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ON THE THEORY OF COMPACT OPERATORS

IN VON NEUMANN ALGEBRAS II

VICTOR KAFTAL

In their recent works L. Zsido' and P. A, Fillmore have
extended WeyΓs version of the classical Weyl-von Neumann
theorem to infinite semi-finite countably decomposable von
Neumann factors, by proving that for every self-adjoint
operator A in the factor there is a diagonal operator B =
Σ λnEn such that A — B is compact, the En are one-dimen-
sional projections and {λn} is dense in the essential spectrum
of A. In this paper we extend the Weyl-von Neumann
theorem in a different way.

First we extend the von Neumann version of the theorem
to both finite and infinite factors by proving that A — B
can be chosen as a Hilbert-Schmidt operator of arbitrarily
small norm. We have to drop the condition about the λn or
the dimension of the En.

In the second section we shall first re-obtain an equivalent form
of Fillmore's theorem and then we shall generalize it to the case
of normal operators, thus extending the Berg-Sikonia-Halmos theorem
(see [2], [13], and [8]) to infinite factors. Finally we shall examine
the possibility of choosing B in the von Neumann algebra generated
by A and we shall generalize to normal operators a connected theorem
by Zsido' [15].

We wish to thank M. Sonis for having called our attention to
this problem.

1* The Weyl-von Neumann theorem in von Neumann fac-
tors. Let if be a Hubert space, ^/ be a countably decomposable
(i.e., σ finite) semi-finite (i.e., type I or II) von Neumann factor on
H, *$/' be its commutant and ^ be the ideal of compact operators
of J ^ that is, the norm closure of the ideal of the operators A e Jzf
with range projection RA finite relatively to j& (finite operators for
short).

Let Tr (TrO be a semi-finite faithful normal trace on J ^ + (J^'+)
and D {D') be its restriction to the projections of Jzf (J^') We
use the normalization of the relative dimensions D and D' for which
D(J) = 1 (JD'(J) = 1) when <s*? (J&") is finite and the linking constant
C^ — 1 if Jzf, J%fr or both are infinite.

Let Si(J^) be the Hilbert-Schmidt class of ^f9 i.e., the (general-
ly incomplete) normed ideal of the operators AeSsf for which
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]|A||2 - {Tr (AA*)i/2 < oo. Clearly &&.&) c ^ and if A is finite,
then ||A||2 ^ (D(RA))ί/2\\A\\. Thus the classical inequality ||A|| ^ ||A||2
does not hold for type II factors.

Let us finally note that while in the L(H) case, or more general-
ly, in the type I case, every finite self-adjoint operator is diagonal
(i.e., has purely point spectrum), this is no longer true for type II
factors. Hence in our generalization of the Weyl-von Neumann
theorem, we shall consider finite factors too:

THEOREM 1.1. For A — A* e ^ί and η > 0 there is a diagonal
operator B = B* 6 J / such that S = A — BeSi(JZf) and \\S\\ < η,

Maintaining a certain analogy with the von Neumann proof (see
[11]), we first give the following lemma:

LEMMA 1.2. Let j y " be finite and let A = A* e Ĵ C Then for
every 0 ^ / e ί ί and 7] > 0 there is a finite projection P and a
finite operator S = S* such that:

(1) (I-P)/=0
( 2 ) A — S is reduced by P
( 3 ) (A — S)P is diagonal
( 4 ) \\S\\<η and \\S\\2<η.

Proof of the lemma. Let n be an integer greater than
max m\\A\\/ηγf Z\\A\\M], let Δά - (λy - \\A\\\n, λ, + \\A\\/n] j = 1 - ^
be a disjoint cover of σ(A)

and let β- =
i f

0 if

where E is the spectral measure of A. Without loss of generality
we may assume that ei Φ 0 for j — 1 m ^ w. Let 2^ = Eej{,s^ff)
be the smallest projection of j ^ whose range contains es and let
P = Σf=1 JSi# If J ^ is finite then D ^ ) ^ 1; if it is infinite then
C^ = 1 and again D(JS?,.) = D\Eej(j^)) ^ 1. Thus D(P) ̂ m^n. As
J&i ^ ^ we have P/ - Σf=i ^ i ^ / = Σ y = i ^ / = / (and hence (1)).
The choice S = A - Σf=1 λyJ&y - (/ - -P)^(ί - P) clearly satisfies (2)
and (3). As S = PΣΓ=i (^ - X5I)Eό + PA(/ - P) + (PA(I - P))* is
the sum of three operators with rank not greater than the di-
mension of P, D(RS) ^ 3n. Thus S is self-adjoint, finite and hence
Hilbert-Schmidt. As (I - P)AP = (1 - P) Σ?«i (A - λ , ! ) ^ we have
I|S|| ^ S||ΣΓ=i(-A - M ^ H. Moreover EΔj reduces (A - λ,-/)^- and
|](A - λy l )^ ! ! ^ \\A\\ln hence for every a? 6 Hy
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Σ (A - XJ
1

