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TYPE ANALYSIS OF THE REGULAR REPRESENTATION
OF A NON-UNIMODULAR GROUP

COLIN E. SUTHERLAND

This paper is concerned with finding necessary and
sufficient conditions for the von Neumann algebra ~^?(G)
generated by the left regular representation λG of a locally
compact, separable, non-unimodular group G to be type I,
semifinite, or to have a central summand of type III. In
the case where the modular function δG of G has closed
range, we are able to give a complete solution in terms of the
orbit structure of the natural action of G on the reduced
quasi-dual (ΓH, μH) of the maximal unimodular subgroup
H = kernel δβ. Thus ~^(G) is semifinite if and only if the
action is smooth with isotropy subgroup H, and of type ΠI0

if and only if the action is completely nonsmooth. Conditions
of a similar type are given which are necessary and sufficient
for w^(G) to have a summand of type IIIx, λ e (0,1].

In §2 we develop the necessary preliminary material for the
later work, establishing the connection between semidirect products
of groups and crossed products of the corresponding group algebras.
Sections 3 and 4 give the proof of the above mentioned criterion of
semi-finiteness; this proof relies heavily on the theory of modular
automorphisms, and crossed products as developed in [3], [20], and
[21]. In §5 we turn to examples; we exhibit groups Gλ, λ e [0,1]
with ^'/?(Gχ) a factor of type III;, and also groups G0)λ with ^/f(G0)X)
a factor of type IΠ0 with T(^f(GQ,x)) = 2π/log XZ. In fact, we
construct two such families of groups; one is a variation on Gode-
ments example of a group with type III regular representation, and
for these groups the associated von Neumann algebras are not
hyperfinite; the other family is constructed using the semi- direct
product of an abelian group by a solvable group so that the as-
sociated von Neumann algebras are hyperfinite. This second family
of examples is due to A. Connes (private communication). In the
final section we use the results of § 3 to give a form of the Plancherel
theorem for locally compact separable groups G for which δG(G) = R+

and Λϋ{fjr) is semifinite. For the most part this is an adaption of
the more general formula in [18].

2* Preliminaries* Throughout, G will denote a locally compact
separable non-unimodular group, with modular function δ0.

PROPOSITION 2.1. Suppose δG(G) = i?+. Then there is a continu-
ous one parameter subgroup L = {gt: teR} of G with δG(gt) — e*.
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Proof. Suppose first that G is connected. Then by a theorem
of Iwasawa [14] there are continuous one parameter subgroups
Vlf fVr of (?, and a maximal compact subgroup K of G such that
G = KVXV^ , Vr. Clearly δG(K) = {1}. Thus there is a one para-
meter subgroup, which we may take as V19 such that δβiVΊ) Φ {1}.
Since Vt is connected, we will have δσ(Vλ) = R+. Write V1 = {/̂ : ί 6 #};
since the map t e JB -> 8G(fct) e JS+ is continuous and onto, we have
δa(ht) — eat for some aeR. But then if gt = ha-ιt, δG(gt) — e* and
L = {gr:reR} is the desired subgroup.

If G is not connected, let Go denote the connected component of
the identity of G. Now either δa(G0) = {1}, or <5G((?0) = R+. In the
latter case the argument above shows we may find the desired sub-
group within Go. If on the other hand δG(G0) = {1}, then δG induces
a continuous homomorphism of G/Go onto R+. Since G/Go has a basis
consisting of compact open subgroups, this homomorphism is locally
constant on G/GQ. But this contradicts the assumed separability of
G. Thus in fact the desired subgroup may be found within GQ.

Proposition 2.1 greatly simplifies many of our later computations,
the main reason being that the cocycle naturally associated with the
cross-section for GjH may be assumed to be trivial. We note also
that in the case δG(G) is singly generated, say {enT: neZ} there is
trivially a subgroup {gn:neZ} of G with δG(gn) = enT, (neZ).

Our next preparatory result is on the interconnection between
crossed products for von Neumann algebras, and semidirect products
for groups.

First, let N be a locally compact group, with left Haar measure
dN, and let a be a continuous automorphism of N. It is well known
that there is a constant δ(a) such that

\ ξ(n)dN(m) = δ(a) \
JN JN

for every function ξ which is continuous and of compact support on
N. Define a unitary U(a) on L\N, dN) by

(U{a)ξ){n) = δ(a)^ξ(a-\n)) , ξ e L\N) .

Then we have

(U(a)X*(n)U(a)*ξ)(m)

i.e., U(a)XN(n) U(a)* = XN{a(n)) n e N .

Now suppose K is a locally compact group and a: K —> Aut N is
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an action of K on N by automorphisms, such that (k, n)-* ak(n),
(ft, n) eKxN, is continuous. For ke K, let U(k) = U(ak) be as above,
and define an action of K on %../?(N) by ak(x) = U(Jc)xU(Jc)*. Since
U(jk)U(h), we have άkah = akh. Since k—>U(k) is strong *-continuous,
we have a continuous action of K on c /̂ (iV) in the terminology of
[21].

We may also consider the semidirect product N Xa K of N by
iί; the group multiplication is given by (n, ft)(m, Z) = (nak(m), kΐ) on
N x K. The following result is certainly well known, but the author
knows of no proof in the literature.

PROPOSITION 2.2. The crossed product ,^i /s(N); a, K) is
unίtarily equivalent with ,./f(N Xα K).

Proof. Noting that the automorphism group {ak: k e K) is im-
plemented by the family of unitary operators {U(k): k e K}, the
indicated crossed product is generated by the operators on
L\N x K, dx x dκ)

(m, k) - ξ(n~ιmy k)

\(V(h)ξ)(m, k) - δfe)1/2ί(αΓ(m), h~k)

for neN, heK.
On the other hand ^./f(N Xa K) is generated on L\N x K, dN x dκ)

by the operators

(2.2) (λ(w, h)ζ)(m, k) = δ(ahγ
l2ζ(aΰι(n-ιm), h~ιk)

for (n, h) GN X if. But specializing the equations (2.2) to the group
elements (n, e), n eN, and (β, h), heK, we obtain the equations (2.1)
as desired.

Now, with N an arbitrary locally compact group, we let φN be
the canonical weight on the algebra ^-/?(N) (see [20]). If a is a
continuous automorphism of N, and a the corresponding automor-
phism of ^'/f(N) we have

LEMMA 2.3. ψN(a(x)) = δ(ά)φN(x); xe

Proof. Let SίΓ{N) denote the space of continuous compactly
supported functions on N with the usual structure of a left Hubert
algebra. For ςeSΓ(N), we let π,(£) denote the operator of "left
multiplication" by ξ on L\N). Recall that φN(πι(ξ$ * ζ)) = \\ζ\\l and
that it is sufficient to check the desired identity for operators x of
the form τrj(£* * £) for ξeSΓ(G). (The general case when ξ is in the
full left Hubert algebra determined by ,%^(G) is in fact identical.)
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So let ξe.5ZXG). Then

\ ζ{n)XN{a{n))dN{n)
JN

\ ξ{a-\n))XN{n)dN{n) • 3(a)
JN

Thus cc{π^ * ξ)) = d(a)^((U(a)sy * U{a)ξ) and

We recall that if G is a locally compact group and H = ker Ŝ ,
then H is a closed normal unimodular subgroup. Furthermore, for
g 6 G, we may define an automorphism α^ of H by α/A) = ^Z^^"1;
clearly a/xg, — agg,, and the map (g, h)eG x H-+ag(h) eH is
continuous. According to the results of [22], we have δ(ag) = δβ(βr),
so that also φH o ag — δG(g)φH. (We note that in this case φH is
actually a trace since H is unimodular; we will write τ11 or τ for
^ . )

As a matter of notation, if a is a continuous automorphism of
a locally compact group iSΓ, then a will denote the corresponding
automorphism of ^(N), and ά will denote the restriction of a to
the centre %T{N) of ^/?(N).

