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A NOTE ON EXPONENTIALS OF DISTRIBUTIONS

ALAN SLOAN

Nonstandard analysis is used to discuss nonlinear func-
tions of distributions. An application is given to obtain a
generalized Trotter product formula. The strong resolvent
topology is discussed from a nonstandard point of view.

Enlarging the real number system to include infinite and infini-
tesimal quantities enabled Laugwitz [5] to view the delta function
distribution as a point function. Independently Robinson [7] demon-
strated that distributions could be viewed as generalized polynomials.
Luxemburg [6] presented an alternate picture of distributions as
generalized functions within the context of Robinson's theory of
nonstandard analysis and it is a special case of this point of view
that we take here. Once one accepts distributions as generalized
functions, the composition map provides a natural method of defin-
ing nonlinear functions of distributions. Unfortunately, the diffi-
culties in the standard attempt to define a function, /, of a
distribution, τ, (by first writing τ as a limit, in some appropriate
sense, of smooth standard functions τΛ, next composing these
approximations with /, and finally taking the limit of / © τn) still
remain in the nonstandard theory. In particular, this procedure
may not lead to a distribution and even when it does the distribu-
tion obtained may depend on the representation of the original
distribution as a generalized function. Thus, at present, there is
no comprehensive theory of nonlinear functions of distributions.

The development of such a theory may well proceed along
alternate tracks depending on the applications intended. One use
for distributions occurs in the study of perturbations of selfadjoint
operators in Hubert space. In some perturbation problems the
pathology of obtaining compositions which do not represent distri-
butions may be avoided by considering only bounded functions of
distributions. For example, in the Trotter product formula one
works with bounded exponentials. Even though, in this case, the
exponentials of distributions may be identified with standard distri-
butions it is the conclusion of this paper that such an identification
should not be made. It is the author's view that functions of
distributions should be regarded as generalized functions but not
distributions. The utility of this view is illustrated by a non-
standard version of the Trotter product formula.

For an introduction to nonstandard analysis and its relation to
distributions, see [10]. In [11] a square root for the delta function
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was defined nonstandardly.
Let *X be a δ-incomplete ultrapower of a structure X contain-

ing the real numbers, R. We shall use the convention that Ac*A,
for all sets A considered. If T is a topological space with u in T
and v in * Γ then we shall write u ρ& v if and only if v is in
n { * ^ : ^ is an open set containing u). In this case we say u is
the standard part of vf relative to the given topology and that v
is near standard. We write u — st(v). We always assume that
Rp has the Euclidean topology and all Hubert spaces have the norm
topology.

If / and g are Lebesgue measurable on *S for some standard

set S which is measurable, we shall write </, g} for I fgdx, pro-
J*S

viding the integral exists. If, in fact, / and g are standard func-

tions then </, g} — 1 fgdx, by the transfer principle.
us

Let W be an open subset of Rp. Let Bn be an increasing
sequence of relatively compact subsets of W whose union is W and
whose closures are in W. If £& = Uί=i CΓ{Bn) is given the induc-
tive limit topology then the elements of 3f\ the dual of ^ , are
the distributions on W. In order to define a function of a distri-
bution we first regularize the distribution.

Let p be a CΓ(RP) function satisfying 0 ^ p <: 1, ρ{x) = 1 if
||cc|| ^ 1 and ρ(x) = 0 if | |g| | ^ 2. Set

( j P(not)dt

where ^ 0 is chosen so that

distance (£M, JB£+1) > 2/n0 .

Choose βn to be a C?(RP) function satisfying βn = 1 on B ^ , 0 ^
/S% ^ 1 and support (/9%) c 5 % .

If x is in £„ and 7n(x — y) Φ ΰ then ||cc — y\\ ^ 2/^0 so that y
is in J5Λ+1. If Ύn(x— •) denotes the function y-*Ύn(x—y) then
7.(&— ) is in C?{Bn+1) if xeBn. For any distribution Ton Wdefine
a function Γ% by

for n in iSΓ. Then ΓB is in CΓ(RP) and support (TJ c ί r By the
transfer principle Tn is in *Cc°°(i2

p) and support (ΓΛ) c *5 % for n in
*iV. Further, since Tn -> Γ in ^ ' as ^ —> oo in iV it follows that

( 1 ) Tn{f)

for all Λ in *iV - JV and / in 3f where Γ.(/) = (Tn, />.
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The Tn are called the regularizations of T.