Therefore \\S\\ ^ S\\A\\/n < rj and | |S | | 2 ^ (Zn)ι/2(β\\A\\/n)< η which
completes the proof.

Proof of the theorem. It is known that every semi-finite (counta-
bly decomposable) factor is *-isomorphic to a (countably decomposa-
ble) factor with finite commutant (see Dixmier [3] Cor. 3 pg. 233).
A "-isomorphism preserves the operator norm (see Dixmier [4] Prop.
1.3.7), the relative dimension up to a normalization constant (see
Naimark [10] Th. 3. §6) and hence the Hilbert-Schmidt norm (up to
a multiplicative constant), and the class of diagonal operators,
(Dixmier [3] Cor. 1 pg. 54), hence we can prove the theorem with
the additional condition that jy" is finite.

The countable decomposability of j y provides us with a counta-
ble separating set {&}<=!...*£«> for ,jy (see Dixmier [3] Prop. 6 pg. 6).
We are going to construct by induction on n = 1 - N <Ξ> M a
sequence {Pn} of projections of j y and a sequence {Sn} of self-
adjoint Hilbert-Schmidt operators such that

( i ) (i - ΣPi)ΰi = o f o r e v e r y i ^ n

\ 3=ί /

(2 ) SnPt = 0, PnPi = 0 for every i < n

( 3 ) (A- ΣjSλ is reduced by Pn

( 4 ) (A - Σ S,-)P. is diagonal

(5) | | S J | < 2 - ^ and ||SJ|2 < 2 " >
Let us apply the Lemma 1.2 to the vector g19 the operator A e *$/
and the constant 2~~ιΎ]. It is obvious that the resulting projection
P1 and self-adjoint Hilbert-Schmidt operator S1 satisfy the conditions
(1) to (5). Let us assume that we have found {Pά}, {Sό} for j =
1 n, satisfying all those conditions and that there is a first index
kn, n + 1 ^ kn ^ M for which (/ - Σ?=i Pj)ffkn Φ 0. Let Φ% be the
canonical "-isomorphism from ._&£ = (I - Σ?=i Pj)*S^(I - Σ?=i ^i) <=
,jy onto the factor , j ^ = .J^Γj_Σ»=lPi) Φw maps ,pf(jy) Π JK onto

and there is a constant dn such that for every B e Si(..S)f) Π
we have ||Φ%(J5)||2 = dJ|B| | a.
As (J^O' is *-isomorphic to ,i^', it is finite, hence we can apply

Lemma 2.1 to the vector 0 Φ (I— *Σi%ιP/)9kn9 the self-adjoint operator
- Σ*=i Sj)(I - Σ?=i Pi)) e . X and the constant min (2-("+1)^,

Let us call Pn+1> S,̂ .! 6 j^ζ the images under Φ~ι of the resulting
projection and Hilbert-Schmidt operator in j^ζ*. Clearly, SΛ+1 is Hubert-



132 VICTOR KAFTAL

Schmidt in J ^ | | S . + ι | | < 2-< +1>? and | |S # + 1 | | 2 = d?\\Φ%{S%+ι)\\t £ 2~^%
Moreover Pn+1Pi — 0 and Sn+1Pt = 0 for every i ^ n and as
{I~P.+ι)(I-Σ3=iPj)9t = (I-Σ!ϊ}Pi)9i = 0 for every i £ kn we
obtain (1), (2) and (5). As the image under Φ~ι of a diagonal
operator in *SK is diagonal in ,s>/ we easily obtain (3) and (4).