Finally, we recall the following basic facts from [18]. Suppose
G is separable and non-unimodular, and H = ker δ0. Let {σt:teR}
denote the canonical modular automorphism of ^/f(G), so that

σt(XG(g)) = δβ(ff)"λ*(0)). Let λ̂  - ί® \°dμβ(ω) and λff - Γ KdμH(Ύ)
JrG yrH

denote the central decompositions of Xσ and XH. For any represen-
tation π of if, and any element geG define (ocgπ)(h) = π{g~ιhg).
Since αgλ

fl is unitarily equivalent with λff, we may consider άg as a
transformation on the reduced quasi-dual (ΓH, μΠ) of H. For the
proof of the following facts, see [20].

THEOREM 2.4. ( i ) The fixed point subalgebra ^£{G)Q of
under {σt: teR} is {XG(h): h e H}". Thus %(β) c {XG(h): h e H}".

(ii) The map (g, 7 ) e f i x Γ 5 - > &g(y) G ΓH is Borel. Under the
identification of L°°(ΓH, μΠ) with %'{H), άg is a point realization
of ag.
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(iii) There is an algebraic isomorphism K carrying .^(G) o to
such that

(a) /c(XG(h)) = XH(h)
( b ) fc(^(G)) c ^(H), and ιc(%ί(G)) is the fixed point subalgebra

of 3T(H) under {άg: geG}.

μ?dm(Q be the ergodic decomposition of μπ

{with respect to {ctg:geG}) and λf = [ λfdμf(τ). Then XG =
Ind# Xfdm(ζ) is the central decomposition of XG, so that (X, m) is

X

measure isomorphic with (ΓGj μG).

3. The structure theorems; the case δG(G) — R+. According to
Theorem 2.4 (iv), in order to study the components in the central
decomposition of λ ,̂ it is necessary to know the ergodic decomposi-
tion of the measure μH on ΓH. Our first task then is to find an
alternate description of the automorphism group {άg: g e G) on βf(H).
We note the automorphisms άh(h 6 H) act trivially, so that we should
regard the action as an action of G/H. In the case SG(G) = R+, we
identify G/H with the subgroup L of Proposition 2.1, and for gt e L,
we let άt = ά9t on ^{H), and at = ag% on ^/t{H).

Throughout the rest of this section u(t), v(t) will denote the
operators on L\R) defined by

(u(t)ξ)(s) = e

(v(t)ξ)(s) = ξ(8 - t) .

THEOREM 3.1. Suppose δG(G) — R+. Then there is an algebraic
isomorphism of the crossed product &(^(G); σt) with ^f(H) (x)
.^?(U(R)), which carries the automorphism group {θt:tβR} dual to
{σt:teR} to the automorphism group {at (x) Ad v(t): t eR}. Thus the
restriction {θt:teR} of {θt:teR} to the centre of ^{^/ίf{G)\σt) is
equivalent to the action {άt:teR} of R on

Proof. From the results of [21], the second crossed product
σt)\θt) is isomorphic with ^//(G) (x) &?(L\R))9 and
is isomorphic with the fixed point subalgebra of

under the automorphism group {σt (g) Ad
We first show that &(^/f(G); σt) is isomorphic with

Consider the automorphism group {σt0 Ad v(f)*} on

For ζeL\G x R), define (^ζ)(g, p) = ^ e-ίspζ(g, s)ds.

Noting that ^(^T(G)) (g) ̂ {L\R))^" = Λ(G) (x) &?(L\R)) and that
v(t)*)^~* =l®t6( ί )* , we are invited to consider the action

g> Aάu(t)*} of R on ^T(G) (x) ^{L\R)).
Define a unitary operator TF on L\G x R) by (TFfXflr, p) =
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ξiβp'g, V) (L, = {gp: p eR}). Note that if pG denotes the right regular
representation of G on L\G) then W(ρG(g) (x) 1)W* = pG{g) (g) 1, so
that TFe. ^(G)(x) &?(L\R)) and TF(^(G))®^(L2CR))T7* = ̂ T(G)(x)

Furthermore, if J is the canonical modular operator of
), then

9 v)
, p) .

Thus TF(J" (8) !*(*)*) T7* = J " (x) 1. Consequently for x 6
^(L2(/2)), ^ is fixed under ^(x) Ad^(ί)* if and only if TF^TΓ* is
fixed under σt®i (where i denotes the identity automorphism).
But, by Theorem 2.4 (i) and (iii), the fixed point subalgebra of
{σt(g>i:teR} on .SS(G) (x) &{L\R)) is isomorphic with

as required.
It remains to identify the automorphism {θt:teR} on

This is possible mainly because Takesaki's Duality
theorem has a particularly explicit formulation in this context.
Following [21], the generators of ^(,^(G);σt) on L\L\G)\R) are

ί(λ?G/)£)(8) - SoigyWigMs) flr 6 G

The generators of the second crossed product, acting on
L\L\G)\ R x R) are then

(3.2)

) = hti)-^αti)&*, v) </ e G
, P) = β"iίpί(s - t, v) ί 6 R

(u2(q)ζ)(s, q) = ξ(s, p - q) g 6 R

where the operators XG(g), v2(t) are the images of the operators
described in (3.1). Performing the Fourier transform in the second
variable as in [21], we obtain generators

(3.3)

Letting ^A^ be the algebra generated by the operators described
in (3.3) and & the subalgebra generated by {v3(t):teR} and {us(q):
qeR}, then ^V* is generated by & and an isomorphic copy ^£ —
π^y/ί{G)) of ^/T(G) in such a way that ^V = ̂  ® ^\ the normal
isomorphism π:, /?(G) —> ̂ ^* (Ί . ^ ' is defined by

«, V) - δβ(g)-**\°{g)ξ(β, p)

9 p) =ζ(s-t,p- t)

, p) - e-'"£(8, p) .

(π(x)ξ)(s, p) = σ7±p(x)ξ(s, p) .
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In our situation,

(π(Xc(g))ξ)(sf p) = δG(grί{s-p)*>G(9)ζ(s, p)

= M(g)u*(χ(g))ξ)(s, P) ,

where χ(g) — log δG(g). Thus, in ^ 7 the first crossed product is
generated by the operators

(π(λ(<7))u 3(χ((7)) geG

\vz(t) , teR .

Thus under the identification of Λ" with ^ ( G ) 0 &(L\R)) the
first crossed product is generated by the operators

( λ β ( f l 0 0 u ( χ ( j g ) ) , g e G
(0.0) Ί

(1 0 tf(J) , ί 6 Λ .

Since the dual automorphism {0t:£eJR} satisfies θt(X?(g)) =xζ(g), and
^ί(^i(s)) — β<βt î(*)f examination of the generators (3.4) shows that the
dual automorphism on the first crossed product, viewed as a sub-
algebra of ,y/{G) 0 <^'(L2(R)), is given by θt = Ad (1 0 w(ί))- Per-
forming the Fourier transform as in the first part of the proof, our
generators become XG(g) (x) v(χ(g)) (g e G) and 1 (g) w(t) (t e R) and the
automorphism group in question {Ad (1 0 v(t)): t e R}. Thus, we
compute the image of 1 0 v(t) under the unitary operator W defined
in the first part of the proof.

(W(l 0 v(t))W*ξ)(g, p) = ξ(gP-tg^g, p - ί)

- ζ(gτιg, P-t)

0 v(t)ξ)(g, p) .

