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MAPS AND A-NORMAL SPACES

MARLON C. RAYBURN

Further consequences of hard sets are explored in this
paper, and some new relations between a space X and its
extension δX are shown. A generalization of perfect maps,
called <5-perfect maps, is introduced. It is found that among
the WZ-msLφs, these are precisely the ones which pull hard
sets back to hard sets. Applications to δX are made. Maps
which carry hard sets to closed sets and maps which carry
hard sets to hard sets are considered, and it is seen that the
image of a realcompact space under a closed map is real-
compact if and only if the map carries hard sets to hard sets.

The last part of the paper introduces a generalization of
normality, called /^-normal, in which disjoint hard sets are
completely separated. It is found that X is h-noτmal when-
ever uX is normal. The hereditary and productive proper-
ties of /^-normal spaces are investigated, and the /^-normal
spaces are characterized in terms of <5-perfect PF^-maps.
Finally as an analogue of closed maps on normal spaces, a
necessary and sufficient condition is found that the image
of an /^-normal space under a ^-perfect WZ-m&j) be /^-normal.

1* Introduction. All spaces discussed in this paper are assumed
Tychonov (completely regular and Hausdorff) and the word map
means a continuous surjection. The notation of [2] is used through-
out. In particular, βX is the Stone-Cech compactification and oX is
the Hewitt realcompactification of X.

The following facts concerning hard sets will be used here.
They are found in [8] and [9].

DEFINITION 1. For any space X, let clβx(υX — X) = K( = KZ).
A set H Q X is called hard (in X) if Jϊ is closed as a subset of
X U K. (A characterization of hard sets internal to X is given in
[8].) Let δX be the subspace of βX given by δX = βX - (K - X).
Thus X £ δX Q βX.

PROPOSITION 2. A subset H of space X is hard if and only if
there is a compact subset of δX whose restriction to X is H.

PROPOSITION 3. Every compact set in X is hard, but every hard
set is compact if and only if X = δX. (Note every pseudocompact
space is of this type.)

PROPOSITION 4. Every hard set of X is closed, but every closed
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set is hard if and only if X is realcompact.

PROPOSITION 5. A closed subset of a hard set is hard.

It follows immediately from the definition that X is realcompact
if and only if dX is compact. We conclude this section with some
new results.

LEMMA 6. The set of points at which δX fails to be locally
compact is precisely the set of points at which X fails to be locally
realcompact.

Proof. Let R(δX) be the set of points at which δX fails to be
locally compact. By ([5], 2.10), the set of points at which X fails
to be locally realcompact is X Π K. But β(δX) - δX = βX - δX =
K - X. Thus clβx(βX - δX) = clβx(K - X) = K. So R(δX) = δX n

ciβx(βδx - δX) = δx n K = x n K.

COROLLARY 7. X is locally realcompact if and only if δX is
locally compact.

COROLLARY 8. Let X be locally realcompact. The hard zero
sets form a base for the hard sets.

Proof. In δX as in any locally compact space, the compact zero
sets form a base for the compact sets.

COROLLARY 9. X is locally realcompact if and only if every
hard set of X is contained in the interior of a regular-hard (i.e.,
hard and regular-closed) set of X.

Proof. Let H be a hard set of X. Then clδXH is compact in
the locally compact space δX, so it is contained in the interior of a
regular compact set B of δX. Restrict B to X.

THEOREM 10. For any X, δX is the union of the βX-closures of
the hard sets of X.

Proof. Let p e δX — X. By Lemma 6, there is a compact set
F such that x e intδX (F) £ F £ δX. Let G = X f) intδX (F), then
clδX(G) = clδX intδX (F). Let H = clx(G), so H is a hard set of X and
peclδX(H) = cl

II. S-perfect maps. Let /: X -> Y be any map and fβ: βX —> βY
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be its Stone extension. Henriksen and Isbell [3] have studied those
maps, now called perfect, which are closed and pull compact sets
back to compact sets.

PROPOSITION 11. A map f: X —>Y is perfect if and only if for
each yeY, f7(y) £ X.

Proof. This follows from the characterization in [3] that / is
perfect if and only if fβ[βX - X] = βY - Y.

DEFINITION 12. The map /: X -> Y is δ-perfect if for each y e Y,
f7(y) £ δX.

Clearly every perfect map is δ-perfect. Yet if Y is compact
and X is realcompact and not compact, there are no perfect maps
from X onto Y, but every map is δ-perfect since δX = βX.

