')’. So there is no loss of
generality in the assumption that <& is a C-module. Accordingly,
we must prove that the center of &¥*(<#)” is C.

Let ¢ be an element in the center of ¥*(<#)’ with 0 <c<1.
We prove that ¢ is in C. For yx in X, let 7, denote the canonical
rapresentation of .&£*(<#) induced by 7, and let 4, be a positive
linear functional on x,(<*(<#)) such that

P (®)) = 7,(c)

for every z in &#*(<#). Since we have

I (7 (@) | = T (a*x) 2T (¢*) = [|m (@)D

we can apply the Hahn Banach theorem to find an extension of «,
to a linear functional on 7,(&¥*(<#))”’, which we again denote by ,,
such that

(@) = [lwe(D)]|

for x in 7, (¥ *(<#))’. The preceding relation implies that +, is a
strongly continuous, positive functional majorized by the vector state
W, (x) = (xe(), e(x)) on w,(F*(<#))'. We show that +, satisfies the
KMS boundary conditions with regard to the modular automorphism
group oi(x) = dixd;* of w,(F*(<Z))" (cf. Proposition 4).

First we show that +, is invariant under ¢f. Let K be the
subspace of H generated by £*(<# ), and let p be the projection
of H on K. The algebra <% is a modular Hilbert algebra with
completion K. The modular automorphism group of (&) is
x— A%d %p for x in F*(<#),, which is identified with (<) due
to Lemma 3. For w and v in C and z in &*(<#), we have

(z(eo(x))uly, v&) = (co(@)ul,, vE,)
= (pep(4z4™*)ppupl,, pvpl,)
= (4*(peprp)d™" ppupl, pvpl,)
= (o (ex)uly, v&y)
= (z(ex)ul,, vC,) .
This means that

T,(co(x)) = T,(cx)
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for x in &#*(<#), and thus that

Py(0l(T (x))) = T,(co (%))
= Ty (cx) = r,(Tx())

for  in #*(<#) (cf. relation (2)). By the strong continuity of of
and +,, we conclude that +r, is invariant under o}.

Now, for # and y in <*(<#) there is a bounded continuous
funetion 2 of the strip I={X\eC|0Z<ImA<1} into C, which is
holomorphic on the interior 0 <Imx <1 of I and satisfies the
boundary conditions

h(t) = t(o(x)ey) = t(co(@)Y)
and
h(t + ) = t(cyo())

for ¢ € R (Corollary 6). The function
Ry, (M) = h(N)"(X)

is a bounded continuous function on I, holomorphic on the interior,
and satisfies the boundary conditions

b)) = 4, (0} (Tx(@)7,(Y))
and
hz(t +1) = 4#1(71'1(?/)0';‘(71'1(90)))

for t e R. This is enough to insure that +r, satisfies the KMS boundary
conditions on 7w, (< *(<#))” with respect to {o}} (cf. proof [34,
Theorem 13.3]).

For every y such that 7, is a primary state of <*(<#), there
is a real number @, such that a,®w, = 4, [34, Theorem 15.4]. Since
«, can be written as

a, = a,c(1)" (%) = Y7, (1)) = 7(e) (%)

for all ¥ in an open dense subset of X, there is an element d in C
such that

T (ex) = d™ ()T, (%) = 7,(dw)

for all x in ¥*(<#) and y in X. There is a sequence {c,} in & *(<#)
that converges strongly to ¢. We now can conclude that ¢ is equal
to d and thus is in C because

(@ — e)*Cll = lim (z((d — e)(d — ¢,)*)C C) = 0 .
Thus, the center of #*(<#)"” is contained in C.



314 HERBERT HALPERN

We can now show that every type II, (resp. type II.) von
Neumann algebra has a o-weakly continuous projection of norm one
onto its countably generated type II, (resp. type IL.) subalgebra. A
more detailed version is needed for the subsequent procf of the
analogous theorem for type III algebras.

ProprosiTION 11. Let M be a type II, (resp. type II.) wvon
Neumann algebra, let r be a faithful nmormal finite (resp. semi-
finite) trace on M and let {6,} be a strongly continuous one param-
eter automorphism group of M. Then there 1s a subalgebra <&
containing £, of the mawximal modular Hilbert algebra .4 of the
generalized Hulbert algebra MC, such that

(i) &2 in invariant,;

(ii) ~#*Z) is a separable C*-algebra;

(iil) L*(<Z)" is nvariant under each 6, (t € R);

iv) F*Z)' is of type II, (resp. type IL.);

(v) the restriction of + to F*(Z)' 1s semi-finite; and

(vi) the complement of the set of all ¥y im X such that the
restriction of ©, to F*(Z) is mot a primary state of FF(F) is
nowhere dense in X.