So W(l 0 v(t)) W* = XG(gt) 0 v(t) = w(t). Thus the dual automorphism
group on . //(G\ 0 ,^{L\R)) is given by Aάw(t). But when we
identify .,//{G\ with .^T(iϊ) as in Theorem 2.4 (iii), we obtain
precisely the automorphism group {άt 0 Ad v(t): t e R) as required.
The final conclusion of the theorem follows trivially.

REMARK, (i) Suppose that the subgroup L of Proposition 2.1
may be chosen to be closed in G (examples indicate that such a
choice is always possible, although author knows of no proof to
support this contention). Then G — H XSL and the theorem just
proven is in effect the Duality theorem of Takesaki applied to the
convariant system (^Xff); a_t). Even without the assumption that
L is closed, however, a straight-forward computation shows that
^(^f(H); a_t: teR)- ,^(G).

(ii) A similar theorem is possible (and will be proven) in case
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δβ(G) is closed in R+. However, in case δβ(G) is not closed, the
analogue of Theorem 3.1 remains unknown. It is not known whether
or not in this case we even have &(^/f(G); σt) ~ ^/έ{ΈL) (x) ^{L\R)).
To some extent this difficulty may be removed by considering G x S
in place of G, where S is a group with δs(S) = R+, and for simplicity

^e(S) a type I factor (e.g., S = j ^ J): a Φ 0, α, beRΪ). But then

further analysis is difficult since the relationship between ker δG and
ker£GX/S appears to be very complicated.

Our next objective is to combine Theorem 3.1 with the direct
integral theory, and, at the same time, to clarify the relationship
between the crossed product description of ^(G) as &(^/έ(ΐL)\ at)
and the description of the central decomposition of XG given in
Theorem 2.4 (iv).

Let ^ be an arbitrary von Neumann algebra with separable
predual, and {σt:teR} an arbitrary modular automorphism group
on ^/f. It is known from the results of [18] and [19] that if Λ£ =

SΘ
^/f(ω)dμ(ω) is the central decomposition of t^Γ then

r
(a) the modular automorphism group {σt:teR} decomposes,

S Θ
0t,ωdμ(ώ) so that {σttω: t eR} is a modular automorphism group

r
on ^£{ώ).

(b) there is a canonical isomorphism of &^/£\σϊ) with

(c) in the decomposition (b), the dual automorphism group

S Θ
θt,ωdμ(a)) and {ΘUω\ teR} is dual to

Γ

{σt>ω: teR} on .^?(^(ω); σtt(ϋ).
(d) the diagonal subalgebra of the decomposition (b) is the fixed

point subalgebra of the centre of &(^£\σ^ under {θt: t eR}. (This
is not actually proven in [19] but may be seen easily be observing
that {θUω:teR} is ergodic on the centre of ^ ( ^ ( ω ) ; σt>0)) so that
(c) gives the ergodic decomposition {θt:teR} on the centre of

^//\ σt).)
In our situation, we consider the central decomposition

3
{ ( ) ( ) , Xί}dμG(ω)

rG

of ^/f(G) and λG. Thus (b) furnishes us with a decomposition of
^f(H) (x) &{L\R)) and hence of XH, with diagonal subalgebra
tc(Z(G))cZ(H). By Theorem 3.1, the dual automorphism group on

is given by at (g) Ad v(t). Let XH = ( θ XξdμG{ω)

be the decomposition of λ7/ over tc(%ί{G)) and let at = I at ωdμG(ω)
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be the corresponding decomposition of the dual automorphism. Our

next result is intended to clarify the description of the central

decomposition of Xσ given in Theorem 2.4 (iv) by relating it to the

crossed product description.

XG

ωdμG(ω) be the central decomposi-

tion of XG, and XH = \ X^dμG((ϋ) be the decomposition of XH arising
JrG

from the isomorphism of &(^/f(G);σt) with Λ€{H) (X) &{L\R)).
Then the representations XG

ω and I n d | λ ? are quasi-equivalent.

Proof. Let πG = Ind£ X% we first write down generators for the
von Neumann algebra {πG(G)}'\ Recall that πG

ω acts on the Hubert
space £(ω) of Borel functions η: G -> <%"(ω) (the space of the repre-
sentation λf) and which satisfy the properties:

(a) η(gh)=Xξ{hY'η(g); heH

(b) \\y(9)\\2dg < oo
JβlH

where dg is an invariant measure on G/H, which, in this case may
be taken as Lebesque measure on R. The action of π° on $(<») is
given by

(πΊ(g)V)(ffι) = vig-'gd Ve f&ω), geG .

However, §(ΰ)) may be identified with L2(i^(ή)); R) by means of the
unitary operator U: #(<») -^L\<%f{ω); R) defined by (Uη)(t) = η{gt) so
that (U*ζ)(9) = *.s(lΓ19z<.))ξ(χ(g)). We then compute

{Uπl{g)U*ξ){t)

- χ(g)).

Specializing to the case g = heH, g = ge 6 L we obtain generators
for {πG

ω(G)}" on I/{r9έf(ω); R) of the form

(3 6) pZ(λ)7)«) - K(gτιhgt)y(t) heH
m())(t) = η{t - s); seR.

On the other hand, the action of the automorphism group
{at,m; teR) on ^//{H){ω) = {X%(H)}" is determined by atiύ>xξ(h) =
λ.fCsfίfefifΓ1), so that the crossed product &(^/?(H)(ω); atι<0) has gener-
ators on L\£^{(ύ); R) given by

(3 7) fftWίXί) = ^(grhgMt) heH
l(Hs)ξ)(t) = ξ(t - s) seR.
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Comparison of (3.6) and (3.7) shows that {πl{G)}" and &{^tH){ω)', άUω)
have identical generators.

We consider now the dual automorphism {Θtyϋ): £ el?} of ^(H)(a))(g)
<&{L\R))\ since θUω{x) = (1 (x) v(t))((άt,ω (x) i)(α?))(l (x) t (ί)*), and
Ad (1 (x) v(ί)) commutes with atiω9 the automorphism groups {#ί>ω: t e R}
and {αt,ω (g) i: ί e i?} are equivalent in the sense of [21]. We let πί,
πl denote the canonical inclusions of ,/f(H){ω)®^(L\R)) in the
respective crossed products; the above observation combined with
the results of [21] shows there is a normal isomorphism ψ of {π%G)}"
into ^t//(H)(ω) (x) &?(L\R))\ at>ω (x) i) with

But from the duality theorem, &(,//(H){ω) (x) ̂ (L\R)), άUω ® ΐ) is
isomorphic with ^/f(G)(ω) (x) &(L\R)). We compute the images of
πl(X^(h) (g) 1) and λ(s) in ^/f(G)(ω) 0 <^{L\R)). For this, it is easiest
to note that from [21], there is a normal isomorphism ψ\ of
^(^(H)(ω)®.^(LXR)); aUu®i) with .^(.^(ίir)(α>)(x)^(L2(/ί)); θUω)
carrying πa

ω(x) to πi(α) (x e ^/f(H)(ω) ® ^{L\R))) and λ(«) to λ(s).
Notice also that the unitary operator W defined in the proof of Theorem
3.1 is decomposable over %*(G) ® 1, and examination of equations
(3.4) and the form of W show that the images of τci(X%(h) (x) 1) and
λ(s) in ,̂/S(G)(ω) 0 ^{L\R)) may be taken as being defined by

l(λ()ί)() £(p - 8) .

Finally, we may define a unitary operator Vω on ^(α>) (x) L2(R),
where Sf(ω) is the Hubert space of the representation λ2, by

Thus, from (3.9) we'have

(3.10)

However, from the proof of 3.1, we see there is an isomorphism δω

of ,y/(G)(ω) into ^{G){ω) (g) έ$(L\R)) with δω(\%g)) = λ2(ff) (g) v(χ(g));
it is necessary to take the Fourier transform in equations (3.5).
Thus the representation of G determined by (3.10) is quasi-equivalent
with λ2.