LEMMA 13. A map f:X—>Y is δ-perfect if and only if

Proof. One direction is trivial. For the other, note υX £
f;[υY] = fr[Y]Όf7[oY-Y]. By hypothesis, f;[y]f](υX-X) = 0.
Thus υX - XQ fy[υY - F] C f7[Kγ] which is a compact set.
Whence clβx(pX - X) £ f7[Kr], so X (j Kz £ fy[Y U Kτ]. Therefore

COROLLARY 14. The composition of δ-perfect maps is δ-perfect.

In [4], Isiwata introduced the concept of a WZ-map as a map
f:X-+Y such that for each yeY, fy(y) = clβxf"(y). He showed
that every Z-map (i.e., a map which carries zero sets to closed sets)
is a W^-map. Clearly every closed map is a Z-map, and every
perfect map is a W^-map. We shall see (Lemma 19 and Corollary
21) that δ-perfect maps and W^-maps are independent concepts; but
those maps which are both δ-perfect and WZ are of particular
interest.

LEMMA 15. A map f: X —> F is a δ-perfect WZ-map if and only
if for all yeY, fy(y) = clδXf^(y).

Proof. clδXf^{y) £ clβzf-(y) Q f7(y).

In [8], we showed that a perfect map pulls hard sets back to
hard sets. More generally,
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THEOREM 16. Let f: X -*Y be a map. Each of the following
conditions implies the next one.

( a) f is δ-perfect.
(b) / pulls hard sets back to hard sets.
(c) / pulls points back to hard sets.

Moreover if f is a WZ-map, they are all equivalent.

Proof, (a) implies (b) since a set H in Y is hard if and only
if clβγH g= δY. Thus f^[clβγH] is compact and contained in δX,
whence X Π fy[clβγH] is hard in X and contains the closed set f*~[H].
But a closed subset of a hard set is hard, (b) implies (c) since every
compact set is hard.

Finally, suppose / is a WZ-map satisfying (c). Then for every
yeY, fy(y) = clβxf^{y) = clδXf*~{y). Whence by Lemma 15, / is δ-
perfect.

COROLLARY 17. If X = δX and f:X^Y is a δ-perfect map,
then Γ = δY.

Proof. Let H be a hard set in Y. Then f*~[H] is hard, hence
compact in δX. Thus H = f°f^[H] is compact in Y. Therefore, by
Proposition 3, Y = δY.

COROLLARY 18. If X is compact and X x Y = δ(X x Y), then
Y=δY.

Zenor [11] constructed a useful map: let A be a closed subset
of space X and define φA to be the natural function taking X onto
Y = XjA. Topologize Y with the finest completely regular topology
making φA continuous. Zenor shows that φA is always a

LEMMA 19 φA is δ-perfect if and only if A is hard in X.

Proof. By Theorem 16, φA is δ-perfect if and only if the pre-
image of every point is hard. The pre-image of every point other
than φA{A) is itself, and compact sets are always hard. But A — φ^o
ΨA(A).

THEOREM 20. A space X is realcompact if and [only if every
map on X (to a Tychonov space) is δ-perfect.

Proof. We have already observed one direction. Conversely,
let A be an arbitrary nonempty closed set of X. The Zenor's map
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φA: X—>Y = X/A is δ-perfect. Whence by Lemma 19, A is hard.
The result follows from Proposition 4.

COROLLARY 21. Any nonclosed map on a normal realcompaet
space is d-perfect and not WZ.

Proof. Isiwata ([4], 1.3) has shown that every WZ-map on a
normal space is closed.

THEOREM 22. X = δX if and only if every δ-perfect WZ-map
on X (to a Tychonov space) is perfect.

Proof. (If). Let A be an arbitrary hard set of X and
φA: X-+ Y = X/A be the Zenor map. By Lemma 19, φA is a ^-perfect
TFZ-map, so it is perfect. Hence the pre-image of every point is
compact. In particular, the pre-image A of the point φA(A) is
compact. But X = dX precisely when every hard set is compact.
(Only if). For each yeY, fγ(y) = clδXf-(y) = clxf-(y) = f-(y) Q X.

DEFINITION 23. A map /: X -> Y is an H-map if the image of
each hard set in X is a closed set of Y. If / carries hard sets to
hard sets, we shall call / a hard map.