Proof. Since M is semi-finite there is a self-adjoint operator a
affiliated with M such that og,(x)=exp (ita) « exp(—ita) for ¢ in R
and x in M [34, Theorem 14.2]. Let {g(\)} be the spectral resolution
of a. We may write g, = g(n) — g(—n) as

g, = 2 {u*ulu € I(n, m)}

where the w are partial isometries in M with uu™ = vv* for every
u, v in I(n, m) and the cardinality of I(n, m) is 2". If M is properly
infinite, let I, be a set of partial isometries in M of cardinality equal
to that of the natural numbers such that

S{uwtuluel} =1

and such that wu* = vv* for every u, v in I,. If M is a finite algebra,
let I, be the empty set. Let {p,} be 2 monotonely increasing sequence
of projections in M of least upper bound 1 such that +(p,) is finite
for every n. Let .&° be a countable subset of .74 such that the
weak closure of @(.9”) contains union of all the sets

I(n, m), I, {g(\)| N rational}, {p,} .

There is a subalgebra .<Z containing 1 of .97 containing & and
possessing properties (i)-(iii) and (vi) due to Lemma 9. We verify
that <& satisfies (iv) and (v).
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First we consider (v). A proof is necessary only when M is of
type II.. The restriction ¢ of « to £*(<Z)" is a faithful normal
trace. If x is an element in &*(<F)’, then the seguence {xp,} in
N}N; converges weakly to . This proves that ¢ is a faithful normal
semi-finite trace on & *(Z)".

Now if M is of type II., the algebra .&&*(<#)” is properly infinite
since 1 is the least upper bound of the infinite set {u*u|u eI} of
equivalent orthogonal projections. If M is finite, it is clear that
L #)” is finite.

Finally, we show that &*(<)” is a continuous algebra. Let
» be the largest central projection of <“*(<#)" such that £*(<#),
is diserete. The modular automorphism group of <*(<#)” associated
with the faithful normal state w,, restricted to &*(&)” is given
by x—exp (ita) x exp (—ita) (Lemma 3). Because the spectral pro-
jections g(\) (» rational) for a are in #*(<#)”, the operator a is
affiliated with <*(<#)”. For every projection g = g,, We can show
that the functional

x — (exp (—ag)gxle, &)

is a faithful normal trace on £*(<#),. Indeed, given z and y in
FHZ),, there is a bounded continuous function A(A) on the strip
0 < Imx <1, which is holomorphic on 0 < Im\ < 1, and which satisfies
the conditions

h(t) = (0:.(x)yCs Co)
and
Rt + 1) = (Yo ,(x)C0 &)
for ¢ in R. Since the function
A — (exp (shag)gx exp (—i1hag)gy Lo &)

is an entire funection which coincides with 2 on the real axis, it
agrees with % on the other boundary of the strip due to Schwarz’s
reflection principle, and in particular at the point ¢, so that

(yx &y &) = (exp (—ag)x exp (a9)yly, &) -
Replacing ¥ by exp(—ag)y, we see that

(exp (—ag)xyly &) = (exp (—ag)yxly, &)

for every z, y in £*(<#),. Now, if p is nonzero, thereisa g =g,
such that pg is nonzero. There is a central projection ¢ in F*(<Z)”
such that <#*(<#),, is of type I, for some 1=<m < . However,
the projection g and consequently gg must be the sum of the 2~
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equivalent orthogonal projections {u*uq|u € I(n, m)}. This is a con-
tradiction. Thus, the algebra & *(<#)” has no type I part.

COROLLARY 12. Ewery o-finite von Neumann algebra N of type
I, (resp. type II, II.) has a faithful, o-weakly continuous projection
of morm ome onto a countably generated von Neumann subalgebra
of the same type whose center is contained in that of N.

Proof. First let N be of type I,. Then N is isomorphic to the
von Neumann algebra AX <% (H,), where A is an abelian von
Neumann algebra and <#(H,) is the algebra of all bounded operators
on the Hilbert space H, of dimension n. The algebra A is o-finite
and is isomorphic to an algebra with a separating and cyclic vector.
We may assume A has a cyclic and separating vector {. There is
a faithful o-weakly continuous projection ¢ of norm one of A onto
a countably generated von Neumann subalgebra B (cf. [35]). Then
the map ¢ (identity) is a faithful o-weakly continuous projection
of norm one of A <#(H,) onto BR <% (H,) [41, Theorem 2].

Now let N be of type II,. Since N is o-finite, it is isomorphic
to a finite Neumann algebra with cyclic and separating vector. So
we may assume that N has a cyclic and separating vector & There
is an invariant subalgebra <# of the maximal modular Hilbert algebra
of the generalized Hilbert algebra N& such that ~£*(<Z)” is a
countably generated type II, subalgebra of N whose center is con-
tained in that of N (Propositions 10 and 11). The algebra &£*(=#)”
is invariant under the modular automorphism group of N& (Lemma
3) and so there is a faithful o-weakly continuous projection of norm
one of N onto .&*(<Z)" [35].

If N is of type II,, one can use the existence of a projection
in the type II, case to present an argument similar to the first
paragraph showing the required projection exists.