Thus we shall obtain by induction a sequence {Pn} and {Sn},
n = 1 N ^ M satisfying (1) to (5) such that (I - Σ?«i •?•)& = 0
for every ί, i.e., such that Σί=i-P» = J Let us call 2?% =
(A - Σ?=i Sy)Pn, £ = Σί=i #•• B = B* e jtf and is diagonal as a
direct sum of diagonal operators. Let us call S = Σϊ=i SΛ. S is
Hilbert-Schmidt as the series converges (in the case of N = °o) both
in the operator norm and in the Hilbert-Schmidt norm. Clearly
||S||<3? and ||S||a < η. As for every i £ n, (A - Σy=i ^ P * =
(A - Σ U SyJPi = 5 t we have A - Σ?=i ^ - Σ?=i ^ + (A - Σ?=i ^ )
(I ~ Σ?=i Λ ) and hence A - J3 = S.

REMARK 1.3. It is impossible to extend this generalization of
the Weyl-von Neumann theorem in the direction followed by Zsido'
(Prop. 2.3 [15]) and by Fillmore (Th. 2.6 [7]), that is to request that
the Xn belong to the essential spectrum of A. Indeed if A 6 ^
then σ\A) = {0} and hence B has to be zero and S = A.

REMARK 1.4. It is possible to generalize Theorem 1.1 to the
&%(J&) class with the || ||p norm for every p > 1 (see Ovchinnikov
[12] 3°: the J*?P(Γ) space). It is enough to note that a ^isomorphism
preserves the £fv classes and the p norms (up to a multiplicative
constant) and that for every finite operator A, ||A||P <* D(RΛ)

ι/p\\A\\:
the proof of the lemma and of the theorem can then be carried
over with only minor changes.

2Φ The Berg-SikoniaivHalmos theorem in von Neumann
factors* Henceforth Jzf will be a countably decomposable infinite
semi-finite von Neumann factor (i.e., type 1^ or IIJ). Let A be a
diagonal operator A = Σί=i ^»^» where we assume λ* Φ λ, for i Φ j .
Let us denote ΛA = {Xn}n=ί...N^ and μA(\n) = D(EJ. If μΛ(\n)=°° for
every n = 1 N, then we say that A is strongly diagonal.

Let us recall that as a diagonal operator A is normal, all its
five essential spectra coincide (see Prop. 3.7 Kaftal [9]) and that
(see Prop. 3.8 ibid) k belongs to the essential spectrum σ\A) if and
only if for every open set Ssk, Es = Σ^es-E^ is infinite {E is the
spectral measure of A). This leads us to the following characteriza-
tion of the essential spectrum of a diagonal operator.

PROPOSITION 2.1. Let A^^f be diagonal. Then keσe(A) iff
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either keΛA and μA(k) — co or there is a subsequence of Λ
such that ΣΓ=A I^AiKj) = °° for every h. A,

Proof. If there is such a subsequence, then Xn. is eventually
in every open S a k and hence Es is infinite.

On the other hand, if k e σe(A) and k $ ΛA or μA(k) < oo then for
every open Sek, Σanesnu4-{*}> ̂ ( ^ J = TO Thus we can construct
a nested sequence of open circles Sm with center & and radius rm —> 0
such that Sm - Sm+19 {λ. .} i=im+1,..., im+lc(^ - {&}) and Σί'Ξ£+1 μA(Ks) ^
1. Then λn i —> A; and ΣΓ=Λ ^AO^%3) = °° for every ft.

Let us note that if an operator is strongly diagonal then its
spectrum coincides with its essential spectrum. The converse is of
course false—consider any nonnormal nilpotent operator.

If a normal operator A has a one point essential spectrum
σ\A) = {k} then σ\A - kl) = {0} and by Proposition 3.9. Kaftal [9],
A — kle^ i.e., A is strongly diagonal mod^;

This remains true even if σ\A) is infinite: we shall prove it for
self-adjoint operators, and then extend it to normal operators. First
we need the following technical lemma:

LEMMA 2.2. Let A = A* 6 J ^ E be the spectral measure of A
and MdR be a Borel set. Then σ\AEM) c (σe(A) Π M) U {0}. If
σ\A) Π M = {&} ίfcew AE^ — fci^ e ̂  // moreover M is an interval
and its measure is μ(M) then \\AEM — kEM\\ <;