Before proceeding with our main theorem we recall the following
criteria, proved in [21], for the type of a crossed product. Let ^zf0

be a property infinite semfinite von Neumann algebra, and {θt:teR}
a continuous one-parameter automorphism group on ^%. Let ^f =
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%i\θ). We also suppose that , ̂  admits a faithful normal
semifinite trace τ with τ o θt = e~fr. Then

( i ) t ^ is a factor if and only if {θt} is ergodic on the centre
3?o Of ^%.

(ii) if . ^ is a factor and toeR, then e ί o eS( .^) if and only
if θfQ is the identity on ^ 0

(iii) if ^ ^ is a factor, then it is semifinite if and only if the
action of {θt} on JΓ0 is equivalent to translation on L°°(R).

Conversely, if ^f is a type III factor and {σt} is any modular
automorphism group on ^f, then &{^€\ at) is properly infinite,
semifinite, and possess a faithful normal trace τ with τoθt = e~~tτ
({θt} is the dual automorphism group.) We also note that if ^/ί is
not necessarily of type III, but is a factor, then the restriction of
the dual automorphism to the centre of ^ ( ^ ^ σt) is still ergodic.

Let G be a locally compact separable group acting on a standard
measure space (X, μ) so that the map (g, x) eG x X —> βg(x) is Borel.
(Here /3: G —» Aut X is a homomorphism.) An invariant Borel set
B a X will be said to be smooth for μ if there is an invariant μ-
null Borel set BίaX such that (2? — J5J/G is countably separated in
the quotient Borel structure (see [11]). We will have need of the
following

LEMMA 3.3. Let G, (X, μ) be as above. Then there is an in-
variant Borel set BaX which is smooth for μ, and such that if
Bι is any other invariant Borel set which is smooth for μ, then
μ(BL - B) - 0.

Proof. Follows trivially from the observation that any family
of disjoint invariant Borel sets of positive measure in X is countable,
and a simple exhaustion argument.

In the particular situation where we consider the action {άt:te R}
of R (or G/H) on (ΓIIf μH), we let BH be an invariant Borel set in
Γπ satisfying the conclusion of Lemma 3.3. We refer to BH as the
smooth part of (ΓH, μπ, άt) (or just of Γπ).

Finally if ^ is an arbitrary von Neumann algebra with separa-
ble predual, and p is a central projection in . /ff we will say that
p is of pure type IΠλ (λ 6 [0, 1]) if μ{y: ,/S(Ί) is not of type lllx) = 0

S Θ
,yf(Ύ)dμ(7) is the central decomposition of κ./?p.

Γ

We note that the set {7: ̂ €"(τ) not of type III;} is in fact Borel by
the results of [19], and the definition makes sense.

We keep the notations G, H, L, (Γπ, μH), {άt:teR}, %T{H),
{ΓG, μG) etc. as developed above. We recall that to each αΓinvariant
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Borel set in ΓH (or αΓinvariant projection in %*(H)) there corresponds
a projection in ^Γ(G), and vice versa, via the isomorphism K.

THEOREM 3.4. With δo(G) = R+, we have:
( i ) The maximal central projection pr of type I in %*{H), and

the maximal central projection qτ of type I in %*(G) satisfy
&(QI) — Pi' Thus ^f(G) is of type I if and only if ^S{Ή.) is of
type I.

(ii) The maximal central semifinite projection qu in 2f{G)
corresponds to the set

Pii = {7sBH: the isotropy subgroup of 7 uder {άt:teR} is
trivial}.

(iii) For X 6 (0, 1] the maximal central projection qx in %ί(G)
of pure type IΠλ corresponds to the set

Pλ — {ΎSBH: 7 has period precisely logλ under {άt:teR}}.
(iv) The maximal central projection q0 of pure type ΠI0 in X(Gr)

corresponds to the set

PQ = Tn — BH .

REMARK, (i) Considering the action {άg: g e G) of G on (ΓH, μH)
we may redefine the sets PII9 Pλ by

Pλ - {7 6 Bπ\ δσ(Gτ) = {Xn: neZ}} λ e (0, 1] ,

where Gr is the isotropy subgroup of 7.
(ii) According to the theorem, ΓH is split in four distinct

parts. First there is the nonsmooth part (IΠ0). There is also the
fixed points under {άt: teR} (IIIJ. Within BH, there are those points
whose orbits are "loops" (type IΠ^, with the "size" of the "loop"
determining λ). Finally there are the points with orbits which are
copies of the line, corresponding to the semifinite part of

Proof of 3.4. We let E be a Borel cross-section for the action

of {at:teR} on BH. As usual, we let XG = \ XldμG(ω) and XTI —

XfdμH{7) be the central decompositions of XG and XH respectively.

( i ) Let pl9 qΣ be as described in the statement of the theorem
and let άτ

t, σ\ be the restrictions of at, σt to ^{H)x = ^^(H)pj
and ^/f{G)j; — ,^£r{G)qI respectively.

The crossed product &{^f(G)Iy σl) is isomorphic with ^^(G)/ (x)
I/TO(JB), since σ\ is inner; on the other hand it is also isomorphic
with ,^{H)κ{qi)(g)^{L\R)). Thus ^(H)κ(Ql) is of type I and

^ Pi-
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Conversely, the crossed product ^ ( ^ X f f ) 7 ; a\) is isomorphic
with ^ί{JI)i ® L°°(R) ({aϊ: t e R} being inner, as ^{JΆ)i is of type
I). On the other hand this crossed product is isomorphic with
Λ?(G)κ-nPI) by Proposition 3.2. Thus tc'Xpj) ^ qτ and /c(g7) = pτ.

(ii) Let P 7 7 be as defined in the theorem, and pu be the
corresponding projection in %?(H). (Note that Pn is Borel as the
map 7 6 ΓH —• isotropy subgroup of 7 under {άt: t e JB} is a Borel map
from ΓH to the closed subgroups of R, in the sense of [13].)

We identify P 7 7 with {Pn f) E) x R) the action {άt: teR} on P 7 7

is given by άs(y, t) = (7, t — s) for 7 e P 7 7 Π E and s, teR. Since
{α^ίe/ί} is a point realization of the restriction of {at:teR} on
pIl9 and {at: teR} is equivalent to translation on R, the crossed
product of ^€(H)pII with respect to the restrictions of {άt\teR} to
J^t{H)pu is a direct integral of semi- finite factors (by Takesaki's
criterion). On the other hand, this crossed product is ^^(G)κ~ί(pII).
Thus tc~ι(Pn) ̂  g77.

Conversely, if σ1/ denotes the restriction of σt to ^r(G)qIl9 then
^(^f(G)IZ; σl1) ~ ^€{G)qu ® L°°(Λ), since {σ1/: teR} is inner.
Furthermore the restriction of the dual automorphism to the centre
of the crossed product is given by translation on L°°(R). This crossed
product may also be thought of as ^f(H)κ{qil) (x) <^(L\R)). If P'n
is a Borel set realizing ιc{qn) in ΓH, then it is clear that
PniP'u — Pa) — 0, and that almost every point in P'n has trivial
isotropy subgroup under {άt: teR}. Thus ιc(qn) ^ p 7 7 as required.

(iii) Let Pλ, qx be as in the statement of the theorem, and pλ

be the projection corresponding to Pλ in %*(H).

The representation λf of H defined by λf (ft) = ^H(h)pλ evidently

XfϋdμG((ϋ) of representations having the
properties

(a) Xξ is {άt: t 6/2}-invariant, and the corresponding action of
R on the centre of {X%(H)}" is periodic of period logλ.

(b) the representations Ind^λf furnish the central decomposi-
tion of the restriction of XG to ιc~\pλ). Using Takesaki's criterion,
we conclude that tc~\pλ) <; qx.