DEFINITION 1. Fix n infinite in *N. Let g be a complex valued
function of a complex variable defined on the range of Tn. Then
we define g(T) to be g o Tn.

Thus, flf(Γ) is a generalized function in the sense that it is an
internal *C-valued function defined on * W. Since Tn(x) — 0 if x is
not in Bn we find that g(T)(x) = g(0) if x is not in *Bn.

Certain generalized functions h:*W-+*C define distributions τ
according to the rule

(2) τ(/) = sί«Λ,/»

for / in ^ . Here, st (λ) is the standard part of λ, if λ is a finite
hypercomplex number, and undefined otherwise. Thus not every
function of a distribution will determine a distribution according
to (2). If g is a bounded measurable function then g(T) always
defines a distribution by (2).

If T is given by a locally L1 function F on W, (i.e., if T(f) =
<F, /> for all / in &) then g of Γ is naturally defined within
standard distribution theory as the distribution / —> (g ° F, f) pro-
viding the composition is defined. A simple example suffices to
show that the distribution determined by g(T) need not be g © F.

EXAMPLE 2. Let E be the complement of the Cantor set, in
[0, 1], of measure 1/2 obtained -by repeated deletions of 2n~1 open
intervals of length 2~2w, n = 1,2, from [0, 1]. Let F be the
characteristic function of E and define T(f) = (F, />. Let W =
(-2, 2) in JB1. Choosing JBL SO that [0, l]cJ5i gives

= \F(y)Ίn{x — 2/)d2/ > 0 for all n in N

and all x in [0, 1]. By the transfer principle Tn(x) > 0 for all n in
*iV and x in *[0, 1]. Let g{x) = 1 if a; Φ 0 and flr(0) = 0. Then
g(T)(x) = 1 if x is in *[0, 1] while g o ί7^). = 1 if cc is in E and
fir ° F(x) = 0 if x is not in £7. Choosing / in Cc°°(-2, 2) with / = 1
on [0, 1] shows g(T)(f) = (g{T), /> = 1 while

- ( g{F{x))f{x)dx

- ( g(F(x))f(x)dx

- ί /(a?)da? = measure (£?) = 1/2 .
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Thus

g o F{f) = (goF,f)Φ (g(T), /> - g(T)(f) .

The necessity of considering only bounded "smooth" #'s is now
demonstrated, if one is to obtain a generalization of composition of
functions. In Lemma 5 we obtain such a generalization.

LEMMA 3. Let f be in *L\K, dx) where K is a subset of Rp.
Let | | / | | i ^ 0 . Then M — {x in *iΓ: f(x) Φ 0} is contained in an
internal measurable subset P of *K and measure (P) & 0.

Proof. Let Am - {x in *K; \f(x)\ > 1/m}. Then M= LL in v Am.
Since

\f\dx > meas (Am)/m ,

we find that meas (Am) ^ 0 for each m in N. By definition A1czA2(z
A3 c .

Extend {Am} to an internal sequence. Let I = {m in *N: 2 <:
k <z m implies meas (AΛ) < 1/k and A -̂i c Ak}. I is internal and
contains N. Since iV is external there is an ω in (*iV — iV) Π /.
Choose P = ̂ Lω. Then meas (P) ^ 0 and U« in N Am a P.

LEMMA 4. Let F be a locally L1 function on W. Let T be
the distribution T(f) = (F, />. For every compact K in W and
every infinite n in *JV

where \\ \\x is the Lι norm on *K.

Proof. Choose an open set Q with compact closure such that

c Q c W.

For n in N sufficiently large, βn — 1 on Q, and x in K implies
support (yn(x— ))aQ. Consequently, for n in N sufficiently large
Tn(x) = (yΛ*F)(x). But Ίn*F->F in L\K) so for n infinite \\F-

Ύn*F \\, F* 0 while by definition Tn = 7n*F so | | F - T^^O.