Proo/. First let us recall that σ\AEM) c σ(AEM) a M U {0} (see
Cor. 6.X.2. [5] Dunford and Schwartz). Let O^λeσ\AE M ) and
let Δ be any open interval containing λ. We can assume that Δ $ 0.
If we call F the spectral measure of AEM we have FΔ — EΔΓ]M ^ JSJ
hence J&J is infinite. Thus λ 6 tfe(A). Let M — k (σ\A) — fc) be the
translation of M (σe(A)) by — k. It is easy to see that σ\{A — kI)EM)(Z

(σe(A) -kf]W^TJc) U {0}. Thus if σ\A) n M = {k} then σe((A - M)EM)c
{0} and as it is nonvoid and we deal with self-adjoint operators,
we have AEM - kEMe^ (see Th. 3.2. and Prop. 3.9. [9]). The
last statement then follows by standard computations.

PROPOSITION 2.3. Every self-adjoint operator of .$/ is strongly
diagonal mod

Proof. Because of Theorem 1.1 we can assume that A is
diagonal, i.e., A = Σ^=iλJ^> The case N < oo is trivial, so we can
assume N= co. Let kt be the element of σe(A) closest to λx. Let
Δλcz [— ||A||, \\A\\] be the greatest interval containing kx such that
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for every xeΔ19 \x - kt\ = mmkeσ.iA) \x - k\. If EΔl = Σ ^ n ^ #» is
infinite then let Λ1 — <Z>. If EΔι is finite, then, because of Proposi-
tion 2.1 we can construct a subsequence J^ = {λiυ} c /ίxl — Δ± such
that λ^ -» K sup ^...Jλi1* - fcj < 2"1 and ^ - Σ ^ E» is infinite.

Let Λ = (ΛΠΛ)UΛ, AA - Σ i ^ } λ Λ , ^ - Σ ^ e A J ^ and K,=
AAl-ktEAl. Clearly £^ is infinite, K^AE^-k^ + ̂ eTi, (K-k)En

belongs to ^ by Lemma 2.2, Proposition 2.1 here and Proposition
3.9 in [9] and \\K,\\ ^ μ(Δt) + 2"1 by Lemma 2.2.

Now we can consider the subsequence ΛA — Λ1 of ΛA and repeat
the same construction. Then either the process stops after a finite
number of steps (iff σ\A) is finite) and the theorem is easily proved,
or it is possible to construct by induction a sequence of disjoint
intervals Δ3 c [ —1|A\|, ||A||] and of disjoint subsequences A3 aAA with
AA — UΓ=i Λ i such that AΛj — kόEΛj + î y, EΛ. is infinite, iΓ̂  e J^ and
11̂ -11 ^ 2^' + μ(Δj). Clearly A - ΣΓ=i ^ , = Σ?«i ^ ^ , + K where
^r3K=ΣiJ=1Kj because as Σ?=ill^ || ^ 1 + M~ll^ll, ll^lll the series
converges in the norm topology.

It is easy to see by using Theorem 2.7 that Proposition 2.3 is
essentially equivalent to Fillmore's Theorem 2.6 [7] (which however
has been proved for separable Hubert spaces).

In order to extend Proposition 2.3 to the normal operators of
Sϊf we shall strengthen a result by Halmos [8].

LEMMA 2.4. Let C be a normal operator and let W(C) be the
von Neumann algebra generated by C. Then C is a continuous
function of a self-adjoint operator A e W(C).

Proof. Let U be an isometric ^-isomorphism from W(C) onto
L°°(Z, v) where Z is a locally compact space, v is a positive measure
with support Z and L°°(Z, v) is the C* algebra of v measurable,
essentially bounded complex valued functions on Z (see Dixmier [3]
Th. 1 pg. 118). Let ψ be a continuous mapping from the Cantor set
Γ c [0, 1] onto the compact set σ(C) (which contains the closure of
the essential range of UC, see Corollary X.2.9 by Dunford and
Schwartz [5]). Halmos [8] has proved that φ has a Borel cross
section ψ: σ(C) -> Γ (φ o ψ = 1), hence ψoJJCe L°°(Z, v). Let A =
U~~\γ°UC) e W(C). A is self-ad joint since ψoUC is real valued,
and clearly φ(A) is well defined. Let Pn be a sequence of complex
valued polynomials converging uniformly to φ. Then Pn(A) —> φ(A)
in the norm topology of W(A) and thus UPn(A) —> Uφ(A) in the
norm topology of L°°(Z, v). But UPn{A) = PnojJA = PnoψoJJC con-
verges in that topology to φoψoUC = UC hence C = Φ(A).
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THEOREM 2.5. Every normal operator of j y is strongly diagonal
mod

