IMAGES OF SK_1ZG

BRUCE A. MAGURN

The computation of SK_1ZG for finite nonabelian groups G remains a difficult problem. Few examples are known in which SK_1ZG is nontrivial. One way to uncover nontrivial elements is to examine the homomorphic images of SK_1ZG under $K_1(-)$ of ring maps $ZG \to \Lambda$. Such images are investigated here in the cases where Λ is a commutative ring, a noncommutative order or a semisimple artinian image of ZG. Even trivial images illuminate the structure of SK_1ZG through K-theory exact sequences.

- 2. Terminology. The word "ring" refers to an associative ring with an identity. The group of units of a ring Λ is denoted Λ^* . "Map" meas homomorphism. Unless otherwise specified, G denotes a finite group, and R, the ring of integers in an algebraic number field F.
- 3. The origin of K_1 . In 1950 J. H. C. Whitehead introduced the notion of simple homotopy equivalence. A natural question in this theory is the following: Which CW-complexes are equivalent, relative to a common subcomplex L, under deformations which add and delete cells in a "simple" way along the cell structure? (See [3] for details.)

The answer lies in the computation of the Whitehead group Wh(L), which depends only on the fundamental group $\pi_1(L)$. In fact it is obtained by the following algebraic construction: Let ZG denote the integral group ring of a (possibly infinite) group G. Then GL(ZG) is the group of all invertible matrices over ZG, with matrices A and B identified if $A = \begin{bmatrix} B & 0 \\ 0 & I_n \end{bmatrix}$ for some size identity matrix I_n . The commutator subgroup E(ZG) of GL(ZG) is generated by all elementary matrices, obtained from the identity by adding a ZG multiple of one row to another. The quotient GL(ZG)/E(ZG) is written K_1ZG . The trivial units $\pm G$ of ZG are 1×1 matrices in GL(ZG). The Whitehead group $Wh_1(G)$ of G is $K_1ZG/\mathrm{Image}\ (\pm G)$. If L is a CW-complex, $Wh(L) = Wh_1(\pi_1(L))$.

Group maps $G \to H$ extend to ring maps $ZG \to ZH$, and entrywise on representative matrices to groups $K_1ZG \to K_1ZH$. This makes $K_1Z(-)$ a functor from groups to abelian groups. Replacing ZG, the same construction provides the functor $K_1(-)$ from rings to abelian groups. However, the group G plays a special role in the computation of K_1ZG , which apparently has no natural analog in $K_1\Lambda$ for an arbitrary ring Λ .

Assume henceforth that G denotes a finite group. H. Bass proved [2] that K_1ZG , hence also Wh_1G , is a finitely generated abelian group of rank r-q, where r and q are the numbers of inequivalent irreducible real and rational representations of G, respectively. C. T. C. Wall showed [11] that the torsion parts are tor $K_1ZG = SK_1ZG \times \pm G^{ab}$ and tor $Wh_1(G) = SK_1ZG$, where SK_1ZG is the kernel of a determinant map, defined on K_1ZG in the next section.

4. Three functors called SK_1 . Let Λ be an R order in a finite dimensional semisimple F algebra Γ . (The motivating case is R=Z, F=Q, $\Lambda=ZG$, and $\Gamma=QG$.) There is a direct product decomposition $\Gamma \stackrel{\approx}{\to} \prod_{i=1}^s \sum_i$, where each \sum_i is a full matrix ring over a division ring whose center C_i contains F. There exists [4, p. 96] a number field E containing each C_i , for which there are isomorphisms:

 $E\bigotimes_{C_i}\sum_i \overset{\approx}{\to} M_{n_i}(E)$. Application of the embedding $\Lambda \to \prod_i M_{n_i}(E)$ in each entry provides a map $GL_n(\Lambda) \to \prod_i GL_{nn_i}(E)$. Following this by the determinant in each component defines a group map, $\det: K_1\Lambda \to \prod_i E^*$, with kernel denoted $SK_1\Lambda$.