LEMMA 5. Lei g be a bounded uniformly continuous function
defined on a closed interval containing 0 and the range of a locally
L1 function F. Let T be the distribution defined by F: T(f) =
(F, f) for f in &. Then g°F is the distribution determined by
g{T).
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Proof. We first must show g(T) is defined. There is a closed
interval on which g is defined and which contains the range of F.
Since 0 <̂  βn <: 1 and γtndx = l it follows that the range of βn(y*F) =
Tn is in the closed interval and so the range of Tn is in the domain
of g for all n in N. By transfer g(Tn) is defined for all n in *JV.

Fix n infinite and define g(T) = g(Tn).
We are to prove that for every / in &

(g{T), /> ~ (g o F, /> .

Let K be a compact set containing the support of /. Let A be
an internal subset of *K containing {x in *K: Tn(%) 96 F{x)} and
having measure λ ρ& 0. Since # is uniformly continuous, x in *iί —
A implies g(Tn(x)) ^ g(F(x)). Let M in JV be a bound for #. Let ε
be a positive real number. Let m be the Lebesgue measure of K.
Then

\<g(T),F) - {goF,f}\

£ \ \g(Tn) -g(F)\ \f\dx+ \ \g(Tn) - g(F)\\f\dx
JA hκ-A

^2M\\f\\ooX + ε | | / | U m < 2 ε | | / | U m .

Since ε is arbitrary, this completes the proof.

EXAMPLE 6. Let δ be the delta function δ(/) = /(0), / i n ^(R1).
Choose n0 = n and Bn = ( —w, w). Then, 5M(V) = τn(ίc). For all n in
iV, support (δn)(z(-2/n, 2/n) and 0 ̂  δn < oo. Thus for t > 0 in R,
0 < β"ίδ% ^ 1 and if \x\ > 2/n then e~tδn(x) = 1. By the transfer
principle choosing w in *N — N and setting flr(Γ) = g(Tn) we find
0 < g(T) < 1 and g(T)(x) = 1 if |x | >2/w. Thus

<fKT),/>~<l,/>, / i n ^ so

1 is the distribution determined by e~ts.

Next we wish to discuss exponentials of distributions in con-
nection with the Trotter product formula. This requires a discussion
of the topology of strong resolvent convergence, which we now
give. More details on this topology are to be found in the appendix.

DEFINITION. Let SA(K) be the set of all selfadjoint operators
on a Hubert space K. A neighborhood basis of a selfadjoint operator
S in the topology of strong resolvent convergence is given by the
collection

{G(S, E,ε):Eisa, finite subset of K, 0 < ε < oo}
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where G(S, E, ε) - {T in SA(K): | | (Γ + iY'h - (S + iY'hW < ε, Λ in
2£}. We refer to the elements of *SA(K) as the internal selfadjoint
operators on *K. Information about *SA(K) may be obtained by
transfer. For example, 'Tor all T in *SA(K), λ in *C, λ^O, | | (Γ+
λ)"1!! ^ IΙm(λ)!"1" is obtained by transfer from "For all S in
SA(K), λ in C, λ Φ 0, || (S + λ)"11| ^ | Im (λ) I"1.

LEMMA 7. Aw internal selfadjoint operator T is near standard
in the topology of generalized strong convergence if and only if
there is an S in SA(K) such that

| | (Γ + iYιh - (S + i)~ιh\\ ̂ 0 for all h in K .

Proof. S = st(Γ) iff T is in

{n *G(S, £?, r): E is finite, 0 < r < oo} .

But T is in *G(S, £?, r) iff

|| (Γ + ΐ ) - ^ - (S + ΐ)-1^!! < r for all h in £7, since E is finite.

LEMMA 8. Let S belong to SA(K) and T to *SA(K). Then
T p& S if and only if

( 3 ) eitτh ** eitsh

for all finite t in *R and h in K.
If T and S are bounded from below by some finite number.

Then (3) may be replaced with

(4 ) e~tτh « e'ts

for all finite nonnegative t in *iί and h in K.