Proof. Let C be a normal operator of Ĵ C According to the
previous lemma C = ψ(A) for some φ continuous on σ(A) and A =
A* e W(C) c j&ϊ We can apply Proposition 2.3 to A and find a
strongly diagonal self-ad joint B = Σ^= 1 λn2£n e j ^ such that i - ΰ e ^
As σ(B) = (τe(B) = σe(A) c σ(A), 0(JB) = f l e .jy is well defined and
we have Z) = Σϊ=i Φ(*>n)E»> hence D is strongly diagonal. Let Pn

be a sequence of complex valued polynomials converging uniformly
to φ. Clearly Pn(A) -+ φ(A) = C, PJJS) -* 0(B) = D in the norm
topology and as Pn(A) - Pn(B) e .J? we have C

This theorem is the extension to von Neumann factors of the
Halmos version of the Berg-Sikonia-Halmos theorem. (See [2], [13],
[8].) The first two authors' version is slightly stronger as it asks
that \\C — D\\ < rj for any arbitrary r] > 0. As we have noted
already in Remark 1.3 we cannot however strengthen our results
in this direction. We can however proceed in the direction of von
Neumann's inverse of WeyPs theorem, or more precisely, since we
are dealing with normal operators, we can extend to von Neumann
factors the Sikonia-Edgar, Ernest and Lee theorem. (See Th. 1
[13], Cor. 5.5 [6].) Let us first note that unitarily equivalent
operators have the same essential spectrum. Indeed, the extension
of the Weyl theorem to a semi-finite von Neumann algebra & (see
Th. 3.3 [9]), states that if i , S G . ^ , A - J 3 e ^ then σ\A) = σ\B)
for any of the essential spectra defined in §3 ibid. Moreover, if Ue &
is unitary then σe(A) = σe(UAU*) because U is Fredholm index zero
and (by Th. 2.13 ibid.) U(A - Xl)U* = UAU* - XI is (left), (right),
Fredholm or has index zero together with A — XI. Thus we have

PROPOSITION 2.6. Let & be an infinite semi-finite von Neumann
algebra and σe be any of the essential spectra. If A, B e £% are
unitarily equivalent mod ,J^ then σ\A) = σ\B).

The converse of this theorem is generally false for nonnormal
operators. (Sikonia [13] and Edgar, Edgar, and Lee Th. 5.7 [6]
for the case & = L(H).)

THEOREM 2.7. Let *_%f be a countably decomposable infinite semi-
finite von Neumann factor and let A, B e Jzf be normal and such
that σe(A) = σe(B). Then A and B are unitarily equivalent mod*J?~.

It is possible to carry over to this case the classical von Neumann
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proof (see Satz II [11]) which uses the diagonalizability of A, B mod ^
and a theorem on sequences having the same set of cluster points.
The only difference with the classical case is that here it is
necessary to take care that the diagonal operators A! = *Σ£=ι ̂ «En,
B' = Σί=i ΊmFm such that A - A! ej?~, B - Br e ̂  have a decomposi-
tion for which μ^(λj = /ιB,(γJ but this is always possible because
of Theorem 2.5. This theorem has been obtained by Zsido' (see Cor.
3.3 [15]) as a corollary of a unitary implementation theorem for
isomorphisms.

We can further use Lemma 2.4 to extend to normal operators a
proposition proved for self-adjoint operators by Zsido' (see Prop. 2.1
[15]). Here M is a von Neumann algebra, 7 a norm-closed two sided
ideal in M, and Π is the canonical homomorphism of M onto M/y.

PROPOSITION 2.8. For every normal CeM there is a normal
De W(C) such that C - Dey and σ(D) = σ(ΠD).

Proof. Let C = φ(A) with ψ continuous on σ{A) and A = A* 6
W(C) c M. We can apply to A the above mentioned proposition by
Zsido' and find in W(A) c W(C) a self-adjoint B such that A - Bey
and σ(B) = σ(ΠB). As σ(S) c σ(A) we can define D = φ(B). Clearly
D e TF(A), hence D e W(C) and σ(D) = ^(σ(5)) = Φ(σ(ΠB)) = σ(φ(ΠB)) =
σ(ΠD). The first and the third equalities follow from the usual
spectral mapping theorem (see Dixmier [4] pg. 11) and the fourth
one from Proposition 1.5.3 ibid.

