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IMAGES OF SK,ZG

BRUCE A. MAGURN

The computation of SK,ZG for finite nonabelian groups
G remains a difficult problem. Few examples are known in
which SK.ZG is nontrivial. One way to uncover nontrivial
elements is to examine the homomorphic images of SK,ZG
under K,(—) of ring maps ZG —> 4. Such images are in-
vestigated here in the cases where /4 is a commutative ring,
a noncommutative order or a semisimple artinian image of
ZG. Even trivial images illuminate the structure of SK,ZG
through K-theory exact sequences.

2. Terminology. The word “ring” refers to an associative ring
with an identity. The group of units of a ring 4 is denoted 4*. “Map”
meas homomorphism. Unless otherwise specified, G denotes a finite
group, and R, the ring of integers in an algebraic number field F'.

3. The origin of K,. In 1950 J. H. C. Whitehead introduced
the notion of simple homotopy equivalence. A natural question in
this theory is the following: Which CW-complexes are equivalent,
relative to a common subcomplex L, under deformations which add
and delete cells in a “simple” way along the cell structure? (See [3]
for details.)

The answer lies in the computation of the Whitehead group
Wh(L), which depends only on the fundamental group =,(L). In fact
it is obtained by the following algebraic construction: Let ZG
denote the integral group ring of a (possibly infinite) group G. Then

GL(ZG) is the group of all invertible matrices over ZG, with matrices

A and B identified if A = OB IO for some size identity matrix I,.

The commutator subgroup E(ZnG) of GL(ZG) is generated by all
elementary matrices, obtained from the identity by adding a ZG
multiple of one row to another. The quotient GL(ZG)/E(ZG) is
written K, ZG. The trivial units =G of ZG are 1 x 1 matrices in
GL(ZGF). The Whitehead group Wh,(G) of G is K,ZG/Image (+G).
If L is a CW-complex, Wh(L) = Wh,(z,(L)).

Group maps G — H extend to ring maps ZG — ZH, and entry-
wise on representative matrices to groups K,ZG — K,ZH. This
makes K,Z(—) a functor from groups to abelian groups. Replacing
Z@G, the same construction provides the functor K,(—) from rings
to abelian groups. However, the group G plays a special role in the
computation of K,ZG, which apparently has no natural analog in
K. A for an arbitrary ring A.
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Assume henceforth that G denotes a finite group. H. Bass
proved [2] that K,ZG, hence also Wh,G, is a finitely generated abelian
group of rank » — q, where » and ¢ are the numbers of inequivalent
irreducible real and rational representations of G, respectively.
C. T. C. Wall showed [11] that the torsion parts are tor K, ZG =
SK,ZG x =G* and tor Wh,(G) = SK,ZG, where SK,ZG is the kernel
of a determinant map, defined on K,ZG in the next section.

4. Three functors called SK,. Let 4 be an R order in a finite
dimensional semisimple F' algebra I'. (The motivating case is R = Z,
F=Q,4=2G,and I" = QG.) There is a direct product decomposi-

tion I' = II5-. >, where each 3, is a full matrix ring over a division
ring whose center C, contains F. There exists [4, p. 96] a number
field E containing each C,, for which there are isomorphisms:
E®., 3.~ M, (E). Application of the embedding 4 — II, M, (E) in
each entry provides a map GL,(4) — [1;GL,,,(E). Following this by
the determinant in each component defines a group map, det: K, 4 —
II. E*, with kernel denoted SK,A.

Let 27 denote the category of R orders in finite dimensional
semisimple F' algebras, and of R algebra maps. The map det factors
through K,I" — [[, E*, which is an injection [12]; so SK4 is also the
kernel of K4 — K,I" (induced by inclusion 4 =>1I"). Any map 4 — A
in & extends to an F' algebra map FA4 — FA'. Application of K,(—)
to the resulting commutative square shows that K, (4 — A') takes
SK, 4 into SK,A'. So SK,(—) is a functor on £

Any group map G — H extends to an R algebra map RG — RH.
So SK,R(—) is a functor from finite groups to abelian groups. The
application of this functor to inclusions G = H has been used in
connection with the Artin and Berman-Witt induction theorems to
compute SK,ZH from the groups SK,ZG as G ranges over certain
classes of subgroups of H. (See [5], [7], and [11].)

