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THE SPACE OF ANR’s OF A CLOSED SURFACE

LAURENCE BOXER

We study the hyperspace (denoted 2¥) of ANR’s of a
(polyhedral) closed surface M. The topology of 2 is induced
by Borsuk’s homotopy metric. We show the subpolyhedra
of M are dense in 27, We obtain a necessary and sufficient
condition for an arc in 27 joining two points. We show that
2 ijs an ANR (7). We prove that the subspace of 2¥ whose
members are AR’s has the homotopy type of M.

0. Introduction. For a finite-dimensional compactum X with
metric o, let 27 denote the space of nonempty compact ANR subsets
of X. The topology of 27 is induced by the metric p, defined by
Borsuk [3]. In [1] and [2], Ball and Ford studied several properties
of 2f, particularly for the case X = S2. In this paper we generalize
several of their results.

Throughout this paper, M will denote a (polyhedral) closed surface.
We show the nonempty polyhedral subcompacta of M are dense in
2¥. We give a necessary and sufficient condition for the existence
of an arc in 2) joining two given members of 2%. We show 2} is
an absolute neighborhood retract for metrizable spaces (ANR (_#))
and that the subspace of 2) whose members are the compact AR
subsets of M has the homotopy type of M.

Most of the results of this paper appeared in the author’s doctoral
thesis at the University of Illinois, Urbana-Champaign. The author
wishes to thank his advisor, Mary-Elizabeth Hamstrom, for her
guidance and encouragement. The author also wishes to thank B. J.
Ball and the referee for several useful suggestions.

1. Preliminaries. Let p be a metric for M. We use the following
notation: If xe M and A C M, then

B(w,r) = {ye M|p(x, y) < 7} ;

A,Int A, and Bd A are the closure, interior, and boundary of A
(in M) respectively.

Euclidean n-space is denoted R*. The interval [0, 1] is denoted
I. If 2, ye R* and te R!, then « + y will indicate the vector sum,
and ¢-x will indicate scalar multiplication of = by ¢.

If A is a polyhedron, we will assume A is compact unless otherwise
stated.

A map is a continuous function.

We use the following notation and terminology of [1] and [2]:
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A 6-set or a o-arc is a set or arc of diameter less than 6. A é-map
or a d-embedding is a map or embedding that moves no point by as
much as §. The words “every d-subset of A contracts to a point in
an ¢-subset of A” are denoted s(4, 9, ¢).

Where more than one topology is considered on a set, the topology
in which a sequence converges will be indicated by an obvious
notation. For example, a, — a, indicates that the sequence {a,};_,

converges to a, in the topology of the metric p.

Let X be a finite-dimensional compactum. Let p be a metric
for X. Let A and B be nonempty compact ANR subsets of X. The
Hausdorff metric p, is given by

0,(A, B) = max {sup {o(a, B)|a ¢ A}, sup {0(b, A)|be B}} .

The homotopy metric p, is characterized in [3] by the following:
Let A and {4,)y-. be nonempty compact ANR subsets of a finite-
dimensional compactum X. Then A, — A if and only if

0
@) 4,4, and '

(b) give’n ¢ > 0, there is a 6 > 0 such that for all », s(4,, 9, ¢).

We denote by 2F the topological space whose members are the
nonempty compact ANR subsets of X and whose topology is induced
by the metric p,. It is shown in [3] that 2 is complete and separable,
and that 27 is a topological invariant of X. We mention here other
useful results of Borsuk: If 0,(4, B) <e, then there are e-maps
f:A— Band g: B— A. For Ce2f, let [C]y denote the collection of
all members of 2f that have the same homotopy type as C. Then
[Clx is open in 2§. Since these sets partition 2j, [C]; is also closed.

The terms homotopy, deformation retraction, isotopy, ete. will
be used in standard fashion, except that it will be convenient not
to insist that the interval be I. For example, if ¢ < d, a deformation
retraction of A onto B is a map H: A X [¢, d] — A such that H,=1d,
and H, is a retraction of A onto B. (We use the notation H,(a) =
H(a, t) for all (a,t)e A X [¢,d].) It will occasionally be convenient
to refer to the map H, as a deformation retraction. A map H: A x
[e, d] — A is strongly contracting if ¢ < u < v < d implies H,oH,(4)C
H,(A)c H(A) ([1], p. 37).

The term surface will be used to refer to a (second countable)
connected 2-manifold, with or without boundary. A closed surface
is a compact surface without boundary. A bounded surface is a
compact surface with boundary. We differ from [1] and [2] in that
we will call an annulus any space homeomorphic to {(x, ¥) e R*|1 <
@+ Y = 2

The following gives a useful criterion for convergence in 2i:
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LemmaA 1.1 ([1], 3.4, p. 38). Let A and B be members of 2F (X
an arbitrary finite-dimensional compactum). Let h: A X I— A be
a strong deformation retraction of A onto B. Let {t.)-, be an
increasing sequence in I converging to 1. Suppose that for each
n, A, = h, (A) is an ANR. If

(a) h 1s strongly contracting, or

(b) for all n, h|A, X [t,, t...] is a strong deformation retraction
of A, onto A,,,, then An;:B.

REMARKS. Case (b) above is not proved in [1], but the proof is
identical to that of (a). We will use both cases.
The next two lemmas will be used in questions of ares.

Lemma 1.2 ([1], 4.1, p. 43). If A,,;»A an 25 and if for each n
h
there is an e,-embedding g,: A, — X of A, into X, where ¢, — 0, then
g.(4,) P A.

LEMMA 1.3 ([1], 4.2 and 4.3, p. 43). If Ac2fand f:AXI—X
is an isotopy, then {fi(A)|tel} contains an arc im 27 from A to

fi(A4).
The next two results will be used several times:

THEOREM 1.4 ([11], 3.4, pp. 382-383). Let N be a compact surface
with m boundary curves. Let L be a closed surface containing
disjoint open disks D,, -+, D, such that N = L\Uj-, D;. Let r: N—N
be a deformation retraction of N, and let R = r(N). Then L\R s
a union of m simply-connected components G, --+, @,, with D;CG;
for =1, -+, m.

An immediate consequence of the above is:

COROLLARY 1.5. Let N be a bounded surface. Let RC Int N be
a bounded surface that is a deformation retract of N. Then each
component of N\R is an annulus.

In the following theorems of Epstein, N will denote a surface,
with or without boundary, compact or not.

THEOREM 1.6 ([8], 1.7, p. 85). If a simple closed curve SC N
contracts to a point in N then S bounds a disk in N.

THEOREM 1.7 ([8], A2, p. 106) (stated in a different form). Sup-
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pose N is a polyhedral surface and f:I— N is an embedding with
S (BAN)=1{0,1}. Let U be a mneighborhood of f(I) in N. Then
there is an ambient isotopy of N that is fized on Bd N and outside
U and that changes f to a piecewise linear embedding.

The following lemmas will be used in the next section.