REMARK 13. If N is a finite type I (resp. properly infinite type
I, type II,, type II.), then there is a set S of orthogonal central
projections of sum 1 so that each p in S can be written as the sum
of a set S(p) of orthogonal equivalent o-finite projections. Each
algebra Np (pin S) is isomorphic to an algebra of the form N, <% (H,)
where g is in S(p) and H, is a Hilbert space with dimension equal
to the cardinality of S(p). If ¢ is a normal state of <Z(H,) while
¢ is a projection of norm one for N, of the type described in Pro-
position 11, then ¢ ® ¢ is o-weakly continuous projection of norm one
of N,® <#(H,) onto a countably generated subalgebra of the same
type [41]. This induces a o-weakly continuous projection of norm
one of Np onto a countably generated subalgebra of the same type.
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We now consider the projections of norm one of a type III algebra
onto its countably generated subalgebra. For this we need the crossed
product of a von Neumann algebra with its one parameter automor-
phism group. We briefly review some of the necessary notation and
results of Takesaki [36] with appropriate reference citations. Let
N be a von Neumann algebra on the Hilbert space K and let {6,} be
a strongly continuous one parameter group of automorphisms of N.
Let IX(K; R) be the completion of the pre-Hilbert space 927 (K; R)
of all continuous functions of compact support of R into K in the
inner product

@ & = |, et .

There is a canonical normal isomorphism 7, of N onto a von Neumann
algebra on L*K; R) given by

(10) (my(@)2)(E) = 0.1 (@)E(E)

and there is a strongly continuous unitary representation », of B on
L K; R) given by

(1D (Ro()E)(s) = C(s — 1) .

[36, (8.1), (8.2).] The von Neumann algebra on L*K;R) generated
by 7y(N) and n(R) is called the crossed product of N by the action
of 6 on R and is denoted by “Z((N, K); ) = #(N;0). For every «x
in N and t in R, the relation

No(E)To(@)MNe(— 1) = 75(0,(2))

holds [36, (3.2)]. Furthermore, the von Neumann algebra Z((N, K); 6)
does not depend on K in the following sense: if there is an isomor-
phism @ of N onto a von Neumann algebra N, on the Hilbert space
K, with a strongly continuous one parameter automorphism group ¢
such that @-60, = ¢,-® for every ¢ < R, then there is an isomorphism
® of F((N, K);0) onto 2((N,, K,); $) such that 7,-0 = d-x, and
s = @ -\, [36, Proposition 3.4].

Let R be identified with its dual group under the action (¢, s).
Let p(s) be the unitary operator on L*(K;R) defined by pu(s){(t) =
{t, s)7L(t); then p(s) satisfies the relations

LTy (2)p(— 8) = To()
and
LNV U(— 8) = T, $)7ME)
so that
O,(x) = p(s)xpe(—s)  (seR)
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is a strongly continuous one parameter automorphism of .ZZ(N;6)
called the dual action of (the dual group) R on Z(N;¥6) [36, (4.1)-
(4.5)]. The algebra Z(Z(N;6);d) is isomorphic to N& & (IAR))
[36, Theorem 4.5].

Let +» be a faithful normal semi-finite weight on N such that
A0, = et and let .97 be the maximal modular Hilbert algebra of
the generalized Hilbert algebra associated with «+ supplied with
structure of a locally convex topological vector space induced by the
semi-norms

(12) llzlls = lub{|[z]] + [[z(4@)]| + [|7'(4x)]| |»e S}

where S runs through the compact subsets of C. The algebra
% (7; R) of all continuous functions of compact support of R into
7 is a modular Hilbert algebra with suitably defined multiplication
and modular automorphisms whose completion and left algebra are
L*(H(+r); R) and Z((N, H(+)); 8) respectively. The canonical weight
& on Z(N;0) associated with 277(.o%; R) given by

. g, if o =xn@*n) for {e.27(.%; R)’
¥ (@) = .
co otherwise
is called the dual weight of +, and it is faithful, normal, and semi-
finite [36, Theorem 5.12, Definition 5.14].

Now let M be a type III von Neumann algebra on the Hilbert
space H. Let {, be a cyclic and separating vector for M, and let {0,}
be the modular automorphism group of the generalized Hilbert algebra
MC,. The algebra .ZZ(M; o) is of type Il. [36, Theorem 8.11] and
admits a faithful normal semi-finite trace « such that -G, = et
[36, Lemma 8.2]. The modular automorphism group of the dual
weight 4 on Z(#(N;o0); ) is 6~ [36, Theorem 8.3].

We now show that a o-finite type III algebra has a o-weakly
continuous projection of norm one onto a countably generated type
IIT subalgeba, whose center is contained in the original algebra.
(The proof of the latter appears in Theorem 15.)

PROPOSITION 14. Ewvery o-finite type III von Neumann algebra
has a faithful o-weakly continwous projection of morm ome onto a
countably gemerated von Neumann subalgebra of type III.