Proof. We give the proof that T ~ S implies (3) for t positive
and finite. For any P in *SA(K) let R(P) = (-iT + I)"1 and
E(P) = eίp. Let h be an arbitrary element of K. Then, by defini-
tion of T^S, one has R{T)h^R{S)h. Since R(T), R(S) are
contractions it follows that R{T)a & R(S)b for all near standard
α, 6 in *iT with a ̂ b. In particular, since s —• E(sS) is strongly
continuous we conclude that E(sS)h is near standard for all finite
8 in *U, so that ||(Λ(Γ) - R(S))E(sS)h\\ « 0. Consequently, for all
positive real λ, ||j0((ί - s)T)(R(T) - R(S))E(sS)h\\ < λ. Transferr-
ing equation (2.27) of Reference 3, page 501, gives

R(T)(E(tT) - E(tS))R(S) = i('ί?((t - s)T)(R(T) - R(S))E(sS)ds
Jo
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and provides the estimate \\R(T)(E(tT) - E(tS))R(S)h\\ ̂  λt for all
positive real λ so that R(T)E(tT)h & E(tS)R(S)h. For all t in *#,
E(tS)R(S) = R(S)E(tS), follows by transferring the corresponding
statement with t in R. Since E(tS)h is near standard we conclude

( 5 ) R{T)E{tT)h ** R(T)E(tS)h .

Next we argue

E(tT)R(S)h f* E(tT)R(T)h = R(T)E(tT)h « R(T)E(tS)h

« R(S)E(tS)h = E(tS)R(S)h .

Since the range of i2(S) is dense in if and since E(tS), E(tT) have
finite norms we conclude that E(tT)h P*J E(tS)h.

If t is finite and negative the proof follows as above upon
replacing T and S by — T and — S respectively.

For the proof of the converse we assume eitτheitsh for all finite
t in *Λ and h in K. From Lemma 12, appendix, it suffices to prove

( - i Γ + I Γ ^ ^ (-ΐS + l)-1^

for all h in K. This is done via the transferred Laplace transform

formula {~iT + I)"1/*, = ί °Vv ί 7 7^. Let λ, e > 0 be arbitrary real
JO Ceo

numbers. First choose a positive real number c so that 1 e~*dt<e.

\\(~iT + l)"ιh - (-iS + l)~]h\\ ^ 2 ε + ( V ' I K e " 2 1 - eits)h\\dt

^ 2ε + Γβ"*λdί < 2ε + λ .

Thus, ( - i T + l)-1/^ ^ (-iiSf + iYιh for all A in K.
The proof for the case of T and S finitely bounded below

follows similarly.

REMARK. The proof above closely parallels Kato's proof [3, p.
502] of an analogous standard result.

REMARK. The restriction of (3) to finite t in *R is not super-
fluous. Let n be a positive infinite integer, T = 1/n, S — 0, and
t = n. Then T ̂  S but

eίtτh - e*Λ ^ h = eitsh .

EXAMPLE 8. Let hQ: Rp —> [0, oo) be continuous and suppose e~ίλ°
is in L1 and is positive definite. Let Ho = FM(ho)F~~ι where .f7 is
the unitary Fourier transform on L2(RP) and M(hQ) is the selfadjoint
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operator given as multiplication by the function h0. Examples of
such operators are given by ho(k) = \k\2 when Ho — — Δ and ho(k) =
V\k\z + m2, m > 0. For a complete discussion of such operators,
see [2]. Let τ be a real distribution on /?p which satisfies for some
0 < a < 1 and 6 > 0

for all / in CΓ(RP). Such a τ is called a small form perturbation
of Ho. As shown in [2] the form sum of Ho and the continuous
extension of τ to the form domain of Ho is selfadjoint and bounded
below. We denote this standard operator by Ho + τ. As concrete
examples choose Ho = — Δ and τ the delta function concentrated on
the surface of a sphere in p > 1 dimensions and τ = δ9 the delta
function in p = 1 dimensions. Also when p = 1, τ = e* cos (e*) is
a small form perturbation of —Δ. See [2] for more examples.

Let τn denote the regularizations of τ. Then, defining Ho + τn

as the operator sum, it follows from the strong convergence of the
resolvents of Ho + τn to those of Ho + τ, [2], that

Ho + τnρ** Ho + τ

for all positive infinite integers, n.