So far the proof has been little more than an interpretation of
[21] in the group-algebra context. The converse of (iii) is a little
more delicate and will require an auxilliary result, which may have
independent interest. Let q0, qni be the maximal central projections
in %{££) of pure type ΠIQ, and type III respectively. Choose
invariant Borel sets QQ, QIU realizing the projections κ(q0) and tc(qin)
respectively. Suppose for the moment we have been able to proof
that Q777 — Qo c BH (this will be the content of our auxilliary result).
Then we will have Po C Qo On the other hand, the first part of
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the proof of (iii) shows that Γπ — PQ £ ΓH — Qo so that we will
have Po = Qo (or more precisely κ(q0) — p0). But then we will also
have tc(qλ) — pλ (λ 6 (0, 1]); to see this note that we already have
£(#/) ^ Px, and the projections qλ (X e (0, 1]) are disjoint. Thus if for
some λ0 e (0, 1] ιc{qλ.) > 2?^,then tc(qλQ) Π pQ Φ 0. But then from above
£((2%) Π £(#0) ^ 0 and so g^ Π <z0 Φ ®(\ G (0, 1]). This is a contradiction,
and κ(qλ) = p;. for all λ 6 [0, 1],

Before giving our auxilliary result, we note some other facts
which are necessary for its application. Consider the action
{άt:teR} of R on QIU - Qo. Let πTI be defined by πΠ(h) -

S ω
μωdμ(ω) be the ergodic decomposition

_ v r©

of the restriction μ of μu to Q/7/ — Qo, and πn = \ π"dμ(ω) the
corresponding decomposition of πIΓ. For each ωeX the representa-
tion Indfl π% of G generates a factor of type IΠλ for λ = λ(tt ) Φ 0.
Furthermore, the map ω e X —> X(ω) e (0, 1] may be assumed Borel,
from the results of [19]. Also the action of {α^ίeiί} on the centre
of {X%(H)}" is equivalent to the canonical action of JR on Lco(R/X(ω)Z).

PROPOSITION 3.5. Let (Yt μ) be a standard measure space, and
{άt:teR} be an action of R on Y with (y, t) —> άt(y) Borel, and

μωdμ(ω) be the ergodic decomposion of μ with

respect to ά. Suppose there is a Borel function λ:X— > (0, oo) such
that for almost all ωe X, the action {άt\ t e R} on (Y, μω) is equivalent
to the canonical action of R on R/X(co)Z. Then Y is smooth for
μ under at.

Proof. Consider A = {(y, ώ) e Y x X: μω(έ?(y)) > 0} where &\y)
is the orbit of y under {άt, teR). Note that for fixed yeY, ω —>
i"ω(^(l/)) is Borel, and that for fixed ω e X, y —> μ<Xέ?(y)) is also Borel
to see this, note that if we normalize the μω to be probability
measures, and choose (arbitrarily) y{(θ) 6 Y with μω(^(y(θ)))) — 1 (such
points exist by hypothesis), then {y: μω(έ?(y)) > 0} = έ?(y(ω)). Thus
A is Borel as {y, ω) ~> μω(^(y)) is Borel.

Also, the projection of A on X is (to a μ-null set) all of X.
Thus by the cross-section theorem [2], there is a Borel map y: X—>Y
with (y(ω), ω)eA for almost all ω e X.

We claim that y is injective on the complement of some null
set in X. For if y{ω,) = y(ω2) -= y, then μωi(έ?(y)) = μω2(έ?(y)) = 1,
and so μωi and μίϋ2 are mutually absolutely continuous. But this is
excluded by the construction of the ergodic decomposition. Thus
the range of y, say E, may be assumed Borel and meets each orbit in
at most one point. The saturation S of E is also Borel ([23]); since
μω(Y- S) = 0 for almost all ω, μ(Y - S) = \ μω(X - S)dμ(ω) = 0,

I.Γ
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so that Y is smooth for μ.

4* The structure theorem; the case dG(G) — {enT: n 6 Z). We
turn briefly to the case where dG(G) is a singly generated subgroup
of R; δG(G) = {enT: n eZ}, where we suppose for convenience that
T > 0. Again, our method is to identify the automorphism group
of &(^'/?(Gr)\σf) dual to {σt:teR}, and then to use Takesaki's type
criterion. In this case however, ^ ( . ^ f ((?); σt) and ^/f(H)0^(L\R))
are not necessarily isomorphic, and we need instead to utilize the
notion of "induced covariant system" as expounded in [21].

We choose once and for all an element gosG with δG(g0) — eτ,
and denote by aQ the automorphism of H determined by cco(h) — gohg^\
Of course in this situation G is the semi-direct product of H by Z
with respect to aQ, and ^£{G) = . ^ ( ^ ( ί f J α ^ e Z ) .

Recall that σt(XG(g)) = dG(g)uXG(g), so that {σt:teR} is periodic
of period 2π/T. Thus the modular automorphism should be considered
as an action of B/(2π/T)Z on ^T(G). Let ε: R -+R/(2π/T)Z be the
canonical homomorphism, and define an action of R/(2π/T)Z on .,//{G)
by

ΨeUx) - σ.(x) x e ^€(G) .

We identify the dual of R/(2π/T)Z with TZ via the duality
<ε(s), nT) = eis%τ. For convenience we introduce the following
unitary operators; on L2(R/(2π/T)Z) define operators p(ε(s)) (seR)
and q(nT), (neZ) by

f(p(e(β))f)(e(t)) - f(e(ί - β))

l((
and on L\TZ) define unitaries p(ε(s)), q{nT) (seR,neZ) by

= e-ίsmTξ(mT)p
{((T)ξXT) - f((m - n)T) .

Recall that the Fourier transform J^. L%R/(2π/T)Z) -> L\TZ) defined

by ( ^ ( w Γ ) = \ e~inTsξ(s)ds carries p to p and g to q.

PROPOSITION 4.1. There is an algebraic isomorphism of
^?0^f(G); <f£(8); R/(2π/T)Z) with ^r(jff) (g) &(L\TZ)) which carries
the automorphism group dual to {̂ e(s)} £o {άo 0 Ad q(nT)}. Thus
the restriction of the dual automorphism to the centre of the crossed
product is equivalent to the action {ά%:neZ} of Z on

Proof. As in the proof of Theorem 3.1, the indicated crossed



240 COLIN E. SUTHERLAND

product in the fixed point subalgebra of
under the automorphism group {ψε{s) (x) Adp(ε(s))*: s eR}. Further,
the generators of this fixed point subalgebra are

( λ % ) ( x ) q { χ { g ) Y geG
{ ' } 1 l®p(e(s)); seR

where χ(g) = log <5G(#) e TZ.
The dual automorphism group is given by {Ad (1 (x) q(nT)); n e Z),

and the second dual (bidual) automorphism group by {ψe(s)(g)Ad p(s(s))*}.
Performing the Fourier transform in the second variable we obtain:

'Generators: x°(g)(g) q(χ(g))* geG

: 10p(ε(s)); seR
(4.4) \

Dual automorphism: Ad (1 (x) q(nT)) neZ

Bidual automorphism: ^ ε ( s ) 0 Ad j3(ε(s))* seR.

We define a unitary T7 on L\G x ΓZ) by

As in Theorem 3.1 we compute

r, nT)

and also

= ξ(gΓngomg, (m -

- ((λ%0

%) (X) q(nT))ξ)(g, mT) .

Since TFe^^(G)(x)^(L2(ΓZ)), the fixed point subalgebra of
<^{L\TZ)) under the bidual automorphism group (4.4) is isomorphic
(via x-*WxW*) with ^f(H) (x) <^{L\TZ)), and the dual auto-
morphism is given by [a% (x) Ad q(nT): n eZ).