Proof. Every o-finite von Neumann algebra is isomorphic to a
Neumann algebra with cyeclic and separating vector. Thus, it von
is sufficient to show that the canonical algebra M has a projection
of the specified kind whenever M is type III.
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The von Neumann algebra M <#(L*(R)) is isomorphic to both
M and Z(H#(M;o0);d), and the algebra N = ZZ(M; o) is an algebra
of type II. that admits a faithful normal trace + satisfying the
relation 4« 6, = ¢7'4 for t € R. The algebra N is o-finite since it is
isomorphic under the canonical embedding to a weakly closed sub-
algebra of the o-finite algebra .ZZ(N; ). There is an isomorphism @
of N onto a von Neumann algebra with cyclic and separating vector
&. There is a subalgebra <Z containing &, of the maximal modular
Hilbert algebra of @®(N), satisfying the properties:

(i) < is invariant;

(ii) Z*(<F) is a separable C*-algebra;

(iii) £*(<#)” is invariant under each automorphism @-4,- 97

(iv) L*(Z)” is of type IL;

(v) the restriction of 4. @™ to F*(#)" is semi-finite; and

(vi) the complement of the set of all ¥ in the spectrum of the

center D of @(N) such that (z,), is not a primary state of &F*(<F)
is nowhere dense (Proposition 11).
Here ¢ is the maximal abelian projection in D’ corresponding to
the subspace closure D&,. The center of <#*(<#)” is contained in
the center of @®(N) (Proposition 10). Therefore, the algebra P =
O (F*(#)') is a countably generated type II, von Neumann sub-
algebra of N, whose center E is contained in that of N, on which
+ is semi-finite, and which is invariant under g,.

The von Neumann algebra B generated by the image of the
canonical embedding of P and R in Z(#(M,;0);d) is countably
generated, semi-finite under the dual weight  of +, and invariant
under the modular automorphisms associated with + [36, §§5, 8].
There is a faithful o-weakly continuous projection of norm one of
FB(H(M; 0); 6) onto B [35]. We complete the proof by obtaining a
contradiction to the assumption that B has a nonzero semi-finite part.
Since the algebra Z(P; (6|P)) is isomorphic to B, we may assume
that <Z(P; (6| P)) has a nonzero semi-finite part. There would be a
nonzero projection p in the center E of P which is fixed under {4,}
and a strongly continuous one parameter unitary group {u,} in Ep
such that

Gy(u) = e“tu,

[36, Corollary 8.7]. Since the algebra E is contained in the center
of N, the algebra “Z((M;0); &) would also have a nonzero semi-finite
part [36, Corollary 8.7]. This is a contradiction. Hence, the algebra
B is purely infinite.

We now obtain the information on the field {M,} when M is of
type III.
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THEOREM 15. Let M be a type III von Neumann algebra with
center C, let {, be a cyclic and separating vector, let e be the abelian
projection of C' corresponding to the subspace generated by CC,, and
T be the C-module homomorphism of M into C defined by t(x)e = exe.
Then there is an open dense subset X, of the spectrum X of C such
that, for every Y in X,, the canonical representation p, of the state
7, of M given by t,(x) =7(x)" () ts of type III. In particular, there
18 an tnvariant subalgebra <& of the maximal modular Hilbert
algebra of the generalized Hilbert algebra M{, with the following pro-
perty: there is an open dense subset X, of X such that (0,(F*(F N e,
18 a type III factor and there is a faithful o-weakly continuwous
projection €, of morm one of (0(M)"),, onto (0L (Z))")e, with
W, & = ®,. Here w, is the mormal functional on 0, (M)’ with
W, + 0, =T, and gy s the support of w, on P, (M)".

Proof. There is a faithful o-weakly continuous projection ¢ of
norm one of M onto a countably generated type III von Neumann
subalgebra N (Proposition 14). There is a countable subset . of
the maximal modular Hilbert algebra .&4 of the generalized Hilbert
algebra M{, such that the weak closure of 7(.$”) contains N and
there is an invariant subalgebra <% of .94 containing .&7 U {{,} and
an open dense subset 1, of X such that

(1) ~#*(<F) is separable, and

(2) the restriction of 7, to &¥*(<#) is a primary state for y
in ¥, (Lemma 9). The restriction of ¢ to #*(<#)” is a faithful
o-weakly continuous projection of norm one onto N. This means
that &*(<#)" is a type III algebra ([40, Theorem 3], [29, 2.6.5])
whose center is contained in the center of M (Proposition 10).

We now show that 0,(&F*(F#))” = &£*(<F), is a type III factor
for every y in an open dense subset X, for ¥,, We could use the
results of Lance [19] to show that, for any given Borel measure on
X, the exceptional set of all ¥ such that &£*(<Z), is not of type
IIT is of measure 0. Here it is more appropriate to show that the
exceptional set is nowhere dense. However, we work with fields of
inner automorphisms as does Lance.

The state w = w,, of ¥*(&)"” is faithful and normal, and the
modular automorphism group of .&*(<#)” associated with w is the
restriction of {o,} to ¥*(<#)’ (Lemma 3). There is a sequence
{p;} of nonzero central projections of £*(<#)’ of sum 1 and a
sequence {s;} of positive real numbers such that o,, is not an inner
automorphism on £ *(<Z), for any nonzero projection p center of
F*(Z),,; otherwise, there is a nonzero projection p in the center
of F*(#)" such that o, is inner on F*(<#), for every s >0, and
this is impossible due to the fact that the restriction of {0} to
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F*#), is the modular automorphism group of .&7*(%), associated
with the faithful normal functional @, ([8, Lemma 4.1a], [34,
Corollary 14.3]).