EXAMPLE 9. Let Ho, V be nonnegative selfadjoint operators
on a Hubert space K. Suppose D((iJ0)

1/2) n D((V)1/2) is dense. Define
the truncations of V by

__ JF if F^n
* " (o if F > n

via the spectral theorem. Let Ho + V denote the standard self-
adjoint operator defined as the form sum of Ho and V in [1]. Then,
since (Ho + Vn + ί)"1 converges strongly to (Ho + V + i)~\ [1], we
conclude

for all positive infinite integers, n. See [1] and [4] for concrete
examples.

We now proceed to discuss the Trotter product formula for
given form sums. A discussion of form sums may be found in
[1]. Here Ho is a selfadjoint operator on a Hubert space K and H
is the selfadjoint operator on K given as the form sum of Ho and
V in the following three cases:

Case 1. 7 is a selfadjoint operator and the operator sum HQ +
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V is essentially selfadjoint.

Case 2. Ho and V are bounded below selfadjoint operators
with dense form domain intersection; and

Case 3. V is a small Hermitian form perturbation of Ho.

In Case 1, H is just the closure of HQ + V and the Trotter
product formula holds [12]:

( 6 ) eλtπ = strong limit (eUIIo/»eλtr/n)n

% ~>co

uniformly for t in compact subsets of [0, oo), where λ = ±ί. If
Ho, V are bounded below then (6) also holds with λ = — 1.

In Case 2 Kato has shown [4] that (6) holds for λ = — 1 but
in general (6) is not known for λ — ±i and in fact there has been
essentially no progress in extending (6) for λ = ±i beyond Case 1.

In Case 3, not only is Trotter's product formula unknown for
λ = ±i and λ = — 1 but in general it makes no sense. For
example, if iJ0 = —d2/dx2 and V = d, the Dirac delta function on
U(RX), then eλv/n is undefined in any standard sense. In some
examples of Case 3 such as Ho — — d2/dx2 and V(x) — ex cos (ex) the
formula (6) makes sense but its validity is unknown for λ = — 1.

Elementary nonstandard analysis provides a convenient frame-
work for obtaining a type of product formula in the cases discussed
above.

THEOREM 10. A Product Formula:
Let Ho, H be in SA(K) and V in *SA(K) where K is a separa-

ble Hilbert space. Suppose the closure [Ho + V] of the operator
sum of HQ and V is in *SA(K). Also assume H f& [HQ + V].

Then there is an N in *N such that for all n > N, h in K and
nonnegative finite t in *JR:

(7 ) eλtHh e* (eitHo/neλtv/n)nh

where λ = ±i.
If also, H, Ho, V > c for some c in R then (7) holds with λ= - 1 .

Proof. By Lemma 8

( 8 ) eUHh P* eλtίHo+JΊh

for all h in K and all finite t in *U.

Fix a to be a positive infinitesimal. Fix h in K and M in N.
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It follows from the transferred Trotter product formula of Case 1
that there is a Q{h, M) in *N, (we suppress the a dependence), such
that q > Q(h, M) implies

(9) \\eλtίM»+v]h - (eλtH*/qeλtv/q)qh\\ < a

for all t in *[0, M]. Let Q(h) be an upper bound for {Q(h, M): M
is in N], which exists by [8, page 59]. Then q > Q(h) implies

(10) eλtπh ρ# (eλtHG/qeλtv/g)qh

for all finite t in *[0, H
Let C be a countable basis for K. Let Q be an upper bound

for {Q(h): h is in C}, which again exists by [8]. Let q > Q, t in
*[0, oo) be finite and h in K be arbitrary. Given β in (0, oo) choose
k in G so that \\h - k\\ < β. Then

(11) \\eλtHh - (eλtH°/qeλtv/q)qh\\

since all operators appearing are contractions and the 2nd term
being infinitesimal is infact less than β. As β is arbitrary in (0, oo)
the difference in (11) is infinitesimal and the proof is complete.

REMARKS, (a) The theorem applies to Example (8) with λ = ±i
and in case the distribution is nonnegative, such as with the delta
functions, λ may also be taken as —1. The theorem also applies
to Example (9) with λ = ±i, —1. H is the form sum and in these
examples, the V is either a truncation or a regularization with
positive infinite integral index and so is a bounded element of
*SA(K). Consequently [Hn + V] = HQ + V.