LEMMA 1.8. Let Y be a topological space, LCY, and let B be
an arc with endpoints w and v such that 8C L. Suppose there is
an open set D in Y\{u, v} and an arc ¥ L with endpoints a and
b such that {a, b} Bd D and v = 3\{a, b} is a component of L N D.
Then either YN B =¢ or Y B.

Proof. Let »:(I,0,1) — (B, u, v) be a homeomorphism. (The
notation means that p is a map from I to @ such that p(0) = % and
p(1) =v.) Suppose YN B #* ¢. There is an x €+ and a ¢, € (0, 1) such
that p(t,) =2. Then A =p (8N D) is a nonempty open set in I
contained in (0,1). Thus ¢, lies in a component (a,, b,) of A. We
have z € p((a,, b)) c BN Dc LN D, so p((a, b)) is a connected subset
of L N D containing x. Thus p((a,, b,)) €7 and {p(a,), p(b,)} N D = 4,
so {p(a,), p(b,)} < Bd D. The arc B = p([a,, b,]) has its interior in v,
but the endpoints of B are not in v. Therefore ¥ = Bc p(I) = B.

The following is an immediate consequence of ([7], 4.2, p. 360):

LEMMA 1.9. If A is an annulus with boundary curves T, and
T,, let H: T, x I — A be a map such that H, =1d,, and H(T, = T,.
Then H(T, x I) = A.

We say Y dominates X if there are maps f: X -Yand g:Y - X
such that gof is homotopic to Idy. We write 4X = min {dimY/Y is
a finite simplicial complex that dominates X}.

2. The role of the polyhedra. In[3], Borsuk asked the following
questions: If X is a polyhedron, is the collection of all nonempty
subpolyhedra of X dense in 2f? What is the category (in the sense
of Baire) of the collection of all nonempty subpolyhedra of X in 25?
In [1], the first question was answered affirmatively for the case
X = 8% and the second question was given the following answer:
If X is a connected polyhedron with no 1-dimensional open subset,
the collection of all nonempty polyhedra properly contained in X is
a first category subset of 2f. It was also shown in [1] that the
collection of nonempty topological polyhedra (i.e., homeomorphic
images of polyhedra) properly contained in S® is a dense G;, hence
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second category, subset of 2;°. We will extend the above to closed
surfaces.

LEemMmA 2.1. If X is a finite-dimensional compactum and U is
open in X, then Z = {Ce2f|Cc U} is open in 2%.

Proof. Let {A,)y-,C2N\%Z. Assume A, ;» A,. For each n there

h
exists z,€ A,\U. Since X is compact we may assume (by taking a
subsequence if necessary) that z, — x,e X\U. Since A,,-p—>Ao, we

have x,€ A,. Therefore A,¢ %/, so Z 1is open.

We prove a theorem about the Baire category of the collection
of topological polyhedra in M as a subset of 2;. (Recall M is a
(polyhedral) closed surface.)

THEOREM 2.2. Let .7 be the collection of momempty topological
polyhedra properly contained in M. Then 9~ is a second category
subset of 2i.

Proof. Let D be a disk contained in M. By 2.1, % =
{Ye2¥|Y cInt D} is open in 2¥, and thus is topologically complete.
Let f:Int D — S? be an embedding. Then the map f,: % — 2§ given
by f«(Y)=f(Y) is an open embedding ([3], p. 198). Since the
collection of nonempty topological polyhedra contained in S? is a dense
G, subset of 2§* ([1], 8.12, p. 42), it follows that Z\. 7 is a first
category subset of 2. The classical Baire category theorem implies
Z N .7 is a second category subset of 7/, and thus of 2. Hence
.7 is a second category subset of 2.

The rest of this section is devoted to proving the following:

THEOREM 2.3. The collection of monempty subpolyhedra of M is
dense in 2} .

To prove 2.3, we show in 2.4 that for a given Ce2) we can
split M into two pieces that join along simple closed curves such
that the intersection of C with each piece is an ANR. Each of the
pieces of M embeds in S%. In 2.5, we use the fact that the result
is known for S? to construct a sequence of polyhedra whose intersec-
tion is C satisfying the hypotheses of 1.1.

LeEMMA 2.4. Let q be a positive integer. Assume M 1is orientable
with genus q or monorientable with genus 2q. Let Ce2f. Then
there are compact subsurfaces X, and X, of M and simple closed
curves @, +-+, 0.y, 1 M such that:
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a) M=X UJX,.

(b) The a, are pairwise disjoint.

(¢) BdX, =BdX, =X, NX =Ui «a,.

(d) X, and X, both are homeomorphic to a sphere with q + 1
disjoint open disks removed.

(e) o a,\C has finitely many components.

Proof. It is an easy consequence of the standard way to repre-
sent a surface that there are subsurfaces X, and X, of M and simple
closed curves ai, ---, a,., in M satisfying (a) through (d). It follows
that for each n there is a two-sided collar N, of a; in M such that
the N, are pairwise disjoint. For any n such that a;\C has finitely
many components, set «, = «,. Thus we suppose &’ is any of the
a, such that «;\C has infinitely many components. We write N = N,,.
Clearly we may write a'\C = Un-, 7., where the 7, are distinct
components of a'\C and each ¥, is an arc whose endpoints a, and
b, lie in C.

Let Z = lim sup {¥,.}5_,, i.e., Z is the set of all zca’ such that
every neighborhood of x meets infinitely many ¥,. Then Z is closed
(see [13], p. 10). Thus Z is a compact subset of «’. It is easily
seen that Z c C.

Let w,, w,, and w, be distinet points of v, such that w, lies in
the arc w,w, of v, from w, to w,. Let f,: (I, 0, 1) — (a'\(w,w,\{w,, w,}),
w,, w,) be a homeomorphism. Since N is an annulus,

(1) there is a disk BC N such that N\B is homeomorphic to
Ix©0,1),weN\BNacN\BNa' v, and Z U f,(I)cInt B. Since
ANR’s are locally arcwise connected, (1) implies that for each ze Z
there is a neighborhood U of z contained in Int B such that UNC
is arcwise connected. Since Z is compact,

(2) there are open sets U, ---, U, such that Zc Yz_,U,cInt B
and each U, N C is arcwise connected.

It is easily seen that for almost all m there is a %k such that
Ym < U,. We assume 7, ---, ¥,, are those 7, that fail to lie in any
U.. Define I’y = ¢, and for k{0, 1, ---, p — 1} define

Tiw = {Tac Uil 7ae U T} .

Define I',,, = {¥,, ***, ¥m,). For each jlet I'; = {v,|7,eI;}. Clearly
r,r,-.--,I,, partition {¥,}5.,. Let the endpoints a, and b, of
¥ satisty fi'(an) < fo'(bn). For m > 1,7, = f(lfo (@n), f5'(bn)])-

We begin an induction argument by observing that for & = 0 we
have a map fi: ([, 0, 1) — (Int B, w,, w,) such that:

(8) If tel and fi(t) ¢ C then fi(t) = fi(t).
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(4) fuD)\C is a union of members of U%:i., [';.