We let Λl = &(^Zr(G)\ ψε(s)) and {/5,Γ :%GZ} denote the dual
automorphism group on ^ J . Our next object is to relate the
covariant system {^4^ βnT) neZ} and the covariant system {&(^(G);
σt; R); θt: teR}, where θt is dual to σt on ^ ς = ^ ( ^ T ( G ) ; σt; JB).

PROPOSITION 4.2.

( i ) T%β covariant systems {Λ^; θt:te R) and Ind^z {^Vl\ β)
equivalent.

(ii) The restriction θt of θt to the centre of Λl is the identity
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if and only if t — nT for some nGZ, and, for this n, βnT is the
identity on the centre of

Proof, (i) We consider the algebra L°°(R) (x) ̂ Vl as the algebra
of all essentially bounded, σ-strong*-measurable operator fields from
R to ^Vl Following [21] we define ^/^ as the subalgebra of
L°°(R) ® Λr* consisting of operator fields x with

x(t) = βnT(x(t + nT)) a.e.

On ^€0 define an action of R by

*(« - s) .

The covariant system {^^ χs} is by definition Ind£z {^J; β).
Evidently ^ may be identified with L°°([0, T)) (x) ̂ K (with the

same measurability requirements as above). Under this identification,
the action χs becomes

ί Λ K λ , , w . (βiΛ+i)τ(x(t - r + Γ)) 0 ^ t < r

<4.5, ft ωw) = | f c ( ( ί r ) ) . r s t < τ

where s = nT + r, 0 <^ r < T.
Alternatively, Λl may be considered as acting on L\G x TZ),

with generators as given in (4.4). It is readily verified that if we
identify L2([0, T) x G x TZ) with L\G x Λ) by the unitary U,

(Uξ)(g, nT + r)= ξ(r, g, nT) (0 ^ r < Γ) ,

then the image of L°°([0, Γ)) <g) ̂  is generated on L
2
(G x JB) by the

operators

(46)
 j

(1 (x) () s e R .

But these operators are nothing but (the Fourier transforms of) the
generators of the crossed product &(^(G)\σt,teR).

A direct computation using (4.5), the form of βnT as given in
4.4, and the above identification shows that the action of χs on the
generators of &(^(G); σt) (4.6) is given by

Xs(XG(g)) Θ v(χ(g)) = XG(g) (x) v(χ(g))

and

χ.(l (g) u(t)) = eutl (x) u(t) .

But this is precisely the action of the dual automorphism.
(ii) Consider the restriction χ8 of χs to the centre Z/°°([0, T)) 0

of L°°([0, T)) (x) ,sf/;. From (4.5) it is trivial that χs being
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the identity implies that s = nT for some neZ, and that the re-
sriction βnT of βnT to %{^V^) is the identity. The converse is trivial.

We remark that the discussion immediately preceeding Proposi-
tion 3.2, and the proposition itself persists in this situation with
obvious modifications (the proof being based on the covariant system
{^T(G); ψε{s)} rather than {.̂ f (G); σj). We omit details, but will
appeal to the result when necessary.

Let (ΓH, μn) be the reduced quasi-dual of H, and ά0 the auto-
morphism of (ΓH, μn) corresponding to the automorphism a0 of H.
We note that the action {§t:teR} of R on ΓH x [0, T) induced by
the action {θt:teR} of R on L°°([0, T)) (g) %r{^//(H)) is nothing but
the flow built under the constant function Φ(τ) = 5Γ(7 e ΓH) from α0

(see [1], [12]). Here we are identifying ^K with ^//(H)®^{L\TZ))f

from Proposition 4.1.
We let n denote (normalized) Lebesgue measure on [0, T); to

continue our analysis we need to compare the ergodic decomposition
of μH (with respect to ά0) and μH x n (with respect to θt) as well
as relating the "smooth parts" of these actions (see Lemma 3.3 and
the discussion preceeding it). Throughout the following lemma, πIΊ

will denote the projection of ΓH x [0, T) on ΓH.

LEMMA 4.3. (i) Let Bz, BR denote the smooth parts of the actions

{ΓJJ, ά0} and {ΓH x [0, T); θt) respectively. Then μH(πH(BR)ΔBz) = 0.

μxdm(x) is the ergodic decomposition of μu

(with respect to a0), then μH x n — \ (μx x n)dm(x) is the ergodic

decomposition of μH x n with respect to {θt}.
^ re A ^

(iii) Let oc0=\ a0)Xdm(x) be the decomposition of a0 correspond-
J^ re ^

ing to the decomposition in (ii), and θt = I θt>xdm(x) the decomposi-
tion of {θt: teR} corresponding to ergodic decomposition of μH x n.
Then, for almost all x, {θtίX:teR} on {Γn x [0, T); μx x n) is the
flow built under the constant function Φ(Ύ) = T from the automor-
phism άOyX on (Γjy, μx).

Proof. The only nontrivial observation needed is that if B £
ΓΠ x [0, T) is smooth for μH x n, and E is a Borel cross-section for
the action of {θt\ teR} then by deletion of a null set we may assume
πH is one-to-one on E. Thus πH(E) Q ΓΠ is Borel and is a cross-
section for the action of {ά^:neZ} on the saturation of πH(E).
Parts (ii) and (iii) are trivial and left to the reader.

We turn now to the anologue of Theorem 3.4. We keep the
notations as already developed.
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THEOREM 4.4. Suppose G is separable, and δG(G) = {enT:neZ}.
( i ) Let PΪ and qΣ denote the maximal central projections of

type I in ^/?{ΈL), ̂ /f(G) respectively; then tc(qΣ) = pΣ.
(ii) Let qn be the maximal central semίfinite projection in

^?(G) and pu the central projection in ^/?{H) corresponding to
Pu = {7 6 Bz: the isotropy subgroup of Ύ under {<$<*: n eZ} is trivial}.
Then iί{qn) = pn.

(iii) For each n, let pn be the central projection in ,/t(H)
corresponding to

Pn — {7 6 J5Z: isotropy subgroup of 7 under

{αo

m: meZ} is {kn: k e Z}} .

Then fc~\pn) is the maximal central projection of ^sf(G) of
pure type IΠλn where X = e~~T.

(iv) If Po = ΓH — Bz, and pQ is the corresponding central
projection of ^/f(H), then tt~ι{pQ) is the maximal central projection
in ^<€(G) of pure type III0.

The proof of the theorem is identical in essence to that of
Theorem 3.4; the analogue of Proposition 3.5 for actions of Z is
needed also; we leave the details to the reader.

One consequence of the theorem is that if t δG(G) = {enT\ n e Z)
with T > 0, then any central summand of pure type IΠλ in ^£{G)
is actually of pure type IIIe-%τ for some n e Z+. This of course may
seen be somewhat more easily by observing that the spectrum of
the canonical modular operator on ^/f(G) is {enT: n e Z}, and thus,
in the central decomposition any "component" of the modular auto-
morphism also has spectrum in {enT: neZ] (see [18]).

5* Examples* In Theorems 3.4 and 4.4, we have derived
necessary and sufficient conditions for the regular representation of
a locally compact group to generate a von Neumann algebra with
a central summand of pure type IΠλ (λ e [0, 1]). To the authors
knowledge only one example of a group with type III regular
representation exists in the literature; this example is due to
Godement, and it turns out that the associated von Neumann algebra
is a factor of type IIIX. Slight modification of this construction
yields a family of groups Gλ, G0>λ λ e (0, 1] with ,^f(Gλ) a factor of
type IΠλ, Λ?(G0,χ) a factor of type IΠ0, and T(^/S(Gϋ>λ)) = 2π /logλZ.
The von Neumann algebras associated with these groups are un-
fortunately not hyperfinite; to remedy the situation another con-
struction is needed. We construct groups Pλ, POjλ (λ 6 (0, 1]) such
that S(^(PX)) = {λ : n e Z } , S(^//(P0,λ)) = {0, 1} and 2
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2π/log XZ. Furthermore ^/f(Pλ), ^t(PQ,λ) are hyperfinite. The author
is indebted to A. Connes for this second family of examples (private
communication).