Now there is no loss of generality in assuming p = p, is equal
to 1. In fact, the vector & = p{, is a cyclic and separating vector
for M,, and the set p.9% is the maximal modular Hilbert algebra for
the algebra M,5 due to the fact that modular operator and the
unitary involution of Mpé are 4p and Jp. Also the algebra p<Z is
an invariant subalgebra of ».%%;, ZF*(p<Z) is equal to .&F*(F)p,
and the von Neumann algebra generated by <*(p<%’) on pH is
equal to F*(<#),. Thus M, has a faithful o-weakly continuous
projection of norm one onto ¥*(<&#), (Lemma 3 and [35]). Fur-
thermore, the projection ep of pH onto clos C¢& is an abelian pro-
jection of the commutant of the center C, of M, and under the
identification of the spectrum of C, with the set X, of all ¥ in X
with p”(y) = 1, the Hilbert space of the canonical representation as
well as the image under the canonical representation of (z,,), on
ZH*(pZF) or M, is exactly the Hilbert space of the canonical repre-
sentation and the image of the canonical representation of 7, on
(<) or M respectively for ¥ in X,. Finally, the union of open
dense sets in each X, will be an open dense subset of X. So we
may assume that p = 1. For simplicity we let s = s,.

Let 7, denote the canonical representation of &*(<Z) on the
Hilbert space K, induced by 7y, let 7,( &7* (%)) = A, and let 0% be the
modular automorphism group of the generalized Hilbert algebra A,e(y)
(Proposition 4). Let I7, be the subset of all pairs (¥, ) of the set

I, = {(Xr W)UCGX, xGAZ, HxH = 1}

such that

(i) 20%.,(y) = yx for all y€ 4,, and

(i) 27" = (we(X), e(X)) + (x*e(X), e(X))-
Here s(m) denotes the number s(m) = s/2™. Let ¢ denote the map
of a pair in 7, onto its first coordinate. We can see that the set
{xe X|A, is a semi-finite factor} is contained in ¢(/7,). Indeed, if A,
is a semi-finite factor, there is a strongly continuous one parameter
group of unitary operators {u,} in A, such that

oi(x) = u2U_,

for every z in A, [34, Theorem 14.2] and thus (¥, %) is in /7, for
some sufficiently large m.

Now the space I, is compact in the weakest topology induced
by the functions ¢ and {r,,|¥, z € &£ *(<#)} where

Ty.(% @) = (xye()), ze()))
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for (%, «) in II,, We use ideas from Stratila and Zsidé [32, 1.1.1]
in verifying this. There is a homeomophism @ of 17, onto the
compact product space

I = X x II{C(y, 2)|(y, 2) e L*(F) X L*(F)},
where
Cy, 2) = {(ve ClINM = (lyllliz]]}
given by
(%, ) = (s {7000 Dh,s) -

If {(Xn, )} is @ net in II, whose image {®&(yx,, x,)} converges to
X, {72} in I, the numbers \,,, satisfy the relation

INy,o| = lim | (2, ye(X.), 2e(X,)) ]
= lim sup||z., || [lye(x.) ||| ze(X.) ||
= llye(O Il |ze(0) 1|

[8, Lemma 9]. There is a bilinear form

Cye(X), ze(N)> = Ny,

on the dense linear manifold ¥ *(<#)e(y) of K,. There is a uhique
bounded linear operator x on K, such that

_M.,z = (wye()), ze(Y))

for all ¢, z in 5/*(@) We show that x is in A4,. Let {, 7, £ be in
 and let p, be the projection of C’e(}) onto K,; then we have that

(&7 (E) N P(Q)e(X), T(M)e(X))
= (wm(C&)e(x), m(M)e(X))
= lim (,7(C&)e(Xn)y m(M)e(Xn))
= lim (2, 7m(Oe(X,), 7(J472))e(Xn))
= (@ ()N parQe(x), =(N)e(x)) .

Since the commutant of A, is generated by .Z*(<% )())p: (Proposition
4), the operator x is in A,. This means that 7/, is homeomorphic to
a closed subset of the compact product space I7, and thus 7, is
compact.

Now we show that 77, is a closed subset of 7,. If {(¥,, x.)} is
a net in I7,, converging to (¥, ) in I/,, then it is clear that (y, x)
satisfies property (ii) of the definition of I1,. If (, & % are in <&
and s = s(m), then we have v

(wo X (mo(m(EN7(L)e(x), =()e(X))
= (axr((4*£)0)e()), =(Me(X))
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= lim (@,7((4"&)0)e(Xn), T(7)e(Xa))

= lim (2,7(C)e(Xx), w((J4*E)e(Xn))

= (@ (m(ENzm(Q)e(X), m(Me(X)) -
Hence, the pair (x, z) satisfies property (i) and the set 77, is closed
in 7, ‘