(b) In case λ = — 1 it suffices to assume Ho, V > C as we will
see in the appendix, Example 6.

(c) If V is in SA(K) rather than *SA(K) then the formula (7)
is equivalent to the standard formula (6).

(d) In [9] we used a preliminary form of this product formula
to express the dynamics of a singularly perturbed quantum system
in terms of a nonstandard Feynman path integral.

(e) If K is not separable, one still obtains a product formula
but then the N in *iV depends on the h in K.

EXAMPLE 11. In Example 6 we observed that eru could be
identified with 1. However, this identification may not be made in
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the present context, for we have just seen that

or all n sufficiently large. Had we also identified e~tδ/n with 1 we
would have obtained

which implies —d2/dx2 + δ = d2/dx2 and this is false.

APPENDIX. The Strong Resolvent Topology.
In this appendix T will denote an element of *SA(K) and S an

element of SA(K), for K a complex Hubert space. Conditions for
and consequences of T & S will be investigated. There are closely
related standard results which are obtained by considering a se-
quence, {Tn}, in SA(K) and its (possible) limit S, in the strong
resolvent topology. One could obtain corresponding nonstandard
results by transferring to T = Tn, n infinite and such a procedure
would be sufficient for the examples considered in this paper: Tn =
HQ + Vn. However, in this appendix we are not assuming that T
in *SA(K) has this special form and so, in general simple transfer
arguments are not necessarily sufficient to establish the desired
results.

DEFINITION. The finite resolvent set of T, denoted ρ(T), is the
set of all finite X in *C such that T - X is 1 - 1, onto and | | ( Γ -
λ)~] || is finite.

EXAMPLES. By transfer of the resolvent equation
(a) {finite λε*C: Im (λ) 96 0} c p(T);
(b) If T ^ 0 then

{finite λε*iί: λ < 0, X & 0} a ρ(T) .

LEMMA 12. Let p denote the intersection of the finite resolvent
sets of S and T. Then

( i ) T f& S if there is a λ in p so that

(12) | |(Γ - λ)-1*, - (S - X)-ιh\\ ~ 0

for all h in K.
(ii) If T**S then (12) holds for all X in p.

Proof. The proof follows from a resolvent equation as in [3,
page 429] together with the fact that operators with finite norm
take infinitesimal vectors into infinitesimal vectors.
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DEFINITION. Let D be a subspace of the domain of S, D(S).
D is core for S if S restricted to D has exactly one selfadjoint
extension.

LEMMA 13. Let D be a core for S. If DczD(T) and \\Sf ~
Tf || ** 0 for all f in D then T ** S.

Proof. E = (S + ϊ)(P) is dense in K. Let g in if be arbitrary
and let δ be a positive real number. Choose / in E so that | |/—
ff|| <S/3. Then

ιi[(r + iyι - (s +
IKS+ iΓ1(/-0)11
r - f\\ + ||(Γ + ίJ^CΓ - S)(S + i r/H + 11/ -

REMARK. See [3, page 424] for analogous standard result.

EXAMPLE 14. Let Ho, V be in SA(i£). Let Vn be the trunca-
tions of V as in Example 9. If the operator sum HQ + V is essen-
tially selfadjoint then if0 + V%**[H0+ V], the closure of HQ + F,
for all positive infinite n. This follows directly from Lemma 13
because if feD(V) then Vfp&V+f, ne*N—N, by dominated
convergence. Thus,

(fΓ0 + Vn)f « [flo + F ] /

for all / in the core D(HQ + F) for [if0 + F] .

REMARK. It may happen that T ^ S but that there is no core
D for S on which T and S nearly agree. For example let F be a
nonnegative locally L1 function on Rι which is not L2 on any
interval. Let Vn be the truncation of F: Vn(x) — V(x) if V(x) ^ n
and Vn(x) = 0 otherwise. Let S = —d2/dx2 and Γ = the form sum
of S and Vn, n infinite. If / is in D(T) = D(S) and in ίΓ then / is
continuous and unless / is identically zero, | / | is bounded away
from zero on some interval. Consequently | | F Λ / | | is infinite. Since
\\Sf\\ is finite it follows that

feKnD(T) >\\Tf\\ infinite.