Before giving the examples we need the following remarks.
Suppose H is a unimodular group such that ^€{Ή.) is a factor;
let dH be a Haar measure on H, and aλ a continuous automorphism
of H such that dHajι/dH = X. With aλ the corresponding automor-
phism of ^y/ί{Ή.) and Gλ — HXa>Z, we have by Lemma 2.3 φH o aλ =
XΦH; so that ^//(Gλ) ~ ^ O T ( i J ) ; aλ) is a factor of type IΠλ by
Proposition 2.2 and [3]. The difficulty of course is to produce
examples of such groups and automorphisms as H and aλ.

We will also need the following rather easy,

LEMMA 5.1. Let H, aλ be as above. Let K = {0, 1}Z, regarded
as a compact group, and s the coordinate shift on K. Let K be the
dual group of K, and s the autmorphism of K dual to s on K.
Define the automorphism βι of H x K by β?(h, x) = (aλ(h)y s(x)), and
put G0>λ = (HxK) X/λZ. Then S(^(G0,λ)) = {0, 1}, T
2ττ/log XZ.

Proof. The centre of ^{Έί x K) is isomorphic with
and so is nonatomic. The action on L°°(iO corresponding to the
automorphism βλ of ^{H x K) is precisely s, and so is ergodic.
Furthermore the canonical trace τ on ^(H) (x) ̂ f(K) satisfies
τ βt = λτ ^ τ so that [3] applies, to tell us that S(^e(G0,λ)) = {0, 1}.

To compute T(^f(G0,λ)) we note that if elements of G0>λ are
denoted by (h, x, n) e H x K x Z, then the canonical modular auto-
morphism group of ^{GQyλ) satisfies σt(π(h, x, n)) = Xintπ(h, x9 n),
where π(h, x, n) = XG°'*(h, x, n). Thus with Tλ = 2τr/logλ,

σTχ(π(h, x, n)) = XinTλπ(h, x, n)

= π(h, x, n) .

Thus σTλ = i, and TλZ £ Γ
Conversely suppose that σt is inner for some value TQ of t. By

[3], (jΓo == Aάu for some unitary u in the centre of the fixed point
subalgebra of ^(GOtχ) under {σt}. But the fixed point subalgebra
is {π(h, x, 0): (h, x) 6 H x K}", so that w e {π(e, x, 0): x e K}". Further-
more, u satisfies the equation

uπ(e, 0, n)u* = XίnT°π(e, 0, n) , or alternatively

π(e, 0, n)*uπ{e, 0, w) = λί%77^ .

But, by definition of the crossed product, Ad π(e, 0, n) imple-
ments the automorphism βn

λ of ^ί(Hx K); thus identifying
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with L°°(K), and letting w be the image of u under this identification,
we obtain

w(s~n(x)) = Xinr°w(x) a.e. on K .

It is well known however that s is weakly mixing, so that (see [9])
s has pure point spectrum. Thus λί7° — 1 and TQ e TλZ. Hence we
obtain T(^f(GOti)) = TλZ.

We now proceed to the examples.

The hyper finite examples.
Let U(2, Q) denote the upper triangular 2 x 2 matrices with

rational entries, and nonzero determinant. Let N(2, Q) be the
normal subgroup consisting of elements of U(2, Q) having determinant
one. Let Nλ(2, Q) be the subgroup of GL(2, R) generated by N(2, Q)
and the matrices (^βf

 χn®\ λ e (0, 1). Note that Nλ(2, Q) may be

regarded as the direct product of N(2, Q) and Z. We consider the
groups Pλ (λ e (0, 1]) defined by

y Q)

where the actions of U and Nλ on R2 are the usual ones. We choose
to regard Pλ as (R2 XSN(2, Q))XSZ where the action of N(2, Q) is
the usual one, and the action of Z on R2 Xs N(2, Q) is given by

n(x, T) = (λ α, T)

(x, T)eR2 x JV(2, Q) .

LEMMA 5.2. ^/f(Pλ) is a factor of type IIIλ for each X e (0, 1].
Further, , /f(Pλ) is hyper finite.

Proof. We first ascertain the type of
(1) With H = R2XS ΛΓ(2, Q), ^€(H) is a hyperfinite factor of

type //TO. For this we note that the discrete group N(2, Q) acts
ergodically on R2, for if AaR2 is measurable and of positive
Lebesgue measure, m(A) > 0, with m(AJTA) = 0 for all TeN(2, Q),
then m(AASA) = 0 for all unimodular upper triangular matrices S.
On the other hand, these matrices act transitively on the comple-
ment of a null set, and hence ergodically. Thus A is the complement
of a null set, and JV(2, Q) acts ergodically. By the classical criteria
for the type of factors arizing in the group measure space construc-
tion ^(H) is a factor of type JJL.

The quickest proof that ^/έ(Ή.) is hyperfinite is to observe that
N(2, Q) is solvable, and hence ^{Ή.) is cohy per finite; on the other



246 COLIN E. SUTHERLAND

hand, ^/ί{Ή.) is properly infinite, and thus is hyperfinite, (see [4]).
To see that ^(Pλ) is of type IΠλ is now easy for λe(0, 1).

For Pλ — H Xs Z, and the action of the generator of Z on H clearly
scales the Haar measure by a factor of λ. The observations at the
beginning of the section show that ^{Pλ) is of type IΠλ (λ e (0, 1)).
Again, since Nλ(2, Q) is solvable ^(Px) is cohyperfinite, and properly
infinite, thus hyperfinite.

Finally we check the type of ^/^{P^. For this it is easiest to
calculate Kreiger's ratio set for the group measure space construc-
tion (see [3], [10]). In order to apply the results of [3], we must
check that the action of JV(2, Q) is almost free. So let AaR2 be
measurable with m(A) > 0, and let TeN(2, Q). We must show that
if, for every measurable set Ba A with m(B) > 0, we have TB (Ί
BΦ&, then T = identity. Clearly we may suppose that m(TBJB) = 0
for every measurable BaA of positive measure (else the condition
TB Π B Φ 0 for all measurable Ba A is violated). But then Ax —
{x e A: Tx Φ x] is of measure zero. Since T is linear, it is the
identity on the vector space difference of A — A, with itself. But
this difference contains a neighborhood of 0 e R2, since m(A — AJ > 0,
so that T = identity. Note that our argument in fact shows that
any nontrivial subgroup of GL(2, jR) acts almost freely on R2.

We let r = r(R2; 27(2, Q)) be Kreiger's ratio set; for a given
peQ+f we wish to show that per. So let AaR2 be measurable
of positive measure, and T e [7(2, Q) be any transformation with
det T = p. By ergodicity of N(2, Q), there is a transformation
S e N(2, Q) with m(A n STA) > 0. Let B = A n Γ"^"1 A; then
m(J5)>0, J?cA, STBQA, and det (ST) = p, so that (dmo(ST)-1)/dm = p
on 1?, and per. Since the ratio set is closed, it is all of R+, and
^?(Gd is of type III,. The hyperfiniteness of . ^(Gx) follows from
the solvability of Σ7(2, Q) and [4].

Based on Lemma 5.1 we may now produce examples of groups
P0)λ with ^(POtλ) a type III, hyperfinite factor, and T(^(PQ,2)) =
2ττ/logλZ, λe(0, 1).

REMARK. There is an alternative development of the examples,
which has some technical advantages and is obtained as follows.