In view of this proposition applied to M — J^J 7 = ̂  and of
the fact that for C and D as in Theorem 2.5 σ(D) = σe(D), it is
natural to inquire if the strongly diagonal D can be chosen in
W(C). If C = 0(A) is diagonal then A — A* is diagonal too and by
considering the construction given in Proposition 2.3 of the strongly
diagonal B = £* such that A - B e J? we see that B e TF(A) c W(C)
and hence Z> = φ{B) e W(C). If σe(C) = {λi}i=1...ϊl<0O (iff C is polynomial-
ly compact: same proof as Theorem 6.4 by Berberian [14]), E is the
spectral measure of C and Sά B λy for i = 1 n is an open disjoint
cover of σ%C), then D = Σ ? = i M ^ e W?) a n d C - ΰ e J ^

However in the general case this fails to hold as shown by the
following example.

EXAMPLE 2.9. Let μbe a. finite positive regular measure defined
on the Borel sets of X = [0,1], let *Stf be the algebra of all bounded
operators on If(X, μ) and let A e jzf be the "multiplication by cc"
and E be the spectral measure of A. Every projection P e W{A) is
a spectral projection of A, i.e., P — EM for some Borel set M, hence
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if P Φ 0 then P is infinite. If there were a self-adjoint diagonal
D e W(A) such that A — D e ,J? then there would be a λ Φ 0 and a
Borel set ilί" such that EM Φ 0 and Ai?^ — λ2?3/ e <J^ But this would
lead to a contradiction. Indeed let An3X be a nested sequence of
open intervals converging to {λ}. For every n we have AEM_Δn —
XEM_Δn e ^ and hence EM-Δn = 0 because otherwise EM_Δn would be
infinite and 0 Φ X e σe(AEM_ΔJ c (σe(A) Π Λf - J J U {0} (by Lemma 2.2)
would imply λ g J Λ . Thus ^ = EMf]jn = EMEΔn -+ EMEm = 0 and we
have £/¥ = 0 against the assumption.

REFERENCES

1. S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J., 20
(1970), 529-554.
2. I. D. Berg, An extension of the Weyl-von Neumann theorem to normal operators,
Trans. Amer. Math. Soc, 160 (1971), 365-371.
3. J. Dixmier, Les Algebres d'Operateurs dans ΓEspace Hilbertien, 2nd ed. Paris:
Gauthier-Villars, 1969.
4. , Les C*-Algebres et Leurs Representations, 2nd ed. Paris: Gauthier-Villars,
1969.

5. N. Dunford and J. T. Schwartz, Linear Operators, Part II, New York-London-Sydney
Interscience, 1967.
6. G. Edgar, J. Ernest, and S. G. Lee, Weighing operator spectra, Indiana University,
Math. J., 2 1 (1971), 61-80.
7. P. A. Fillmore, Extensions relative to semi-finite factors, Rome conference, Septem-
ber, 1975.
8. P. R. Halmos, Continuous functions of Hermitian operators, Proc. Amer. Math. Soc,
31 (1972), No. 1, 130-132.
9. V. Kaftal, On the theory of compact operators in von Neumann algebras I, Indiana
Univ. Math. J., 26 (1977), 447-457.
10. M. A. Naimark, Normed Rings, 1st Amer. ed. Wolters-Noordhoff, Groningen, 1970.
11. J. Von Neumann, Charakterisierung des Spektrums eines Integraloperators, Paris:
Herman & C, 1935.
12. V. I. Ovchinnikov, Symmetric spaces of measurable operators, Soviet Math. Dokl.,
11 (1970), No. 2, 448-451.
13. W. Sikonia, The von Neumann converse of Weyl's theorem, Indiana Univ. Math.
J., 2 1 (1971), 121-124.
14. H. Weyl, Ueber beschrankte quadratische Formen, deren Differenz vollstetig ist.,
Rend. Circ. Mat. Palermo, 27 (1909), 373-392.
15. L. Zsido', The Weyl-von Neumann theorem in semi-finite factors, J. Functional
Anal., 18 (1975), 60-72.

Received July 11, 1977. This article is part of the author's thesis work at the Tel-
Aviv University.

TEL AVIV UNIVERSITY

TEL AVIV, ISRAEL