Clearly closed maps and hard maps are ίf-maps. If X is real-
compact, then every closed set is hard, so every fZ-map on a real-
compact space is closed. If X = δX, then every hard set is compact,
so every map on X is a hard map. Isiwata ([4], 3.6) has constructed
an example of a map on a pseudocompact space which is not a WZ-
map. Thus an iϊ-map need not be WZ. However,

LEMMA 24. Iff: X—> Y is a δ-perfect H-map, then f is a WZ-map.

Proof. Let yeY. Since fy(y) S= δX, we see that clβxf*~(y) =
dδXf-(y).

Suppose x e f^(y) — clδXf^(y). Since xeδX — X by Lemma 6
there is a SX-open set N such that x e N Q clβxN £ δX — clδXf*~(y).
Let M= elx(NΠX). Since X is dense in δX, clβx(M) = clδX(N), and
M is a nonempty hard set of X disjoint from f*~(y). Thus y is not
in/(Λf), and since / is an fZ-map, f(M) = clγf(M). But y = fβ(x) efβ

[clβxM] ΓΊ Y - clβγ[fβ(M)] ΠY= clβγ[f(M)] ΠY= clγf(M) = f(M), con-
tradiction.

LEMMA 25. Lei /: X-> Γ be a hard map. Then δX S f7[δY].

Proof. By Theorem 10, δX = U {cZ ĵff: i ϊ is hard in X}. For
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each hard set H of X, f[H] is hard in Y and clβχH Q fy[clβγf(H)].

THEOREM 26. /: X—> Y is a hard map if and only if f is an
H-map and δX Q fy[δY].

Proof. Every hard map is an ίZ-map, so one direction follows
from Lemma 25. Conversely, let H be a hard set of X. Then
fβ[clβxH} £ δY. But clβXH is compact, so fβ[clβxH] is compact. Since
f(H) C clβγf(H)Qfβ(clβxH), we have Y f] dβγf{H) = clγf(H) is hard
in Y. Since / is an iϊ-map, f(H) = clγf(H).

COROLLARY 27. Let f:X-^Y be a δ-perfect H-map. Then f is
a hard map if and only if δX = fy[δY].

Proof. Theorem 26 and Lemma 13.

COROLLARY 28. Let X be realcompact and f: X ->Y be a closed
map. Then Y is realcompact if and only if f is a hard map.

Proof. Since X is realcompact, δX = βX and fβ[δX] = βY.
Every map on a realcompact space is δ-perfect, so by Corollary 27,
/ is a hard map if and only if βY = δY, i.e., Y is realcompact.

In a private communication, John Mack states that he has
investigated a class of maps /: X-^Y, which he calls R-perfect maps,
satisfying the condition that the graph of /, ^"(/), is closed in
(υX) x Y. Since these results are not reproduced elsewhere, the
author has Mack's permission to include them here.

LEMMA 29 (Mack). Let f:X—>Y be a map and fv:υX->υY be
its Hewitt extension. The following are equivalent:

( a) f is R-perfect.
(b) Sf(/) - Sf(/P) ΓΊ (υX x Y).
(c)

Proof, (a) implies (b). For any map, ̂ (Λ) is the closure of
in υX x uY. So if / is i2-perfect, then gf(/) is the intersec-

tion of υX x Y with the υX x t>T-closure of ^ ( / ) , which is
( ( i ! x Γ ) n ? ( / J . (b) implies (c). By (b), we have /Γ(Γ) =
Λ(Γ) = X, whence f7(pY - Y) = υX - X.

(c) implies (a) f7(υY - Γ) = υX - X implies gf(/) = (υX x Γ) Π
&(fJ)f which is the intersection of υX x F with the υX x υY-
closure of 5f (/). Thus 5f (/) is closed in υX x Γ.
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THEOREM 30 (Mack). Let f:X-+Y be an R-perfect map.
(a) If F QY is realcompact, then f*~(F) is realcompact.
(b) If Y is locally realcompact, then X is locally realcompact.

Proof, (a) υX x F is realcompact. Since the graph &(f) is
closed in υX x F, then gf (/) f) (X x F) = gf (/,) Π (u-X" x F) is real-
compact. But f*~[F] is homeomorphic to S^(/) ί l ( I x JF7).

(b) *λX" - X = f:(υY - Y"). But Y is locally realcompact if and
only if υ Y — Y" is closed in υ Y. Whence X is open in υX.

Notice that it follows from Lemma 13 and 29(c) that every im-
perfect map is i?-perfect. The converse is false.