When G is abelian, F'G is a direct product of fields, and det:
K,RG — (RG@)* is the ordinary determinant. If A is any commuta-
tive ring, the determinant on GL(A) induces a group map, o:
KA — A%, split by GL,(A)— GL(A) — KA. Define SK,A as the
kernel of 9; so K,A = SK,A x A*. Since determinants commute with
ring maps, SK,(—) is a functor commutative rings.

Any ring map from RG into a commutative ring S factors as
a composite: RG — R[G**] - S of an R algebra map followed by a
map between commutative rings. Since the definitions of SK,(—)
agree on the middle term, SK,RG is mapped into SK,S. If we
replace RG by another R order this may fail, as the next section
shows.
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5. Twisted group rings. The noncommutativity in RG is due
to the group G. Sometimes a map may be found in ¢ which replaces
some noncentral group elements by units in an extended coefficient
ring. This shifts noncommutativity between group elements to a
“twist” between coefficients and group elements.

An example of such a twisted group ring is described as follows.
Let E/F be a Galois extension of number fields, with Galois group
H. Let E o H be the F' algebra with E basis given by the elements
of H and distributive multiplication subject to the relations in H
and he = e*h(ec E, he H). Restrict coefficients to the integers S of
E to obtain the twisted group ring S o H, an R order in E o H.

Assume H is abelian. Let I be the ideal of S generated by
{s —s*;seS,he H}. Since I is H invariant, I o H is an S o H ideal,
and the group ring (S/I)H is a commutative quotient ring of S o H.
The quotient map is universal for maps from S o H to a commuta-
tive ring. Suppose I # S.

The composite: H = GL,(Se H)— K,(S- H) — Kl(S/I)Hi (S/DHH)*
is just inclusion. So H & K,(S - H), and the elements h =1 in H
do not map into SK,(S/I)H. In fact, (S/I)H is a finite commutative
ring; so SK,(S/I)H =1 [1, p. 267].

ExAmPLE 1. Let G be the metacyclic group {z, y:2?" = y® =1,
yloy = af, ¢ = p* + 1) for an odd prime p. Replacing 2 by a
primitive p” root of unity { is a ring map ZG - Z[{] - H, where
H = <{y:y*» =1>. This map is one projection of the decomposition,
QG = QG» x Q(0) - H. Computation of the determinant of a matrix

representation [7, Ch. 6]: Q(C)oH:Mp(Q(C”)) reveals that H C
SK,(Z[(] - H). So, in this example, SK,(S - H) - SK,(S/I)H.

In short, the prevalent definitions of SK,(—) are unambiguous
where applied, but are not part of a general “subfunctor” of K,(—)
on rings.

6. Exact sequences. If Jis an ideal of a ring A, let GL(A, J)
denote the kernel of GL(A— A/J), and let E(A, J) be the normal
subgroup generated by elementary matrices in GL(A4, J). Define
KA, J) to be GL(4, J)/E(A, J). Suppose A is either commutative
or an R order in a finite dimensional semisimple F' algebra. Since
GL(A, J) € GL(A), SK,(A,JJ) may be defined as the kernel of the
appropriate determinant, 6 or det, on K,(A4,J). A sequence of J.
Milnor’s [8, p. 54] restricts to the relative exact sequence:

K,A— K,(A|J)— SK,(A, J)— SK,A — K,(A/J) .

Call a commutative square of surjective ring maps:
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A4,

A,— A
7

a surjective pullback if the sequence of additive groups:

0— A EY

ADPA, oA —s
is exact. If all four rings are commutative or A2<f— A —'z»A1 is in &
(see §4), there is an exact Mayer-Vietoris sequence [6, §4]:

(1., 2.)

KA, x KA, — K,A'— SK.A ——> SK,A, XSKA—’)—/&KA’

where £., \., #., and v. denote K,(—) of the corresponding maps &,
N, #t, and .

In particular a surjective group map G - H decomposes FG as
a direct product of F algebras: FGS FH x 3. Projections of RG
to the two factors are the maps £ and )\ in the following surjective
pullback [6, §5]:

RH —» (B/nR)H (0 = |GI/|H]) .

Consider its Mayer-Vietoris sequence:

(x.,2.)

(1) K(RmR)H -2 SK.RG %) SK.RH x SK.A2! K(RMmR)H .