Suppose for some k < p, fi: (I, 0, 1) — (Int B, w,, w,) is a map satis-
fying (8) and (4). If f.(I)\C meets no member of I';,, we define
fir1 = fi; then (3) and (4) are satisfied when & is replaced by k& + 1.
Otherwise we define ¢, = inf {t € I|f,(t) belongs to a member of 7.},
and d, = sup {t € I|f,(t) belongs to a member of /.,}. By (4) and
our choice of {w,, w,}, 0 < ¢, < d, <1. By (3) and (4), each of fi(¢c,) =
foler) and fi(d,) = fi(d,) must be an endpoint of some ¥,e€l,., or a
member of Z. It follows that {fi(c.), fi(d)} = U,.. N C.

If {filew), fu(dr)} C U,,, then (2) implies there is an are 7} in
Ui N C from fi(c,) to fiu(dy).

If, say, fi(c,) ¢ U,,, then there must be infinitely many members
of I'i,; that meet f,(I), for otherwise (4) implies fi(¢,) is an endpoint
a, of some ¥,erl,,, and thus f.(e,) € Uy, contrary to assumption.
Thus fi(c,) € ZN Uy, for some k,. There is a sequence {a,, } of endpoints
of membersv_mr of I',, such that f,of; 1(7;;)¢C and a,, — fi(c,). Hence
there is an » such that a,, € U,. By (2) there arearcs v'inU, NC
from fi(c;) to a,, and ¥ in U,,, N C from a,, to fi(d,). Thereisan
arc v, CY' UY"cCnInt B from fi(c,) to fi(dy).

The other cases are treated as above. So in any case, CN Int B
contains an arc v, from f,(c,) to fi(d,). Let fi..: (I, 0, 1)—(Int B, w,, w,)
be determined by: f...|[¢:, d:] is a homeomorphism of ([e,, d;], ¢, d})
onto (73, filew), fi(dy); and fi..(t) = fiu(t) for t e I\[c, d,]. Clearly f.,
is continuous. The construction shows (3) and (4) are satisfied when
k is replaced by k + 1.

With the induction completed, we have by (4) a map f,: (I, 0, 1) —
(Int B, w,, w,) such that f,(I)\C is a union of members of the finite
set I',,;,. Now f,(I) contains an arc 8 from w, to w,. Let 7, be a
component of f,(I)\C. Apply 1.8, with Y =M, L = f,(I), D =
M\(C U {w,, w,}), ¥ = ¥,: We have ¥, B or 7, N8 =¢. Therefore
B\C has finitely many components, and & = 8 U w,w, is a simple closed
curve such that @\C has finitely many components.

Let h: Int B— R* be a homeomorphism. Leth’: (1, 0, 1)— (B, w,, w,;)
be a homeomorphism. Let ¢:([—1,1],0, {—1,1}) — (a’, w, {w,}) be a
relative homeomorphism such that ¢g(I) cInt B. Define H:a' X I —
Int N by

9(s) if —-1=s=0;

H(g(s), ) = (L — t)-hog(s) + t-hoh'(s)] if 0Zs<1.

Clearly H is well-defined and continuous, H, =1d,, and H, is a
homeomorphism of «’ onto a. It follows from ([7], 2.1, p. 87) that
there is a homeomorphism 7T: N — N such that T(a') = ¢ and T(z) =
for all x€Bd N.
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By applying this construction to each of the curves ), we
easily obtain a homeomorphism P: M — M taking X|, X, ai, +--, a/,,
onto sets satisfying (a) through (e).

Theorem 2.3 follows from 1.1 and the following:

THEOREM 2.5. Let Ce2}f be a proper subset of M. Then there
1s @ sequence {A,}n-, in 2} such that for all n:

(a) FEach component of A, is a polyhedral bounded surface.

(b) CcA,,,cIntA,.

Also there 1s a sequence 0 =1, < t,<t, < --- with lim¢, =1
and a map h: A, X I— A, such that:

(¢) h s a strong deformation retraction of A, onto C.

(d) For each m, h| A, X[t,, .+ 18 a strong deformation retraction
of A, onto A,.,.

Proof. We remark that the proof is long, so some of the
technical details have been omitted. A more complete proof is in
[5].

It is easy to see that there is no loss of generality in assuming
C is connected. By sewing a Moebius band onto the boundary of a
disk cut out of M\C if necessary, we can also assume that M is
nonorientable of even genus, or orientable. In view of ([1], 3.2, 3.3,
and 3.5, pp. 36-39) we assume M #* S

For a given connected Ce2) with C# M, let «a, ---, a,,,,
N, +++, Ny, X,, X, be as in 2.4 and its proof. It follows from 2.4(e)
and ([4], 2.12, p. 102) that X, = X, N C and X, = X, N C are ANR’s.
We may assume X, # ¢. For k = 1, 2, X, U U%! N; is homeomorphic
to X,, which is embeddable in S:. If X,cInt (Ui N;) then CcC
Int (X, U U%1 N;), in which case we are done, by [1]. Thus we assume

(1) X, ¢ Int (UZN)).

Let I be the set of components v of J%ia;\C such that v Ca;
implies v # ;. From 2.4(e), I is a finite set. We argue by induction
on the number of members of I.

If I' = ¢ then for each je{l,2, ---, q + 1} either a; = C or a; C
M\C. Since C is connected and X, + ¢, if no «; lies in C we have
C = X,, contrary to (1). We assume

(2) Uiaa;cC for some p withl <p=<qg+1,andif p<qg+1
then Ug‘:;ﬂ a; C M\C.

Neither X, nor X, need be connected; nevertheless, the theorems
of [1] cited above (and their proofs) imply there are sequences
{B=_, (k = 1, 2) such that for all n:

(3) Each component of B! is a polyhedral surface.

(4) X,c B, cInt Bic B:cInt (X, U U N;). Also there are
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maps h*: B¥ x I — Bf and a sequence 0 = ¢,<t,<t; < --- such that
lim¢, =1,

(5) h*is a strong deformation retraction of B* onto X,, and
for each n:

(6) h*|Bfx[t,, t,.,] is a strong deformation retraction of B
onto BE,,.

(7) h*|(Bd BE) X [t,, t...] is an isotopy of Bd Bf onto Bd BE,,.

(8) IfyeBd B;and xeh*({y} X [ta, tari]), then B¥({a} X [t,, tua])
*({y} X [ta, ta]) and k%=, t) = h*(y, t) for te[t,,, 1]

(9) For all xeBd B, h¥({x} x I) is an arc and h*({z} x [0, 1)) is
a (noncompact) polyhedron.

(10) If D is a component of BX\X, and E is a component of
Bd D such that E c X,, then there is a boundary curve 8 of B! such
that S D and h¥(B) = E.

From (2) and (4) we may assume for all » and for £k =1, 2,

(11) Ui, a;cInt Bt and B: N Ui a; = 6.

For all n, let A, = (BN X)U BN X,). We define a map » on
A, x I by

Mz, ) hi(x,t) if xzeBiNniX;
x, = .
h(x,t) if zeBinX,.