EXAMPLE 31 of an iϋ-perfect map which is not S-perfect. Let
W be the ordinals less than the first uncountable ordinal ωί9 and
let T be the free union of countably infinitely many copies of W.
Then υT is the free union of the one point compactifications of the
W's, so Kτ is homeomorphic to βN (where N is the discrete space
of positive integers). Let p e Kτ — υT and define X — T U {p} as a
subspace of βT. Then υX = υT U {p} and X U Kz = T U Kτ. Now
let Y be the quotient space of T U (Kτ — υT) obtained by factoring
the compact set Kτ — υT to a point k. It is not difficult to see that
Y is Tychonov, and υY = υT U {&} = Y U JBΓΓ. Note iTF Π Γ = {fc}.
Let /: X —> F be the restriction of the quotient map, so /(p) = A? and
f(x) = x otherwise. Moreover /„ extends / by being the identity
map on υT— Γ, so fϊ(υY— Y) = υX—X and / is an iϋ-perfect map. But
k e Y and f;(k) •=, Kτ - υT^Kx - υXΦ Q). So / is not S-perfect.

THEOREM 32. Let f: X->Y be an R-perfect map. If Y is locally
realcompact, then f is δ-perfect.

Proof. Since / is #-perfect, υX- X - f-(υ F - F) Q fo(υ F - F) £
f}'(Kγ), which is compact. Hence Kx Q fy(Kγ). Since Y is locally
realcompact, δY = βY - Kγ. So /7(δF) = /7(/3F - Kγ) = βX -
/7CKτ) £ /9X - ίCx = δX, by Theorem 30(b).

IIIΦ ^-normal spaces*

DEFINITION 33. Let X £ T £ /3X A set ί ί £ X is T-Aαrd if £Γ
is closed in I u clβx(T — X). We shall call X a T-normal space if
disjoint Γ-hard sets of X are completely separated in X. Notice
that for any T, every normal space is always T-normal. If T = vX,
the T-hard sets of X are simply the hard sets, and we shall use
the term h-normal space in this case.
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It follows from Proposition 4 that a realcompact space is h-
normal if and only if it is normal. Similarly by Proposition 3, for
any X we have that δX is an λ-normal space. In particular, every
pseudocompact space is fo-normal. Thus the Tychonov plank is an
/̂ -normal space which is not normal.

THEOREM 34. Let l £ Γ £ βX. The following are equivalent:
(a) X is T-normal.
(b) There is a Y, X £ Y £ T and Y is T-normal.
( c ) X U clβx{T — X) is normal.
(d) Each closed subset of X is completely separated from every

disjoint T-hard set.

Proof. That (c) implies (d) and (d) implies (a) are easy exercises.
It sufficies to show (b) implies (c). Let Ax and A2 be disjoint and
closed in X U clβx{T - X). Let Bt = A, Π clβx(T - X), i = 1, 2. Then
Bx and B2 are compact. By ([2], 3.11a), there are zero sets Zjf

j = 1, 2, 3, 4, of X U cϊ^(Γ - X) such that
( i ) A £ int (ZJ, £2 £ int (Z2) and ^ n ^ 2 = 0 , and
(ii) A2 £ int (Z3), £x £ int (Z4) and Z,f] Z,-= 0.

Let ϋfi = Ai — int (Z4) and iϊ2 = A2 — int (^2). If either Ht or ίί2 is
empty, we have disjoint open neighborhoods of A1 and A2, so we are
done. Otherwise Hx and H2 are nonempty, disjoint T-hard sets of
X, hence of Y. Thus there are functions / and g in C*(Y) such
that H, £ intF Z(/), .ff2 £ intF Z(g) and Z(/) ΓΊ Z(flf) = 0 . Since
β Y = /9X and disjoint zero sets of Y" have disjoint closures in £ Y,
we have that the X u clβx(T — X)-closures Z'(/) and Z'(flr) are
disjoint. Let Gx and G2 be the X(Jclβx(T - X)-interiors of JZ"(/) and
Z\g) respectively. Note that H, £ G, and iϊ2 £ G2. Let F x =
[int (ZJ U GJ Π int (Z,) and F 2 - [int (Zt) U GJ Π int (Z3). Then Λ £ Fu

A2 £ F 2 and FXf F2 are disjoint sets open in X U clβx(T — X).

COROLLARY 35. X is h-normal if and only if XU K is normal.