Computation of the first term is complicated. In some cases, when
K,(R/nR)H = 1, this sequence has been used to prove SK,ZG =1
[6]. But when nontrivial generators of K, R/nR)H are known, it
is difficult to determine whether or not their images in SK,RG are
trivial.

Consider, rather, the maps to the right of SK RG.

7. Right exactness of SK,R(—). Since any ring map from RG
to a commutative ring factors through RG — R[G®], the latter is
the most informative about SK,RG. Whether or not SK,R(—) is
right exact is an open question, but the Mayer-Vietoris sequence
provides a strong partial result:

THEOREM 1. If R is the ring of integers in a number field and
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G is a finite group with abelian quotient H, then the quotient map
induces a surjection: SK,RG - SK, RH.

Proof. By inspection of the sequence (1), £. is surjective if and only
if p.(SK,RH)<v.(SK,4). If H is abelian, #.(SK,RH)< SK,(R/nR)H.
Since (R/nR)H is a finite commutative ring, SK,(R/nR)H = 1.

Note 1. There are algorithms for the computation of SK,ZH
when H is a finite abelian group [10].

Note 2. Even if H is not abelian, a split surjection of finite
groups G - H induces a split surjection of abelian groups SK,RG —»
SK.RH.

8. The image M.(SK,RG). Example 1 shows that SK,ZG — SK, 4
need not be surjective, if it is induced by projection of ZG to its
image 4 in a noncommutative factor of @G. Indeed, in that example,
the composite K, ZG — K,(S- H) — K,(S/I)H kills SK,ZG, but the
second map does not kill H £ SK,(S- H).

Suppose in the sequence (1) that u.(SK,RH) =1, as happens
when H is abelian. The following exact sequence may be extracted:

SK.RG — SK A —>K(R/mR)H .

This extends to the left as the relative sequence for . From the
relative sequence of v it is clear that \N.(SK,RG) is the image of the
natural map SK,(4, J) — SK,A, where J is the kernel of v. If H is
G*, J is generated by the set of all ab — ba(a, be 4).

9. Maps to semisimple artinian rings. Since SK,RG is the
kernel of K,(RG <> FG), it may be expected to appear in the kernel of
K, (RG — 3) for other semisimple artinian rings 3. Specifically, the
Wedderburn theorems describe 3 as a direct produet of matrix rings
over division rings, providing a determinant map on K,¥. A con-
nection might be expected between the map det and the composite
K,RG — K,¥ — determinant (K, X).

THEOREM 2. If P is a maximal ideal of R not dividing the
order of G, then K,(—) of the quotient map RG — (R/P)G kills
SK,RG.

(My thanks to Frank Demeyer for suggesting the following use
of localization).

Proof. Let E be a number field which splits every simple com-
ponent of F'G. Then there is an isomorphism p: EGS e M, (E).
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Let @ denote a prime lying over 3 in the integers S of E. The
order of G is a unit in the localization Sg; so Sg¢G is a maximal S,
order in EG [9, Theorem 41.1]. Since S; is a discrete valuation ring,
SsG is conjugate in EG to the maximal Sy order o™'([Ii., M, (Sy))
[9, Theorem 18.7].

The following diagram of ring maps commutes:

RG =— RG — [RPG — o M, (L)

| I |

EG — SgG —_— (S/®)G i’ H;‘:1 MmJ((S/@) ®B/ﬂs LJ)

l 2 a l A ¢ l q
Il M, (E) <= [1i-, M, (Se) > 11 M, (S/S) .
The vertical maps in square a are conjugation followed by p. The
left side of b induces the right side on the coefficient level. The
left side of ¢ sends &S, to itself, inducing the right side. Since
(R/B)G is semisimple and finite (P }|G|), there is a top isomorphism
in d, where the L; are finite fields. The bottom of d is (S/®) @z (—)
of the top.

Apply K,(—) to the diagram above, and extend by the appropriate

determinant maps 6 to obtain the following commutative diagram of
abelian groups:

(2)

— KRG — KRG — KRGS MNKL, > (L

| e e ]

K.EG «— K.SG — K,(8/8)G — I K.((S/@)RL;) — II (S/®) R Lj)*
A4 2 ll? Q
I KE— 11 KS — 11 K(S/S)
) I} é
S B = T188 > T1(S/®)* .