Ifze(B'NX)N (BN X,)=U, a; = X, N X,, then (5) implies h'(z, t) =
x = h¥z, t) for all teI. Therefore h is well-defined and continuous.
It is easily seen that

12) if xeBfNX, then h(x, t)e BfN X,. It follows that
A, xI) = A,.

By (11), if B is a boundary curve of B then ScInt X, or B
Int X,. The union of those boundary curves of B that lie in Int X,
is (Bd 4,) N X,. It follows that A, is a polyhedral bounded surface.

For all n,CcA,.,=@BunNX)UuBi.NXy)c[(IntB)N XU
[(Int B}) N X,] = Int (B, N X)) U U} ; UInt (B; N X;) = Int A4,.

It is clear that h, = Id,, and h,|C = Id; for all te I. Also h,(4,) =
R(B'N X)) Uh(B:NX,) = (by (5) and (12))X, U X, =C. Thus & is a
strong deformation retraction of A4, onto C.

For all n, we see by (6) and (12) that h|A4, X [£,, t.s.] is a strong
deformation retraction of A, onto A,.,.

By (12), analogues of (7) through (9) hold when we replace
(Xi» {Bi}iey, h¥) with (C, (4.}, B).

If D is a component of A,\C then by (11) D is a component of
BA\X, for some k. Then (10) and the construction imply (C, {4,}:-., h)
satisfies the analogue of (10). This concludes our discussion of the
case I' = ¢.

Suppose the theorem is true whenever I has less than » members
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(r > 0). Now let I" have » distinet members, v,, ---, v,. Topologically
7, is an open interval in some «;, say 7v,Ca,. Let {z, 2} be the
endpoints of v, (2, = 2, if ¥, = a,). Let C' =CU#7,. Clearly C' is a
connected ANR, and I'" = {v,, --+, 7,_,} is the set of all components
v of Uil a;\C’ such that v C «; implies v # ;. The inductive hypo-
thesis gives a sequence {B,}r-; C 2 such that for all n:

(13) B, is a polyhedral bounded surface.

(14) C'c B,,,CIntB,.

Also there is a map +: B, X I — B, and a sequence 0 = ¢, <&, <&, < ---
such that lim¢, =1,

(15) +r is a strong deformation retraction of B, onto C’, and for
all n:

(16) /B, X [t., t..,] is a strong deformation retraction of B, onto
B,..

A7) +/(Bd B,) X [t,, t...] is an isotopy of Bd B, onto Bd B,,,.

(18) If y e Bd B, and z € ¥({y} X [ta; tusu]) then y({z} X [¢,, tuiu]) C
v({y} X [ta, tars]) and y(x, t) = ¥ (y, t) for te[t,., 1]

(19) For all x€Bd B,, v({z} x I) is an arc and +({z} x [0, 1)) is
a (noncompact) polyhedron.

(20) If D is a component of B,\C’' and E is a component of
Bd D such that Ec C’, then there is a boundary curve g of B, such
that 8 D and +,(8) = E.

For all » we define ¢, = sup {diam ({x} x I)/x € B,}. By compact-
ness, ¢, is finite, and we easily see

(21) lime, = 0.

Let D be a component of B\C' such that ¥, lies in a boundary
component E of D. From (20) there is a boundary curve g of B,
such that S D and %, C4,(B). It can be shown that:

(22) B contains a continuum £’ such that ,(8) =7%,. If B is
an arc whose endpoints are ¢, and e, then 4, ({e, ¢}) = {z, z,} and
"/"1(18’\{617 62}) = 7,.

Further, we show:

(23) If U is an open set contained in D such that £ N BAdU =+ 4,
then UN (B x I) +# 4.

For U meets a component U, of B,\B,,, for some n. By (14), (16),
and 1.5, U, is an annulus. From (16), (17), (18), and 1.9, U, =
P(B X [t,, tarsl), and (23) follows.

Let y,€7,. By (23) there are continua P,(k =1, 2) such that
B’ = P, satisfies (22) and P, N (Int X)) N B(Y,, &) # ¢. It can be shown
that P,N P, = ¢. By (17), for all =,

(24) (P, X {t.}) N (P, X {t.}) = ¢.

It can be shown that not both of P, and P, are simple closed
curves. Hence we assume P, is an arc. Then P, is an arc or a
simple closed curve.
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By (22) we may assume the endpoints a} and b} of P, satisfy
y(@) = 2, ¥, (0) =2, If P, is an arc then we may assume its
endpoints a? and b} satisfy +r,(a}) = 2z, ¥,(b}) = 2,. If P, is a simple
closed curve then z, = z,, and by analogy with the above we choose
af = bfePz N "l'f'fl(zl)'

By (19), »* = ¥({af} x I) and & = ({bf} x I) are ares. By (17)
and (18) we have

(25) 7\{z.}, 7"\{z.}, &\[z,} (and &\{z,} if &+~ %) are pairwise disjoint.

Let p,e P, N4 (W), B =1,2. Let P: be the arc of P, from a}
to p,. Let P} be the arc of P, from p, to bi. If a} =+ b let P?and
P? be the arcs of P, from a? to », and from p, to b}, respectively.
If a} = b} then z, = z,. Then let P? be the arc of p, from a? to p,
contained in P, N ¥ (4 (P2) and let P; be the other arc of P, from
a; to p,.

Clearly T, = Ui~ [7*U P Uv({p:} X I)] and T, = Ui [¢*UPF U
Y{{p:} X I)] are simple closed curves that are deformed by + into
proper subsets of «,. By 1.6, T, and T, bound disks M, and MM,
respectively in B,. Clearly M, = (T, x I).

There is an arc \; in M, N B(z,, &) from a} to a? such that {a}, a3} =
M N Bd M,. Then N C B, N B(z,¢,) and M N Bd B, = {ai, a}}. By (19),
M\{z, y,} is a (noncompact) polyhedron, so by 1.7 there is an ambient
isotopy of M, that is fixed on (M,\B(z, ¢&)) U Bd M, and that carries
A onto a polyhedral arc »,. Similarly, there is a polyhedral are g
in M, N B(z,, ¢,) from b} to b; such that {b}, b2} = £, N Bd B,.

For all =, let at = +(af, t,) € Bd B,, and let b% = (b%, ¢,) € Bd B,.
Let n¥ = ¥, &k = &, nt = ¥ ({ak} X [t,4,, 1]) (the arc of %* from ak,, to
2.), &k = P({bf} X [tass, 1]) (the arc of & from bk, to z,). Note that
we have begun an induction argument by showing that for » =1,
the following statements (26) through (29) are valid:

(26) There are polyhedral arcs », < M, N B, N B(z, ¢,) from al
to ai, n, < M, N B, N B(z,, €,) from b, to b such that:

27 {ai, al} =\, N Bd B, =\, N Bd M,.

{3, 6} = 1, NBd B, = ¢, N Bd M, .

(28) NN UML) =¢ = p, N (& UE).