We show that ¢(/7,) is nowhere dense in X. Since ¢ is a con-
tinuous map, the set ¢(I7,) is closed. We obtain a contradiction from
the assumption that ¢(/7,) contains a nonvoid open subset and con-
sequently a nonvoid open and closed subset X,. There is projection
in C whose Gelfand transform is the characteristic function of X,,.
As already proved, there is no loss of generality in the assumption
that this projection is 1. We now find a nonzero y, in &Z*(<#)”
such that ¥,0,..,(¥) = y¥y, for all y in & *(<Z)”’. There is a continuous

function ¢ of X into 7, such that ¢-¢(x) = x ([7], [12], cf. [32, §1]).
Let x, be the element in the unit sphere of A, such that

for y in X. The function
X — (@ye(X), ze()))

is a continuous complex-valued function of X for ¥, z in .&#"*(<%) due
to the definition of the topology on fI,. For y and z in <~*(<7),
let (ye, ze) denote the element of C satisfying

(ye, ze)” (1) = (wxye(), ze(1))
for every y in X. We have that
(e, 208 0 = || e, zem)d)
= {llve(ol1 e 1 dx()

g&wwmwmwwmww

= (o(y*y)? (2" %) Ly &)
< ey )2 Gl (27 2) 2 G ||
= NyGlll28 1]

where v is the spectral measure on X such that
Jwr oo = e, @

for every w in C. Hence, there is a bounded linear operator x, on
the subspace K generated by .#*(<#){, such that
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(oo 280) = (Cye, 2€)C,, &)
for all 9,z in F*(Z). If (, & n are in <&, we have that
(2,7 (), 1) = (@o(EE)Co, (17)C0)
= |@m@en), zmeco)ase)

= | @O @ aien, T

= S(xxﬂz(ﬁ(@)e(x), m((J4778))e(2))dv(X)
= (@' @z, 1)

and consequently, that x, is in #*(<#),. Here ¢ is the projection
of H onto K. We recall that <# is a modular algebra such that

FHB), = () and RBHF), = B(F)
(Lemma 3) so that
BN, = LHZY, -

Therefore, the element x, is in <*(<#),. The projection ¢ is in
ZL*(Z) and has central support 1 in F*(Z) since F*(Z)C,
contains the dense subset M'(, of H. So there is a unique y, in
F*#)" with yq =z, For {,& 1 in <& and s = s(m), we have
(from relation (2)) that

(Yoo ()L, ) = (Y ((4"E)0)Coy 7(7)E0)
= | @4 00, 7Dy

= | @t @NrQen, mer)dy
= | @m(©e0), mmet)dy

= S(wm(C)e(x), m((J4"*E)ne(x)dy

= (Yo (O)&oy w(JA2EM)E0)
= (n(E)y0C9 77) .

Thus, we have that
9Y.0,(w(8))q = qm(§)ysq
for all £e &# and so
YO (2) = 2Y,
for all z in &¥*(<#)”. We also have that
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W &) + Wiy &) = |(Cae), e) + (wte), )iy
z 22{av = 276

implies y, is nonzero. Now this means that there is a nonzero direct
summand of F*(<#)" (viz. .&*(<#)” reduced modulo the central
support of %, on which o, is inner [17, proof, Theorem 1.1]. This
is incompatible with the earlier choice of s. Thus we see that the set
¢(Il,,) and consequently, U¢(I1,) is nowhere dense in X. Thus, the set

{x e X|A; is not a semi-finite factor}

is nowhere dense in X. Since the set

{x e X|A, is not a factor}

is also nowhere dense in X, the set
{xe X|A, is a type III factor}

contains an open dense subset X, of X. The projection ¢, in M, =
o(M)'" of H, onto clos M,e(y) has central support 1. There is a
faithful o-weakly continuous projection ¢, of norm one of (Ml)qx onto
its von Neumann subalgebra (*(Z)),, such that @;-& = o,
(Corollary 5). The projection ¢, is in &°*(<#), and has the same
central support in F*(<#); as the projection p, of H, onto K, (cf.
proof, Corollary 5). Thus, the algebras (*(<#),)q, and A; =
(ZL*(#),)py are isomorphic for every x in X, and the algebras
(ZF*(#),q, are type III factors for every y in X,. This means that
the (M;c)q;C are type III algebras for every yx in X,; and therefore,
that the algebras M, are type III algebras for every x in X, due to
the fact that the central support of each ¢, is 1.

REMARKS 16 (i). For every yx in X,, the von Neumann algebra
D, generated by (Z*(#)), and its relative commutant in (M),
is isomorphic to the tensor product of (L*(Z ), and its relative
commutant [35, Corollary 1]. There is a unique o-weakly continuous
projection of norm one of (M), onto D, ([35, Corollary 1] and [4,
Theorem 1.5.5]) and this projection necessarily leaves ®, invariant.

(ii) For every x in X,, the algebra B, generated by M, and the
projection p) of H, onto K, is a type III factor. In fact, the algebra
. M,p), is equal to F*(#),p, (Corollary 5), and therefore, the algebra

0By = (B )iy
is a type III factor on K, (Theorem 15). If 2 is in the center of
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B,, then the element xp), = p,xp, is in the center of ¥ *(<#),p, and
so is a scalar multiple Avp), of p,. This means z is equal to A because

wye(y) = ;Me(x)

for every y in M,. Thus the algebra B, is a type III factor.

(iii) For any y in X, the algebra M, is a factor if and only if
p, is in the commutant of the center of M,. Indeed, if ) is in the
commutant, the map x— xp), of the center of M, is an isomorphism
onto the scalar multiples of p}.