Thus, there is no converse to the previous lemma. On the
other hand we do have

LEMMA 15. If T & S then to each h in D(S) there is an K in
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D(T) with hf ™h and T(ti) ** S(h).

Proof. Define h' = (T + i)-\S + i)h. Then h'eD{T) and fc' =
Λ + ((Γ + i)"1 - (S + i ) " 1 )^ + i)fc ~ h. Further, (Γ + i)Λ' = (S + i)Λ
so that 2V F* Sh.

EXAMPLE 16. Let c belong to R. Let HoeSA(K), Ve*SA(K)
be * bounded and Ho, V ^ c. Suppose HeSA(K) and H & Ho + V.
By Lemma 15, for each Λ in jD(iϊ) there is an hf in i?(i?0 + V)
such that Jϊfe ^ (jffo + V)h' and fe ̂  fe'. Thus

Since (Hh, h) and c||fc||2 are in R we conclude H ^ c.
For bounded operators there are no domain problems so we

expect

LEMMA 17. Let S be bounded and let T be everywhere defined
with finite norm.

(a) If Th ̂  Sh for all h in a dense subspace D of K, then
T^S.

(b) If T**S then Th ̂  Sh for all h in K.

Proof. Since D is dense and S is bounded, D is a core for S
so part (a) follows from Lemma 13.

For part (b), assume Γ ^ S so that (T + i)~ιh ^ {S + i)~ιh for
all h in K. Since T has finite norm h ̂  (Γ + ί)(S + i)"Lfe for all h
in if. Let 0 = (S + ί)"1^. Then (S + i)g ̂  (T + i)g for all 0 in
(the range of (S + i)'1) = K.

One of the reasons for the utility of the topology of strong
resolvent convergence in perturbation theory is

LEMMA 18. Let φ be a bounded Borel function on the real line
which is continuous except on a closed set of S spectral measure
zero. If T**S then φ(T)h « ψ(S)h, for all h in K.

Proof. With only minor modifications, (replacing certain " = "'s
with 'W's), the proof of Faris, [1, pages 40-42] for an analogous
standard result works here.

LEMMA 19. Let T be near standard in the strong resolvent
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topology. Then for all h in K and all λ ^ O

eiλτh ** h .

// also T ̂  c, c in R, then

e~lτh ^^ h .

Proof. By Lemma 8

eiλτh ™ eush ~ h

by strong continuity of t —> eits.

EXAMPLE 20. Let T = n, n a positive, infinite integer. Let
X = 1/w, ̂  0. Then eiλτh = e% ̂  h so T is not near standard even
though eitτh is near standard for all t in *i?.

Similarly (1 + iXT^h & h while from Lemma 19 and the Laplace
transform formula

e~te~ιλtGhdt(1 + iXG)'1 = (
Jo

it follows that (1 + iλG) Lh ̂  h for all near standard G. Thus,
(Γ + c)"1/*, near standard for all h in K does not imply that T is
near standard in *SA(K). We next discuss when (T + c)"1^ near
standard does imply T is near standard. We shall use the follow-
ing hybrid notation.

For an in *i? we let "αΛ —> 0, % in N" indicate that for every
real 0 < ε < oo there is an N in N such that n > N implies | α j < ε .

LEMMA 21. // hn is near standard in *K, if h is in *K and if

\\K - h\\ >09 n in N

then h is near standard.

Proof. Though this lemma is a special case of [10, 8.4.29].
We include the following elementary proof:

Let hn = kn + en, kn in K, εn^0. Then \\kn-h\\ ^ \\k%-hn\\ +

H Λ . - Λ I I - O , n in N, so t h a t \\kn - fcm||< \\K - h\\ + \\h - Λ w - > 0 | |

as n, m~-> oo in iV. Thus {kn} is a Cauchy sequence in K. Let & =

lim^ooA^. Then k is in K and for every δ in (0, ©o) ||ft — fc|| <;

P - K\\ + llλ - Λ»ll + \\K - &II < δ, by choosing w- sufficiently

large. Thus, h ^ k.

LEMMA 22. Suppose that for some finite λ in *C with Im
0, (T — λ)"1^ is wear standard for all h in K. Then, for all finite
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p in *C with Im (p) 90 0 and sign (Im (λ)) = sign (Im (p)) and for
all h in K, (T — p)^h is near standard.