(For n =1, (27) and (28) follow from observing which points are left
fixed by the ambient isotopies.)

29) NMNN;=¢ =, Ny for j < n.

Suppose m > 0 and (26) through (29) are valid forn =1, ---, m.
The inductive step is done as above, with obvious modifications.
For example, to obtain A,,, satisfying (26) through (29), we work
in the disk bounded not by T,, but by the simple closed curve

UV m U uma}rrﬂ-l ) 7?;» U 773n U vmafn+1 ’
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where %,v, is the arc of A, whose endpoints %, and v, satisfy
the are of (P, X {tm+,}) from wu, to al.,; and v,a%,, is the arc of
M, N (P, X {tny}) from v, to a%,,. Thus (26) through (29) hold for
all n.

Since N, C M, ¢, C M,, and (Bd M) N (Bd M)\v({p,, p.} X I) =
72N &, (25) and (27) imply

pifm=+3, orif mn=7 and %+ &;

@0 Mg = {a2 =02} if m=j and 7*=¢.

For k =1, 2, let Q, be the boundary curve of B, containing P,.
Let Q%= y(Qux{t.}), Pi =¥ (P x{t.}). Let E,=[(QFUQN\(Pr U P})]U
Ao U #t,. Clearly E, is a polyhedron, and E, N E; = ¢ forn + j. If
Q, # Q,, then (17), (24), (27), and (30) imply E, is a simple closed curve.
(Note (30) implies if M, N g, = {a2} then Q3 =Pz, so E,=(Q}\P?) U\, U H,.)
Similarly, if @, = Q, then either K, is a simple closed curve for all
n or E, is a disjoint union of two simple closed curves for all n.

For all n, let J,c M, be the disk bounded by %._,U%2_,U\, and
let J,C M, be the disk bounded by &, ,U&_,Ug,. Define 4, =
[BA\(M, U M)]U J, Ud,. To complete the proof, we must show (13)
through (20) are satisfied when ({4,}7-,, C) replaces ({B.}y-., C') and
an appropriate map h replaces .

We have

Bd 4, = E, U[(Bd B)\(@r U )] and E,N[(BdB\Q U] =9¢.

Therefore A, is a polyhedral bounded surface. The analogue of (13)
is satisfied.

Since E, N E; = ¢ for n # 5, Bd 4,) N (Bd 4;) = ¢. Clearly z, ¢
JoCJ, and z,ed,,,cJ.. It follows that Cc A,,,cInt A,. The
analogue of (14) is satisfied.

It is easily seen that there are maps h':J, x I — J, and h'": J, X
I— J; such that for all xen' U7, ye& U& tel,

B1) A'(x, t) = (x, t); (¥, t) = ¥(y, t); and such that A’ and B"”
satisfy analogues of (15) through (19):

(15") A’ is a strong deformation retraction of J, onto {2z}, and
for all n:

(16") R'|J, X [t,, ta1.] is & strong deformation retraction of J, onto
Jn+1'

a7y Wi, X [t,, t..i] is an isotopy of A, onto \,,,.
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(18") If x € h'({y} X [tas tas]) for y €N, then A'({w} X [L,, t..]) € B'({y} X
[t., tasi]) and A'(x, t) = K'(y, t) for te[t,., 1].

(19") For all zen,, k'{z} x I) is an arc and A'({x} x [0,1)) is a
(noncompact) polyhedron.

Similar versions of (15’) through (19’) hold upon replacing
(h'" {Jln}:’=11 zu {)'n};;l) by (h”r {J;t}::=19 Zz, {pﬂ}:=l)°
Define a map » on A, X I by

hx,t) if xzed,;
h(x,t) = <h'"(z,t) if xed);
Jr(x, t) otherwise .

By (31), h is well-defined and continuous. From (17) and (18),

(82) if xe B\(M, U M,) then y({x} x I)C B\(M, U M;\(2,, 25}).

By (15), (15"), and (32), h(A, x I) = A,. Clearly h(x,t) =« for
all (z,¢t)eC x I, and h,(A,) = C. Thus h satisfies the analogue of (15).

For all n:

By (16), (16'), and (32), h satisfies the analogue of (16).

By (17), (17"), and (32), h satisfies the analogue of (17).

By (18) and (18'), h satisfies the analogue of (18).

By (19) and (19'), h satisfies the analogue of (19).

By (20) and our construction of K,, h satisfies the analogue of
(20). The proof of Theorem 2.5 is completed.

3. Arcs. Let X be a finite-dimensional compactum and let
{C, C}c2f. Under what circumstances is there an arc in 2f from
C, to C? In [1], it was found that a necessary but insufficient
condition is that C, and C, have the same homotopy type; and a
sufficient but unnecessary condition is that C, and C, be isotopic in
X. For X = M, we obtain a condition that is both necessary and
sufficient:

THEOREM 3.1. Let {C, C}c2\{M}. By 2.5, there ewist A;¢c
2¥(5 = 0, 1) such that each component of A; is a bounded surface,
C,cInt A;, and C; is a strong deformation retract of A;. Then
there is an arc in 2 from C, to C, if and only if there is an ambient
isotopy of M taking A, onto A,.

First we prove:

LEMMA 3.2. Suppose Ce2/\{M}, and let {A,}o-y, {ta}n=1, and h be
as in 2.5. Then there is an arc S in 2 from A, to C containing
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each A, such that if Ae.o7\{C}, each component of A is a bounded
surface.

Proof. Recall the notation in the statement of Theorem 2.5.
In the proof of 2.5, we saw:

(1) n|(BdA,) x [t,, t,..] is an isotopy of Bd 4, onto Bd 4,_..

It follows from (16) and (18) of the proof of 2.5 that

(2) if xeBd A4, then h({x} X [t,, t...]) = 7, is an arc such that
Y\, Bz, t,.)} C (Int 4,)\A, ...

If ¢, = sup {diam A({x} X I)|x e 4,}, then lime, = 0, and by 1.1,
A, p—> C, so it follows that there is a sequence of positive numbers

73
0, such that
(3) limé, =0, and for all =, s(4,, 6¢,, d,).

Let P be a component of A,\4,,,. By 2.5a), 2.5(b), 2.5(d), and
1.5, P is an annulus. Let the boundary curves of P be a, cBd 4,
and «,,,CBdA,,,. There is a set E = {x, x, ---, 2,_,} Ca, of k
distinet points numbered according to an orientation of «, (let z, = x,)
such that if B, is the arc of a, from z;_, to x; containing no other
member of E, then diam B; <¢,. For each j, let y; = h(x;, t,.0).
By (2), v; = h({x;} X [ta, tas]) is an are from z; to y; such that
Y\{a;, y;} cInt P. By (1), the v; are pairwise disjoint for je
0,1, -+, k — 1}(7, = 7,) and (also by (1)){; = h(B; X {t..,}) is an are
of a,,, from y; , to y; not containing y, if v,¢{y;., y;}. Clearly
diam v; < ¢,.