For the next corollary, it is convenient to introduce the following
terminology. A von Neumann algebra N is said to be the simple
product of type III algebras if there is a set {p,} of central projec-
tions of N of sum 1, a set {N,} of isomorphic type III algebras, and
a set {H,} of Hilbert spaces such that Np, is isomorphic to N, &
& (H,) for every m.

If o is a representation of a von Neumann algebra P such that
o(P)” is compatible with a simple product of type III algebras so is
every representation of P quasi-equivalent to o (cf. [6, §5]).

We no longer assume that M has a cyclic and separating vector.

COROLLARY 17. Let M be a type III von Neumann algebra with
center C. There is a one-one map ¥ — () of the spectrum X of C
into the set of quasi-equivalence classes of representations of M
compatible with simple products of type III algebras with the fol-
lowing properties: if ¢ is a normal functional on M, then there
are states {¢:|x € X} of M and a measure v on X such that

(i) v is the spectral measure obtained by restricting ¢ to C;

(i) the camonical representation of M induced by ¢, 1s in class
(%) except perhaps for a nowhere dense set of X;

(iii) for every x in X except for perhaps a mowhere dense set,
there is a convex w*-compact set Fy, of type III states of M whose
extreme points are type III factor states of M, and a Borel measure
L, on Fy quasi-supported by the extreme points of F, such that

é(x) = Sa)(x)dﬂz(a)) for every x in M,
(iv) ) = 2~ () for every x in C and ¥ in X;
(v) x— o) 18 continuous on X for fixed x in M; and
(vi) o(x) = ngix(x)dv(x) for every x in M.

Proof. Let {g;} be a set of nonzero o-finite projections of M
whose respective central supports {p,} form a set of orthogonal
projections of sum 1 [5; III, 1, Lemma 7]. There is no loss of
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generality in assuming that p, is the sum of an infinite family of
orthogonal equivalent projections one of which is ¢, [5; III, 8,
Theorem 1, Corollary 2]. Each algebra M, = M, acts (i.e., is
isomorphic to a von Neumann algebra that acts) on a Hilbert space
H, with separating and cyeclic vector {,. Let e, be the maximal
abelian projection of the commutant of the center C, = Cg, of M,
corresponding to the subspace of H,; generated by C,, and let 7, be
the map of M into Cp, satisfying

T(®)g; = 7. ,(9:29,) -

The existence of 7, follows from the fact that Cp, is isomorphic to
C, under the map x—xg; [5; I, 2, Proposition 2]. The map ¢ of M
into C defined by

¢(x) = 2.7:()

is a positive o-weakly continuous C-module homomorphism of M with
6(1) = 1. Let X, be the dense open subset of X equal to

X, = {xeX|p:(x) = 1 for some p;}
and let ¥ be in X, with »; () = 1. We have that
$1(x) = ¢(x)" (%) = Ti(x)"(X)

for x in M. Let m, be the canonical representation of M on the
Hilbert space H, induced by ¢, and let {, be the cyclic vector such
the W, Ty = 6. The central support of 7, (g;) in 7, (M)"” is 1 since

1 = 6g:) = |79 -

The subspace m,(g,)H; of H, is generated by m,(g9.)7(M){y, or
equivalently by m,(¢;Mg.)¢;, and thus is identified with the Hilbert
space of the canonical representation of the state 7,,(x) = . ()" (%)
of M,. The von Neumann algebra (M,), = M;, generated by m,(9.Mg,)
on 7y(g,)H; is the von Neumann algebra generated by the image of
M, under the canonical representation of 7,,. Let ¢, be the support
of w, = @, on M;,. For every yx in an open dense subset of {y ¢ X|
p: () = 1}, there exists a faithful o-weakly continuous projection e,
of norm one of (Miz)ql onto its type III factor von Neumann subalgebra
P, as in Theorem 15. The projection ¢, is in the commutant P; of
P, (Corollary 5). By replacing X, by a smaller open dense set, we
may assume such a projection &, of norm one exists for all ¥ in X,.

If ¥ is in X,, then we show that the algebra n, (M)’ is compa-
tible with a simple product of type III algebras. For y in X,, there
is a p; containing yx in its support. The projection 7,(g,)q, is a purely
infinite o-finite projection of 7, (M)” of central support 1, and thus
the algebra 7,(M)” is purely infinite. Furthermore, the projection
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7(g9,)9: can be embedded in an infinite set of equivalent orthogonal
projections. Thus, it is sufficient to show that a type III algebra N
is compatible with a simple product of type III algebras whenever
it satisfies the following conditions: there is a o-finite projection
of central support one in N, an infinite set of orthogonal equivalent
projections in N summing to », and a type III factor subalgebra Q of
N containing 7 in its commutant such that N, has a faithful o-weakly
continuous projection # of norm one onto Q. Now we can find a
family {z;|j €J} of nonzero orthogonal central projections of sum 1
in N and corresponding infinite families {r;,|k € K;} of orthogonal
equivalent projections of sum »; such that »; = rz;. Here we are
assuming that 0 is in each index set K;. There is no loss of
generality in the assumption that the cardinalities |K;| of the sets
K; are distinct. The algebras N,; are isomorphic to N, ® ' (H)),
where H; is a Hilbert space of dimension |K;|. The projection 7
is in @' and thus 6(r;,) is a strictly positive scalar. The map