Since SK,(—) of any product of fields or local commutative ring
is trivial, the determinants 6 are all isomorphisms. So « and hence
B, is injective. The distinction between EG = EQ@;FG and
II EQ@q, 2; (from §4) is just a duplication of components. So the
kernel of the composite 4 is SK,RG. This is killed by the composite
K.RG — K,R,G — K,(R/®®)G, which is K,(RG — (R/P)G).

COROLLARY 3. Let f: RG — X be a surjective ring map, where
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3 1s a semisimple artinian ring of characteristic coprime to the
order of G. Then K, f(SK,RG) = 1.

Proof. The ring 3 is a direct product J] X, of simple artinian
rings. The center of each is a field which is a finitely generated
abelian group (J; being an image of RG). So f(R) is a direct product
of fiinite residue fields [] R/%B;. Since the characteristic of Y is the
least common multiple of the characteristics of the R/P,, no %,
divides the order of G. Because f factors through RG — (R/I[;)G =
II (R/B,)G (where the product is taken over distinet 3,), and because
K,(—) respects direct products, the corollary follows from the case
f: RG — (R/PB)G.

Let M be the set of maximal ideals of R not dividing the order of
G. If Pe M, the (unrestricted) relative exact sequence, K,(R/B)G —
K. (RG, PG) — K,RG — K,(R/B)G, provides a natural identification of
K,(RG, PG) with the kernel of K,(RG — (R/P)G), since K, of a direct
product of full matrix rings over finite fields is trivial. Using the
restricted relative sequence (§6), Theorem 2 says SK,(RG, PBG) =
SK,RG.

THEOREM 4. If M, is any infinite subset of M, SK,RG =
Nsex, K(RG, BG).

Proof. The preceding paragraph shows SK,RG S Ng.x, K,(RG,PG).
Let x be in this intersection. For each P in M, there is a prime &
of S over B, and a diagram (2). Then 4(x) is in the kernel of 7.
Since 4(K,RG)S ]I S* [1, p. 153], the components of 4(x) are in S*N
1+ 6S,) €1+ 6. If M, is infinite, 4(x) must be 1, and 2 € SK,RG.

Note 3. The same arguments prove Theorems 2 and 4 and
Corollary 3 when RG is replaced by its image A4 under a projection
to a direct factor of F'G, and PG is replaced by 4.

Note 4. It is unclear when SK,RG is a finite intersection of
relative groups K,(RG, PG). But for P in M, SK,RG is the torsion
part of K,(RG,BG) exactly when reduction modulo B restricts to an
injection tor R* — (RP)*. (This follows from C. T. C. Wall’s result
[11, Proposition 6.5]: tor K,RG = SK,RG X tor R* x G*%.)

10. Groups with a cyclic direct factor. There is an isomorphism

Z|G x H] = z6 Q. ZH, but SK,(—) does not respect tensor products.
Although SK,ZG and SK,ZH are direct factors of SK,Z[G x H],
there is generally more.
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THEOREM 5. Let C, denote a cyclic group of order r. If n is
a square free rational integer coprime to the order of G, then there
is an isomorphism: SK,Z[C, X G] zSKlAG, where A is the integral
closure of ZC, in QC,.

Proof. Let (., denote a primitive # root of unity. The de-
composition of QC, induces a surjective pullback of rings:

RIC, x G]—» R[Z,]G
xl lv (p a prime)
RG  —> (RIPR)G

whenever R is the ring of integers of a number field F' not contain-
ing {,. The maps )\ and £ take a generator of C, to {, and 1,
respectively; ¢ and v are reduction of coefficients modulo » and
1 — ,, respectively.

Suppose R is Z[(,] and that p divides neither ¢ nor the order
of G. Then p is unramified in R; so (R/pR)G is finite and semi-
simple of characteristic p. Therefore K, (R/pR)G = 1.

Since Z[¢,] and Z[C ) )(=Z[L,.]) are the rings of integers in
number fields, Corollary 3 says p.(SK,Z[(,]G) = v.(SK, Z[(.,]G) = 1.
The Mayer-Vietoris sequence becomes an isomorphism:

SK.Z[LC, x Gl — SK,Z[LIG x SK.Z[C,G .
Reasoning by induction on ¢ yields the composite:
SK.Z[C, x G~ T] SK,Z[¢I6 — SK(II ZIL.)G
where [1.. Z[¢.] = A.
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