Let {y, ¥’} ;. There exist «, 2’ €B; such that y = h(z, ¢,.,,)
and ¥’ = h(x', t,s). Then o(y, ¥') < oy, x) + o(x, ') + p(&', ') < &, +
diam B; + ¢, < 8¢,. Therefore diam {; < 3e¢,.

Let S; be the simple closed curve in P defined by S; =v;, U
B;Uv; UL, Then diam S; < diam v;_, + diam 8; + diam v; + diam {; <
&, + &, + 6, + 3¢, =6¢,. By (3) and 1.6, S; bounds a disk K; C A4,
such that

(4) diam K; < 9,.

Indeed K;C P, for if K; is the disk in P bounded by S; and K; = K,
then K; N K; = S;and K; U Kj; is a 2-sphere in A,, which is impossible.

It is easily seen that there is a map F: P x I — P that is a
strongly contracting strong deformation retraction and a pseudoisotopy
of P to a,,, such that F(K; x I)C K; for all j. From (4) we have

(5) F,is a d,-embedding for 0 < ¢ < 1.

Apply the above construction to each component of 4,\4,,,. In
the above, F,|a,,, =1d,, , for all tel, so we may extend each F,
via the identity to obtain a map F*: A, X I — A, that is a strongly
contracting strong deformation retraction and a pseudoisotopy of
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A, onto A,., moving no point by as much as 4§,. Let a,:I—27 be
defined by a,(t) = F*(4,x%{t}). By 1.8, a, is continuous for 0 <t < 1.
By 1.1, a, is continuous for ¢ = 1.

Let L: I— 2Y be defined by

___t“t"] if t,<t<t,.;
Lt) = {a”[twﬂ — 1 w="0=1lp41,
C ifor=1.

Since a,(1) = A,,, = a,.,(0), L is well-defined; and L is continuous for
0=t<1l. From (3),(5), and 1.2, L is continuous for ¢ = 1. Since
L(0) = A, and L(Q) = C, L(I) contains an are in 2 from A, to C.
The second conclusion of the lemma follows from the fact that for
all n, F’* is a pseudoisotopy of A, onto A4,.,.

We show the existence of a basis with useful properties.

LemMA 3.3. Let Ce2/\{M} and let ¢ > 0. By 1.1 and 2.5, there
exists A such that p,(A, C) < e, each component of A is a bounded
surface, CCInt A, and C is a strong deformation retract of A.
There 1is a mneighborhood 7 of C in 2 such that X e Z/ implies
oX,C)<e, XCInt A, and X is a strong deformation retract of
A. Further, if each component of X € Z/ is a bounded surface, then
there is an ambient isotopy of M that carries A onto X.

Proof. We may assume A is a polyhedron, and that ¢ is so small
that two maps f,, fi: C — A such that po(f,, f,) < ¢ are homotopic in
A. Recall [C], ={Xe2/|X and C have the same homotopy type}
is open. From 2.1 it follows that

2 =[Cly N {Xe2!| X cInt A) N {Xe2)|0u(X, C) < ¢}

is an open set in 2; containing C.

We may assume C and A are connected (otherwise we apply the
following by components). Let Xe%. There is an e-map g: C — X.
Let 7:C— A, j: X — A be inclusion maps. By choice of ¢, 1, = J.o0,:
II.,C — II,A. By choice of A, ¢, is an isomorphism. Therefore
Je: IILX — IILA is a surjective homomorphism. But {X, 4} c[C],, so
IILX and I1,A are isomorphic. Since 4 is a bounded surface, /7,4
is a finitely generated free group. Therefore j, is an isomorphism
(see [10], p. 59).

Recall the definition of 4X given in §1. Since X and A have
the same homotopy type, 4X = 4A. But 44 <1, since if A is a
disk it has the homotopy of a point, while otherwise A has the
homotopy type of a wedge of finitely many simple closed curves.
With N = 44 <1, we apply Whitehead’s theorem ([12], 1, p. 1133)



62 LAURENCE BOXER

and conclude j: X — A is a homotopy equivalence.

By 1.1 and 2.5 there is a polyhedral bounded surface B e % such
that X < Int B and X is a strong deformation retract of B. Applying
the above to B, we conclude the inclusion of B into A is a homotopy
equivalence. Hence B is a strong deformation retract of A (see [6],
3.2, p. 6). Thus X is a strong deformation retract of A.

If Xe % is a bounded surface, then by 1.5 each component of
A\X is an annulus. Let S be a component of Bd A. Let A’ be the
component of A\X containing S. Let S’ be the component of Bd A’
that lies in X. There are annuli A, and A, that collar S in M\4
and S’ in X respectively. Then A” = A4, U A’ U A4, is an annulus.
There is an isotopy h: A” x I — A" of A" onto itself such that
h(A" U A4)=A, h(4)=A4"UA,and h(z, t) =z forall(z, t) e (BAA")x L.
Apply this construction to each component of A\X and extend via
the identity on M\(A\X) to get an ambient isotopy of M that carries
A onto X.

Proof of Theorem 3.1. Suppose there is an ambient isotopy of
M taking A, onto A,. By 1.3, there is an arc in 2Y from A, to A,.
By 3.2, there are arcs in 2} from A4, to C, and from A, to C,. Hence
there is an arc in 2y from C, to C,.

Conversely, suppose there is an embedding p: I — 2¥ such that
p(0) = C, and p(1) = C,. Since p(I) is compact, 3.3 implies that there
exist 0<¢, <t < -+ <t,=1; A4, €2 such that each component of
A, is a bounded surface; and neighborhoods %/, of p(f,) in 2¥ such
that if X e %/, and each component of X is a bounded surface then
there is an ambient isotopy of M taking A, onto X, and such that
X\ Uy # ¢ and p(I) c Ur-, %/,. Further, 3.3 enables us to assume
that A, = A, and A, = A4, .

By 1.1 and 2.5, for each % < m there exists B, € %, N %/,. such
that each component of B, is a bounded surface. There are ambient
isotopies of M taking A,, and A, onto B,. Therefore there is an
ambient isotopy of M taking A, onto A, . Hence there is an
ambient isotopy of M taking A, = A, onto A, = A,

4. Global properties. The spaces D(N)and L(N) of deformation
retracts (respectively, compact AR subsets) of a compact 2-manifold
N were studied by Wagner in [11]. The topologies of these spaces

may be deseribed thus: A,,D—TN—;C(A,,WC) if and only if there

are maps 7, N—N, r,. N— N that are deformation retractions
(that are retractions) of N onto C and A, respectively such that
r, — r, uniformly on N. We show these spaces are closely related
to 2.
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We will need the following lemma. In both its statement and
its proof, it is similar to ([2], 3.1, pp. 212-213).

LemMA 4.1. If Ce2\{M}, C is comnected, and & > 0, there is
a 0 >0 and a neighborhood ZZ of C in 2 such that if {4, B} C %,
BC A, and A is a bounded surface, then every pair of points in
Bd A that can be joined by a é-arc inm M\B can be joined by an e-
are in Bd A.