Let X be a locally realcompact and not realcompact space. Then
K is a nonempty compact set disjoint from X. In [5], it was
shown that factoring K to a single point gave a one-point realcom-
pactification *X of X. Moreover *X is maximal among the one-
point realcompactiflcations of X in the sense that if X U [p] is any
other, then there is a map from *X onto X U {p} which is the
identity on X.

COROLLARY 36. If X is locally realcompact and not realcompact,
then X is h-normal if and only if *X is normal.
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COROLLARY 37. If oX is normal, then every C-embedded subset
of X is h-normal.

Proof. Let A be C-embedded in X. Then uA = clυX{A) ([2],
8.10a), and a closed subset of a normal space is normal. Hence A
is ^-normal by Theorem 34(b).

COROLLARY 38. If υX is normal, then X is h-normal. More-
over for any space X for which uX — X is closed in βX — X, υX
is normal if and only if X is h-normal.

Proof. If υX - X is closed in βX - X, then υX = X U K.

EXAMPLE 39. Corson's space X ([2], p 272) is normal, hence h-
normal, but υX is not normal.

EXAMPLE 40. Realcompact spaces and pseudocompact spaces
trivially satisfy the condition υX — X is closed in βX — X. In
general, let Y by any Tychonov space and define X == (Y"u Kγ) —
(υY - Y). Then YQXQβY, so βX = βY, υX = Y[j KYί υX - X =
uY - Y and Kx n X = Kγ - υY. Thus υX - X is closed in βX - X.
By construction, X = IT if and only if L > 7 - Y is closed in /3Y — Y,
so this technique generates all the spaces with the desired property.
Notice the generated space X is realcompact if and only if Y is
realcompact, and X is pseudocampact if and only if υX = βX which
(since βX = βY) is equivalent to Y\J Kγ = βY, which is true if
and only if Y = δ Y. Hence if 7 is a nonrealcompact space for
which YΦSY, then X is neither realcompact nor pseudocompact,
yet υX - X is closed in βX - X. E.g., let Y = W x N, where W
is the usual space of ordinals with countable predecessors and N is
the discrete space of positive integers. The author does not have
any internal characterizations for the spaces X for which υX — X
is closed in βX — X.

DEFINITION 41. A subset of a space X will be called an iϊσ-set
if it is the union of a countable family of hard sets. Every σ-com-
pact set is an iίσ-set and every iϊσ-set is an Fσ-set.

COROLLARY 42. Every Hσ-subspace of an h-normal space is normal.

Proof. The i^-sets of X are i^-sets of X U K, and i^-sets of
a normal space are normal.

COROLLARY 43. Every hard subset of an h-normal space is C-
embedded.
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Proof. A hard set H is closed in normal X U K, and every
closed subset of a normal space is C-embedded ([2], 3D1).

EXAMPLE 44. The Sorgenfrey plane S is a realcompact space
which is not ^-normal. Let W be the space of ordinals with coun-
table predecessors and W* = W U {ωj be its compactification. Put
X = [W* x βS] - [{ω,} x (βS - S)]. Then X is pseudocompact ([2],
9K) and {ωλ} x S is a closed, C*-embedded subset of ^-normal X
which fails to be ^-normal.

EXAMPLE 45. Let X be a normal, realcompact but not para-
compact space. (By Moran's result [7], barring measurable cardinals,
normal and metacompact imply realcompact. Hence Michael's example
in [6] is such a space.) Then by Tamano's theorem ([10], Th. 2)
X x βX is realcompact and not normal, hence not ^-normal. Thus
the product of a normal space and a compact space can fail to be
^-normal.

THEOREM 46. Let X and Y have nonmeasurable cardinals. If
υX is paracompact and Y is a locally compact, paracompact space,
then X x Y is h-normal.

Proof. For Tychonov spaces with nonmeasurable cardinals, para-
compact implies normal and realcompact. From [1], if Y is locally
compact and real-compact, then for any X, υ(X x 7 ) = (υX) x Y.

In [11] the following remarks are made about Zenor's maps φA

(see Proposition 18 above):
1. X is normal if and only if φA is a quotient map for each

closed set A in X.
2. Each closed set is completely separated from every disjoint

zero set in X if and only if φA is a quotient map for each zero set
A in X.
In like vein, we observe:

LEMMA 47. X is h-normal if and only if φA is a quotient map
for each hard set A in X.