Let P1 be as above, and Rx = Pj, x S where S = j ί? -, j a, beR,

aΦθ\. Recall that ^/ίί(β) is a factor of type JL so that ^ ( # 0

is again a type JJ/i hyperfinite factor. Let H^ = kerδΛ]; since ^
contains a closed subgroup on which δSl is one-to-one and onto R+,
we may write Rx = HίX8R+. For λe i ί + , let α ; be the correspond-
ing automorphism of H^ from [22] and Lemma 2.3, ^ f/ l o άA = \ΦHκ
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The semidirect product Rλ = H1X(XλZ then has ,,^(Rλ) a factor of
type IΠλ, (we note that by Theorem 3.4 ^€{Ή.^ is a factor); since
^ί€{R^) is hyperfinite, ^{H^) is cohyperfinite and properly infinite,
thus hyperfinite, and ^(JB;) is hyperfinite. The advantage of this
construction is that the automorphisms άλ of ^ ^ ( i ϊ j satisfying
όπι o aλ = XφHι may be chosen to form a one parameter group.

The nonhy'perfinite examples.
We give a brief description of the construction. Consider

Godements example G, = R2 Xs GL{2, Q). For λ e (0, 1), let SL2(2, Q)

denote the group generated by SL(2, Q) and Xll2β JY Put Gλ =

R2 XsSLλ(2, Q); as in the previous examples it is readily shown that
,^(Gλ) is a factor of type IΠλ (λ e (0, 1]). Alternatively we may
consider Gγ x S = HιX>9R as in the remark above, and then the
groups G) = H1Xs\ogXZ; again ^(G\) is a factor of type IΠλ.
The construction of Lemma 5.1 may be performed, producing groups
G0,χ with S(^(GOlλ)) = {0, 1} and T(^(GOij)) = 2ττ/log λZ. The fact
that ,y£(Grι) and ^^(G0,χ) are nonhyper-finite follows from the
observation that Gλί G0>λ contain copies of <SL(2, Q), and that in turn
SL(2, Q) contains the free group on two generators. It is now
sufficient to appeal to the results of [16].

REMARK. It should be noted that at this point there are no
known examples of groups G for which ^€(G) has nontrivial central
summands of pure types IIIλ and IIIμ for λ Φ μ. The author has
failed in all attempts to construct such an example.

6. Plancherel theory. In [18], the author has given a
Plancherel formula valid for arbitrary separable locally compact
groups. Let G be such a group (we assume implicitly that it is not
unimodular), and H = kerδ^. The important part of the results of
[18] is that the Plancherel formula for G may be expressed in terms
of that of H.

Specifically, let G, H be as above and φ(τ resp.) be the canonical
weight (trace resp.) on ^/έ{G) {,^{H) resp.). Let φ(τ) be the
associated weight (trace) on the reduced group C*-algebra C?(G)

τrdμH(Ύ) of τ,
μlωdμG{ω) of μH (cf. Theorem

S ~ _ ΓG _

τωdμG(ω) be the decomposition of τ over κ~ι{^{G)),
_rG r® _

where we have τω = I τrdμξ(y). For x, y e C*(H), define χξ(x, y) =
τω(y*%y> w e refer to χjf as the bitrace defined by τω on C*(H).

Suppose now ξ e J?f~(G), the continuous function of compact
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support on G; we define ξg e SΓ(H) by the formula ξg(h) = ξ(hg). It
is known ([18]) that that Xlo&^ξg), πι(ξg)) is constant on cosets of
H in G, where πt is the "regular representation" of J2Γ(H) in
C*(H) (i.e., π^η) is convolution on the left by η on L\H)). The
Plancherel formula for G takes the form;

= ( \
JΓG JGjlI

where dg is Haar measure in G/H, chosen so that

GjH
\ ζ(gh)dH(h)dg

(dβ and dH denote left Haar measures in G and H respectively).

S Θ _
φωdμG(ω) is the central decomposition of φ, then

= \

We wish to specialize these results to the case when δσ(G) = R+
and Λ?(G) is semifinite. The class of groups satisfying these condi-
tions embraces all connected, nonunimodular separable groups by
virtue of [5] and [15]. Our viewpoint throughout the discussion is
that the quasi-dual and Plancherel formula for if are known precisely;
and we seek to give a computable Plancherel formula for G in terms
of that of H.

Suppose then δβ(G) = R+, and ^£(G) is semifinite. According
to Theorem 3.4, the measure spaces (ΓH, μH) and (Γβ x R; μG x m)
are equivalent, where m denotes Lebesgue measure on R. So let

S Θ _

{λfωιt), τ<ω.t), τ(ω,t)}dμβ(ω)dm(t)
ΓGxR

be the central decomposition of λ/J, τ, τ; we regard XH and Xfω,t) a s

representations of both ί ί a n d C*(H). Note that X?ω,t)(x) = λji.o^α^α;))
(x 6 C}(H)), and that τ(tt))ί) and τ{ω>t) are related by f{a)ft)(x) =
τw,(λ£ i4)(a0) for x e C*(H). The algebras ^tH(ω, 0) and ^€H(ωJ t)
generated by {Xfω>0)(h): h e H} and {X?(ϋft)(h): he H} are identical, and
thus we must have τ(ω>t)(x) = K(ω, t)τ{o)t0)(x), where K(ω, t) is some
positive constant, and x e ^£H(ω, 0). On the other hand τ(at(x)) =
e"*τ(x) for xeCΐ(H) so that we may compute

= \
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JΓGXR

= I K(ω, s + t)τ{ωtQ)(X?ω}t)(x))dμG(ω)dm(s)
JΓGxR

and

e~sτ{x) = I e-sτ{ωΛ){X\ί,t){x))dμG(ω)dm{s)
JΓGxR

= J χΛβ~8jK:(ω, t)τi(Or0)(X?W)t)(x))dμG(ω)dm(t) .

Thus, we obtain if(α>, s + t) — e~sK(ω, t) almost everywhere on ΓG x
R x R. But iΓ(ω, 0) = 1, so that K(ω, s) = e~s almost everywhere.
Evidently we may assume then that K(ω, s) = e~s for all (α>, s) 6
ΓG x i ί . Maintaining the previous notations then we obtain

THEOREM 6.1. Suppose δo(G) = R+ and t /f(G) is semifinite.
Then, for ζ e J%T(G) we have

llίl|2
2 = ( ( ( e"7S.o)(^i(lg), πι(h))dm(s)dgdμG(ω) ,

J .Γg! J Gj II J R

where χfJ,>0) ΐs ί/̂ e bitrace on Cf(H)defined by the trace τiω 0) appearing

S e _ _
(̂ω S)dμG(ω)dm(s) of τ. Further-

ΓGxR
more,

G/II JR

REMARK. It is well known that ^ί€(G) is semifinite if and only
if {σt: t e R} is inner (see [20]); indeed we must have σt{x) — eitHxe~itH

for some selfadjoint operator H affiliated with the centre of the
fixed point subalgebra of {σt:teR}. In case δa(G) =R and ^/S(G)
is semifinite such an operator H may be described as follows.
Regard ΓH as ΓG x R, and decompose the Hubert space L2(G) over

^(ω,t)dμG(<*>)dt. With respect to this decomposi-
ΓGXR

tion i ί may be defined by (Hξ)(ω, t) = if (α>, t) where <J f (α>, t) and

S ί2!lί(^, t)\\2dμG(ω)dt < ^. In case Sσ(G) = {enT: neZ} and ^T(G) is
j R

semifinite an explicit generator for {σt:teR} may also be found in
the same way.

REMARK. The recent work of A. Connes (unpublished) show that
for each X e (0, 1), the von Neumann algebra ^^(Pλ) constructed in
the above examples is in fact the Powers' factor of type IIIλ. This
then gives yet another construction for this family of factors.
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