Proof. It suffices to consider those p's satisfying \ρ — λ| <
|Im(λ)| and \p — λ| ^ |Im(λ)| . For such p's there is the formula
(T - pyι = Σ?U (P - λ)*(T - xya+ι). The lemma then follows from
the observation that since (T — λ)"1 maps standard vectors into
near standard vectors and since | |(Γ —λ)"1!! is finite, (T — λ)"1 in
fact maps near standard vectors into near standard vectors so that
(T — x)"{k+1) maps standard vectors into near standard ones.

REMARK. See Kato [3, page 427] for an analogous standard
result.

THEOREM 23. In order that T be near standard it is necessary
and sufficient that both

(a) for some finite, positive and noninfinitesimal c, (Γ±/ίc)~1fc
be near standard for all h in K; and

(b) (1 + i e Tyιh ** h
for all positive infinitesimal ε and all h in K, be true.

Proof. The necessity follows from Lemma 12 and the discussion
in Example 20. For sufficiency, define, by Lemma 22,

R(±ia)h = st((T±iα)" ιΛ)

for all positive, finite noninfinitesimal a and all h in K.
Then

(R(x) - R(y))h

= (y - x)(T + x)~\T

But

| |(Γ + x)~\T + yΓh - R{x)R{y)h\\

<,\\{T + x)-\(T + yΓ -R(y))h\\

+ x)-1 - R{x))R{y)h\\ ** 0

because ||(JΓ + a?)"111 ^ a s finite norm. Thus (R(x) — R{y))h ^ (y —
x)R(x)R(y)h and since both sides are standard the pseudo-resolvent
equation results:

R(x) - R(y) = (y - x)R{x)R{y) .

The proof may now be completed as in Kato's proof [3, page 503]
of an analogous standard result.
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THEOREM 24. In order that T be near standard it is necessary
and sufficient that both

(13) eλsTh ** h

for all positive infinitesimal s; and

(14) eιtτh

is near standard for all finite t ^ 0 in *R

be true for all h in K with both X = +i and λ = — i.
IfT^c for some c in R and if (13) and (14) both hold with

λ = — 1 then T is near standard.

Proof. We give the proof in case λ = ± ΐ . The case of λ—— 1
follows similarly. The necessity follows from Lemmas 8 and 19.

For the proof of sufficiency, fix h in K, finite c > 0 in *R,
c 96 0. The Riemann integrals on *[0, °o)

are defined by the strong continuity of the integrand.
Fix ε > 0 in R. Choose b > 0 in R so that

Let / be the collection of z's in *[0, c>o) which satisfy

t, s in [0, 6], \t — s\ < z

imply

\\(eίtτ - ei&τ)h\\ < εc/(2(l - e~ch)) .

I is internal. The semigroup property and (13) show that I con-
tains all positive infinitesimals. Consequently, there is a δ in IΠ
(0, oo).

Let ak = kδ for k = 0, 1, , n, where n in N is chosen so that
nδ < b while (n + 1)8 :> 6. Set an+ι = 6. Let

hε is near standard being a finite sum of near standard vectors.

n - l C a k

<—— x j I
&=0 Jak

αfc+l

ak
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+ Ve-Ct\\eitτh\\dt

^ [\e-"ee/2(X - e~Λ))db + —
Jo 2

— ε .

By Lemma 21,

is near standard. From the Laplace transform formulas

(T ± ic)'1 = T-i[°°e-cte±ίtτdt
Jo

we conclude that ( Γ ± ic)~ιh is near standard. We have thus veri-
fied (a) of Theorem 23. We next verify (b).

Let ε > 0, ε ^ 0. Choose β > 0 to be infinite in such a way
that eβp^O. Then

+ ίεTΓh - Ml

- I [V 'e + i β "Mί - fell
I Jo II

'Hβ'^Λ - h\\dt

p& 0

since 0 < ί < / 3 - > ε ί ^ 0 - > eίε<7'^ ^ Λ. Thus (1 + iεTyιh *a h and
this theorem follows from Theorem 23.

See Example 20 for a remote T. Notice that (13) fails, in
other words, the semigroup is not strongly S-continuous.
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