From [11], we also have

PROPOSITION 48 (Zenor). (a) X is normal if and only if every
Z-map is closed, (b) Each closed set is completely separated from
every disjoint zero set in X if and only if every WZ-map is a
Z-map.
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THEOREM 49. For any space X, the following are equivalent.
(a) X is h-normal.
(b) Every WZ-map on X is an H-map.
(c) Every d-perfect WZ-map on X is closed.

Proof, (a) implies (b). Let / : I - ^ 7 b e a TFZ-map and let H
be a hard set in X. Suppose y e Y — f(H). Then f*~(y) is closed in
X and disjoint from H, whence f*~{y) and H are completely separated.
So clβzf*-(y) Π clβz(H) = 0 and y is not in fβ[clβxH]. But fβ[clβxH] Π Γ
is closed in Y and contains f{H). Thus /(iϊ) is closed.

(b) implies (a). Let H be a hard set of X and F a closed set
disjoint from H. Consider the Zenor map φF. It is a Wiί-map, so
cpj-fif] is closed and φF{F) g φF(H). Since F is completely regular,
φF(F) and φF{H) are completely separated, whence ί7 and if are
completely separated.

(a) implies (c). Let f:X-*Y be a S-perfect TFZ-map and let 5
be a closed subset of X. Let peY — f(B). Then /*"(#) is hard in
X and disjoint from B, hence B and f*~(p) are completely separated.
Therefore clβxB and clβxf*~(p) = /£"(p) are disjoint, so p is not in
fβ\clβxB\. Since fβ is a closed map, fβ[clβxB] is a closed set con-
taining f(B). Therefore p <g clγf(B) and /(B) is closed.

(c) implies (a). Suppose X is not fe-normal. There is a closed
set F and a hard set Jϊ which is disjoint to it, but not completely
separated from it. Consider the Zenor map φH. By Lemma 19, φH

is a δ-perfect TFZ-map. If φH{F) is closed in Y, then there is some
Zx = Z(fx) e Z{Y) such that φH(F) Q Z,QY - φH(H). Thus φH(H) e
Y — Zx which is open. Hence there is a Z2 = Z(f2) e Z( Y) such that
φH(H) 6 intF Z2 £ Z2 £ Y — Zγ. Now f^φ^.X-^R is continuous,
i = 1, 2, and Z(/x ° 9?H) and Z(/a o φH) are disjoint zero sets in X com-
pletely separating F and H, contradiction. Whence <pH is not closed.

We observe that the closed image of a normal space is normal.
If X = dX, then every map on X is an J5Γ-map. Hence by Lemma
24, every δ-perfect map f:X-*Y is a δ-perfect TFZ-map. (Notice
that since 3X is an ^-normal space, such an / must be closed by
Theorem 49(c).) By Corollary 17, Y = δY is also ^-normal. More
generally,

THEOREM 50. Let X be an h-normal space and f:X—>Y be a
δ-perfect WZ-map. Then Y is h-normal if and only if for every
3-perfect WZ-map g on Y, gof is a WZ-map.
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Proof. (If), gof is δ-perfect by Corollary 14. Whence by
Theorem 49(c), gof is closed. Thus g is closed and since g is an
arbitrary S-perfect WZ-map on Y, Y is /i-normal.

(Only if). / and g are closed maps, whence g o / is a closed map.
But closed maps are WZ.

It is not true in general that the composition of WZ-maps is a
ΫFZ-map; in fact an example due to M. Henriksen shows more.

EXAMPLE 51 (Henriksen). A closed map and a Z-map whose com-
position is not a WZ-m&p. Consider the subspace of the product of
ordinal spaces given by

X = W(ω, + 1) x W(ω2 + 1) - {ωj x [W(ω2 + 1) - W(ω,)} .

We observe that X is pseudocompact and βX = W(ωι + 1) x W(ω2 + 1).
Let Y = W(ω, + 1) x W(ωx + 1) - {(ωίf ω,)} and define t:X-^Y bγ
t(a9 b) = (α, α>x) if 6 ^ α^, ί(α, 6) = (α, 6) otherwise. Since [TF(α>2 + l) —
^ ( ω j ] is compact, it follows that t is a closed map.

Let <£>: Y —> "^(o)! + 1) be given by φ(a, b) = a. Isiwata has
shown ([4], 3.5) that φ is an open Z-map which is not closed.
Consider φ°tm.X-*W(ωx + 1). We have clβx(φotY\ω^ — clβx[{ω^ x
W(ωx)] = {ω,} x W(ωx + 1). But (φot^ω,) = {ω,} x W(ω2 + 1), so
φot is not a WZ-ma,p.
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