Proof. By 3.3, there is a neighborhood %, of C in 2 and a
bounded surface N c M such that for all Xe %, we have XCInt N
and X is a strong deformation retract of N.

Since M is an ANR, there exists » > 0 such that s(M, », ¢/4).
Also there is a 6 > 0 such that:

(1) If N has more than one boundary curve then

0 < min{o(S, T)|S and T are distinet boundary curves of N}.

(2) 0 < 1/2min {7, ¢}.

(8) There is a neighborhood %, of C in 2} such that if X e %,
then s(X, o, 1/2).

Let z, = {X e 2/ |p(X, C) < d/2}). Let % =7, N %, N Z;. Clearly
7 is a neighborhood of C in 2}.

Suppose {4, B} C % such that BC A and A is a bounded surface.
From 1.4 (with R = B) it follows that B separates each pair of
boundary curves of N in N. Since each component of N\A is an
annulus, it follows that

(4) B separates each pair of distinct boundary curves of A in A.

Let p and ¢ be distinet points of Bd A such that there is a
o-arc B from p to q in M\B.

Suppose B meets distinect boundary curves T, and T, of A. It
follows from (4) that @ must contain a d-arc B’ from p'e T, toq' € T,
such that N4 ={p, ¢}. For n=1,2, let B, be the annular
component of N\A containing T, and let T, be the component of
Bd N that is contained in B,. By 1.4, T) = T,. By (4) and 1.4, there
are distinct components B, of N\B such that Int B, C B,. Then
T,c B, c B, so we must have 8 N Bd B, # ¢. Since BdB,c T, U
BdB and g NBdBCc R NB=¢, we have ' N T, +¢ for n =1, 2.
The latter contradicts (1). We conclude that 8N Bd A is contained
in a single component J of Bd A.

By N,B) we will mean the set of all points in M whose
distance from B is less than s. Since diam B8 < d, there is ans > 0
such that diam N,(8) < 4. By the proof of 2.4, we may assume
BN J has finitely many components. If v is a component of BN J
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that is not a single point, then v is an arc with endpoints b, ¢. There
is an arec Y C N,(B)\B from b to ¢ such that ¥ NJ ={b, ¢}. If
Y ***, Y are the components of B8N J that are arcs, then g, =
(B\Ur-7.) UUp-. v, meets J in but finitely many points and (by
choice of s) contains a d-arc B, from p to q. Thus (by replacing B
by B, if necessary) we may assume BN J is a finite set.

Suppose BN J = {p, q}. We consider two cases:

(I) Suppose B\{p, ¢} € M\A. Since diam B < d, (3) implies there
is an p/2-arc £ in A from p to q. We assume &\{p, ¢} CInt A. Then
K = B UZ¢ is a simple closed curve and diam K < d + 9/2 < 7 (by (2)).
By 1.6 and our choice of », K bounds a disk L ¢ M with diam L < ¢/4.

Let z € B\{p, q}, vy € &\{p, ¢}. For any fixed » >0, Bz, r) N (M\A) #
é6#B(y, ryNInt A. Suppose L fails to contain an arc of J from p» to
q. Our choices of B and ¢ imply J N K =.J N Bd L = {p, q}, so the as-
sumption implies JNL = {p, q}. Thus ¢ = JNIntL = (Bd A)NInt L.
Since ¢ # B(y, r) N Int A meets Int L N Int A and ¢ == B(x, ) N (M\A)
meets Int L N (M\A), it follows that Int L = (IntL NInt A)U
(Int L N (M\A)) is disconnected. This is impossible, so L contains
an arc of J from p to ¢ that lies in N,,(B) (since BC L and
diam L < ¢/4).

(II) Suppose B\{p, ¢} cInt A. Then A = A, U A,, where 4, is
a bounded surface containing B, 4, is (by (4) and the fact that
B C M\B) a bounded surface whose boundary is the union of 8 and
an arc of J from p to ¢, and 4, N A, = 8. By choice of %%, there
is a 0-map f: A— B. If ze€ A, then f(z)e BC A4,, so by (8) there is
an 7/2-arc {C A from z to f(z). Clearly { meets 8. Hence A,C
N,;,(8). In particular, the arc of J from p to ¢ that lies in Bd A,
must lie in N,,(B).

Our choice of 7 implies /2 < ¢/4. In both (I) and (II), J contains
an arc from p to g that lies in N,,(B).

More generally, if NJ ={p =p, ---, p. = q} where the p, are
numbered in order from p to ¢ along B, then each subarc »,p,., of
B satisfies the condition of (I) or (II). For each n<k there is an are
¢, of J from p, to p,,, in N,,(B). There is an arc {,c Uiz} {,CN..(B)
of J from p to q. Observe diam {, < diam N,,(8) < ¢/2 + diam 8 <
g/2 + 6 < e (by (2).

We now strengthen 3.3.

LEMMA 4.2. Let Ce2)\{M}, e > 0. Then there exist Ne2i and
a neighborhood 77 of C im 2¥ such that each component of N is a
bounded surface and such that for all X e 7z, 0,(X, C) < ¢, X Int N,
and there is a strong deformation retraction h: N x I — N of N onto
X such that for each tel, h, is an e-map.
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Proof. It follows from ([2], 2.1, p. 210) that there is no loss
of generality in assuming C is connected.

There is a neighborhood %, of C in 2} and a 6 > 0 such that

(1) if Xe %, then s(X, 9, €/2).

There are positive numbers 6, and 6, such that

(2) 176, +0,<d
and (by 4.1) such that

(8) there is a mneighborhood %, of C in 2Y such that if
(X, Y}c%, XCY, and Y is a bounded surface, then each pair of
points in BdY joined by a 7é,-arc in M\X can be joined by a d,-arc
in BdY.

Clearly

(4) there is a neighborhood %; of C in 2} and a 9, > 0 such
that if X e %, then s(X, 0,, 9,).

Let %, ={Xe2f|p,(X, C) < (1/2)d;}. By 3.3 there exist a bounded
surface NeNi-, %, and a neighborhood % of C in 2 such that
X e %, implies X cInt N and X is a strong deformation retract of N.

Let 2 = N3-1 %.. Clearly % is a neighborhood of C in 2J.
Fix X e %. By 1.1 and 2.5 there is a bounded surface B € % such that
X c Int B and there is a strong deformation retraction g: B x I — B
of Bonto X such that g, is an ¢/2-map for all t € I. Thus it suffices to
show the existence of a strong deformation retraction H: NxI— N
of N onto B such that H, is an ¢/2-map for all teI.

By choice of %, we have p,(N, B) < d,. It follows from (4) and
our choice of %/ that for all x € Bd N there is a d,-arc in N from x
to some y € Bd B. By 1.5, each component P of N\B is an annulus.
Let BdP=SUS, where S and S’ are boundary curves of N and
B respectively. It follows from 1.4 that B separates distinct boundary
curves of N in N, Thus

(5) for all xS, there is a d,-arc B from x to some y € S’, and
we may assume S\{x, y} C Int P.