05(x) = 0(r;0)7 0(@)r 5,

is a faithful p-weakly continuous projection of norm one of N,,, onto
Q,;, and thus 6, ® (identity) is a faithful o-weakly continuous pro-
jection of norm 1 of an isomorphic image of N,, onto Q,;, ® ' (H))
[41, Theorem 2]. Therefore the map

r— >, (0; ®id.)(wz;)

is a faithful o-weakly continuous projection of norm one of an
isomorphic image of N onto }Q,,, ® % (H,). The projections 7;
have central support 1 in Q' since Q' is a factor. Thus, the algebras
Q,,, are all isomorphic to @ and the algebra N is compatible with a
simple product of type III algebras. Thus, we have proved that
w,(M)" is compatible with a simple product of type III algebras
whenever yx is in the open dense set X, of X.

For % in X, let (x) be the quasi-equivalence class of =,. For
each x not in X, let (x) be an arbitrary class of the III factor
representations of M/[x] [28].

Now let ¢ be a normal functional on M. There is a state @ in
M: with (¢|C)-® = ¢ and a spectral measure ¥ on X such that

8() = o (a0

for every x in C so that the field {¢,|x € X} given by ¢,(x) = @(x)~ (%)
satisfies properties (i)-(vi) with the possible exception of (iii) ([11],
cf. §1). We verify {g,} satisfies (iii).

There is no loss of generality in the assumption that the center
C of M is o-finite and has a separating vector { since every com-

3o
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mutative von Neumann algebra is the product of such algebras [5;
I, 2, Proposition 3, Corollary]. The support f of the normal functional
@+ ® on M is o-finite and is equal to the support of @. The central
support of f is 1 since the C-linearity of @ implies 1 — f cannot
majorize a nonzero central projection. The funectional @, - @ restricted
to M, is a faithful normal functional and so there is a cyclic and
separating vector & for M, such that w.(x) = @, - @(x) for all x e M,
[6; III, 1, Theorem 3]. The functional w, may also be written as
®W: =@+ D on M; due to the fact @ is C-linear.

Now the projection e corresponding to the subspace generated
by C¢ or equivalently, by Cf¢ is a maximal abelian projection in the
commutant of the center Cf of M, such that ;-7 = w,. Here 7 = 7,.
Since f has central support 1, the algebra C is isomorphic to Cf
under the map ¢—¢f and the spectrum X of C is homeomorphic to
the spectrum Y of Cf under the map y— xf. We have that

t(fafY () = (@(Fef)f) (AF) = ¢x(2)

for every y in X and z in M.

Let <& be an invariant subalgebra with 1 of the maximal
modular algebra of the generalized Hilbert algebra M & such that
(1) &#*(<#) is separable, and (2) 7, is a type III primary state of
M; on an open dense subset Y, of ¥ (Theorem 15). Let %f =v be
in ;. We show that 7, can be decomposed as required in part (iii)
on ¥,. Let p be the canonical representation induced by z, and let
p’ be the projection of H(zr,) onto the subspace generated by
L*#)e(v). The map ¢, of p(M;) into B = p'o(F*(<#))"p" given by

&) = p'xp’

(Corollary 5) has the properties: (a) &,(x*) = ¢ (x)*; (b) &x) =0 if
r=0; (c) e(yrz) = e(Y)e(w)e(2) if y, 2z are in p(F*(Z)); and (d)
e(0(F*(#))) is o-weakly dense in B. The set E of linear maps ¢
of o(M;) into B satisfying properties (a), (b), (¢) and &(x) = ¢,(x) for
z in o(F*(#)) is a convex set which is compact in the topology of
pointwise o-weak convergence of the space Z(0(M;), B) of bounded
linear operators of p(M;) into B. The canonical representation induced
by w,., -€-p0 is a type III (resp. a type III factor) representation of
M; if ¢ is a point (resp. extreme point) of E. A suitable adaptation
of the proof given by S. Sakai ([28], cf. [29,4.6.9 and 4.6.10]) for
extreme points can be used in the present case. By the Choquet-
Bishop-de Leeuw theorem (cf. [23, §4]), there is a Borel measure
1t on E quasi-supported by the extreme points of E such that

¥ie) = |w@ane)
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for every continuous linear functional 4 on the space <Z(o(M;), B)
with the specified topology. In particular, we have that

T,(%) = @eu)(0(X)) = @,y(E0())) = ch(v)(e(P(x)))dﬂ(e) .
for all x in M;. Now the map
8————>Cl)e(,,)'€'p(f-f)

is an affine homeomorphism of E onto a convex w*-compact set F),
of type III states of M whose extreme points are primary type III
states. Identifying the measure ¢ on E with the measure induced
on F, by the homeomorphism, we get a Borel measure ¢ = z, on F
that is quasi-supported by the extreme points such that

s = | o@dpm(@)

for every x in M. Since the set {Y'|}'f e} is an open dense subset
of X, we have proved that conclusion (iii) holds true.
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