Suppose diam S < . By (1) and 1.6, S bounds a disk of diameter
less that §/2 in N. Since N is connected, the disk must be N itself.
In this case it is clear that we have a strong deformation H: N X
I— N of N onto B such that H, is an ¢/2-map for all ¢eI. Thus
we assume

(6) diam S = o.

There is a set G = {x,, -+, x,} © S of k distinct points numbered
according to an orientation of S (let x, = x,) such that if «, is the
arc of S from z,_, to x, containing no other member of G, then

(7) 20, < p(x,-y, x,) and diam a, < 50,.

By (2) and (6), k> 1.

By (5), for each p there exists y, € S'(y¥, = ¥.) and a d,-arc B,(8, = B)

in P from z, to y, such that g,\{z,, ¥,} CInt P. By (7), Bp-. N B, =g.
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Since P is an annulus, it follows that the 8, are pairwise disjoint.
By choice of B,B3,,Ua,UB, is an arc in M\X from y,_, €8 to
y,€ 8, and (7) implies

(8) diam (B,_, U a, U B,) < 8, + 53, + 0, = 70,.

By (8), there is a d,-arc v, of S’ from y,_, to ¥,.

We claim v, does not contain y, if y,¢ {y,_,, ¥,}. For it follows
from the disjointness of the B, that the points y,, - - -, ¥, are numbered
according to an orientation of S’. If some v, contains y, for y,¢
{yp—n yz)}' then {yu ] yk} C Vpe Let xe &, F Oy Then p(x» 717) =
o, ¥,) = p(x, x,) + O(%, ¥,) = diam @, + diam B, < 59, + 9, = 60,. It
follows that diam S = diam e, + diam (S\e,) < 50, + diam N, (7,) =
50, + 120, + diam v, < 176, + 0, < d (by (3)), contrary to (6). The
claim is established.

ThenL,=28,,Ua,UB, U7, =1, ---, k) is a simple closed curve
in N. By (8 and our choice of 7v,,diam L, < 7, + 6,. By (1), (2),
and 1.6, L, bounds a disk D, in N with diam D, < ¢/2. As in the
proof of 3.2, D, is the disk of P bounded by L,.

As in 3.2, there is a strong deformation retraction K: P x I — P
of P onto S’ such that K(D, x I) = D, for all p. Thus K, is an
¢/2-map for all tel. As in 3.2, K can be extended to a strong
deformation retraction H: N x I — N of N onto B such that H, is
an ¢/2-map for all tel. ‘

THEOREM 4.3. Let {A,}i-, and C be points of 2)\{M}. Then
A, — C if and only if there exists N €2} such that each component

o
of l\}; 18 a bounded surface and A”T)(_N)) C.

Proof. By 8.3, there is a compact 2-manifold with boundary
Ne2¥ and a neighborhood % of C in 2} such that if Xe% then
XcInt N and X is a strong deformation retract of N.

Suppose A, —>C. Let ¢>0. By 4.2 there is a compact 2-

manifold with bo&ndary Be 7 and a neighborhood 7~ of C in 2}
with 7% such that if Xe?7 then X cCInt B and there is an
€/2-map r: B— B that is a strong deformation retraction of B onto
X. Choose an m such that » > m implies 4,¢ 7¢

Let f: N— N be a deformation retraction of N onto B. Let
fs: B— B be an ¢/2-map that is a deformation retraction of B onto
A, for n > m. Let f;: B— B be an ¢/2-map that is a deformation
retraction of B onto C. Define r,: N— N for n = 0, n > m by r,(x) =
fu(f(x)). Forall ze N and n>m, o(r.(x), r,(x)) < &. Hence 4, m C.

Conversely, suppose 4, R C. There exist deformation retrac-
tions 7,: N—N of N onto A4,,7,: N— N of N onto C such that »,—7,
uniformly on N.
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If 2eC, p(z, r,(x)) — o(x, r(x)) = 0. Hence p(z, 4,) — 0.

If r, €A, lo(xm 76(®,)) = p(’rn(wn)’ 74(x,)) — 0. Hence p(xm C) — 0.
We conclude A4, > C.

Let ¢ > 0. Let 6 > 0 be such that if {z, ¥} N and oz, y) < o
then p(r\(x), 7,(y)) < /6. Let 6" >0 be such that s(N,d’,d). Let
m > 0 be such that n > m implies that for all x € N, p(r,(x), 7,(x)) <
e/6.

If {x, y} C N, o(x, y) <4, and % > m, then o(r,(x), r.(¥)) = p(r.(x),
75(2)) + (@), 7o(¥) + P(r(¥), 7.(¥)) < /6 + €/6 + /6 = ¢/2.

Let Kc A, C N, diam K < ¢’. There is a contraction h: K x I - N
of K to a point such that diam A(K x I) < é. Therefore, for n > m,
r,oh: K x I — N is a contraction of K to a point such that
r.,oh(K x I)c A, and diam (v, h(K X I)) < ¢/2 + ¢/2 =e. Hence
s(A,, ¢, ¢) for n > m, so A, ;Z C.

THEOREM 4.4. 2 is an ANR (_.Z).

Proof. If N and % are as above, the previous theorem implies
the inclusion of the set % into D(N) is an open embedding. Since
D(N) is an ANR (_»#7) ([11], 5.5, p. 389), it follows ([9], 3.1, p. 391)
that % is an ANR(_#). Since M is an isolated point of 2) (because
[M], = {M}) the assertion follows from the fact that a local ANR (_#")
is an ANR(_#) ([9], 3.3, p. 392).

THEOREM 4.5. Let ARy ={Xe2)|X is an AR}. Then AR} 1is
a component of 2.

Proof. Since AR} is the set of all members of 2} with the
homotopy type of a point, AR is open and closed in 2¥, and thus
is a union of components of 2). We must show ARY is connected.

Let C,c AR} (n = 0,1). By 3.2 there is an arc in ARY from C,
to N,, where N, is a disk. Let p,e N and let 2*: N, x I - N, be a
pseudoisotopy of N, onto p,. Then (using 1.3) {R*(N, x {t})|te I}
contains an arc in AR} from N, to {p,}. Let h:I— M be a map
such that h(0) = p, and (1) = p,. By 1.3, {{k(t)}|t € I} contains an
arc in AR) from {p,} to {p,}. Thus there is an arc in AR} from C,
to C,.

THEOREM 4.6, ARY = L(M) as topological spaces.

Proof. Clearly they are equal as sets. Let Cc AR}. As above,
there is a disk Nc M such that CcInt N and C is a strong defor-

mation retract of N. We know A, — C if and only if 4, —— C.
Or D(N)
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But A“E—(ﬁc if and only if A,‘mc ([11], 5.4, p. 388).
Clearly the map j: M — ARy defined by j(x) = {z} is an embedding.
We have the following:

COROLLARY 4.7. j(M) is a deformation retract of ARY. Thus
AR} has the same homotopy type as M.

Proof. This follows from Theorem 4.6 and ([11], 5.5, p. 389).
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