Let $\mathscr O$ denote the category of R orders in finite dimensional semisimple F algebras, and of R algebra maps. The map det factors through $K_1\Gamma \to \prod_i E^*$, which is an injection [12]; so $SK_1\Lambda$ is also the kernel of $K_1\Lambda \to K_1\Gamma$ (induced by inclusion $\Lambda \hookrightarrow \Gamma$). Any map $\Lambda \to \Lambda'$ in $\mathscr O$ extends to an F algebra map $F\Lambda \to F\Lambda'$. Application of $K_1(-)$ to the resulting commutative square shows that $K_1(\Lambda \to \Lambda')$ takes $SK_1\Lambda$ into $SK_1\Lambda'$. So $SK_1(-)$ is a functor on $\mathscr O$.

Any group map $G \to H$ extends to an R algebra map $RG \to RH$. So $SK_1R(-)$ is a functor from finite groups to abelian groups. The application of this functor to inclusions $G \hookrightarrow H$ has been used in connection with the Artin and Berman-Witt induction theorems to compute SK_1ZH from the groups SK_1ZG as G ranges over certain classes of subgroups of H. (See [5], [7], and [11].)

When G is abelian, FG is a direct product of fields, and det: $K_1RG \to (RG)^*$ is the ordinary determinant. If A is any commutative ring, the determinant on GL(A) induces a group map, δ : $K_1A \to A^*$, split by $GL_1(A) \to GL(A) \to K_1A$. Define SK_1A as the kernel of δ ; so $K_1A = SK_1A \times A^*$. Since determinants commute with ring maps, $SK_1(-)$ is a functor commutative rings.

Any ring map from RG into a commutative ring S factors as a composite: $RG \to R[G^{ab}] \to S$ of an R algebra map followed by a map between commutative rings. Since the definitions of $SK_1(-)$ agree on the middle term, SK_1RG is mapped into SK_1S . If we replace RG by another R order this may fail, as the next section shows.

5. Twisted group rings. The noncommutativity in RG is due to the group G. Sometimes a map may be found in \mathcal{O} which replaces some noncentral group elements by units in an extended coefficient ring. This shifts noncommutativity between group elements to a "twist" between coefficients and group elements.

An example of such a twisted group ring is described as follows. Let E/F be a Galois extension of number fields, with Galois group H. Let $E \circ H$ be the F algebra with E basis given by the elements of H and distributive multiplication subject to the relations in H and $he = e^h h(e \in E, h \in H)$. Restrict coefficients to the integers S of E to obtain the twisted group ring $S \circ H$, an R order in $E \circ H$.

Assume H is abelian. Let I be the ideal of S generated by $\{s-s^h; s \in S, h \in H\}$. Since I is H invariant, $I \circ H$ is an $S \circ H$ ideal, and the group ring (S/I)H is a commutative quotient ring of $S \circ H$. The quotient map is universal for maps from $S \circ H$ to a commutative ring. Suppose $I \neq S$.

The composite: $H \hookrightarrow GL_1(S \circ H) \to K_1(S \circ H) \to K_1(S/I)H \stackrel{\delta}{\to} ((S/I)H)^*$ is just inclusion. So $H \subseteq K_1(S \circ H)$, and the elements $h \neq 1$ in H do not map into $SK_1(S/I)H$. In fact, (S/I)H is a finite commutative ring; so $SK_1(S/I)H = 1$ [1, p. 267].

EXAMPLE 1. Let G be the metacyclic group $\langle x,y\colon x^{p^r}=y^p=1,y^{-1}xy=x^{\alpha},\,\alpha=p^{r-1}+1\rangle$ for an odd prime p. Replacing x by a primitive p^r root of unity ζ is a ring map $ZG\to Z[\zeta]\circ H$, where $H=\langle y\colon y^p=1\rangle$. This map is one projection of the decomposition, $QG\overset{\approx}{\to}QG^{ab}\times Q(\zeta)\circ H$. Computation of the determinant of a matrix representation [7, Ch. 6]: $Q(\zeta)\circ H\overset{\approx}{\to} M_p(Q(\zeta^p))$ reveals that $H\subseteq SK_1(Z[\zeta]\circ H)$. So, in this example, $SK_1(S\circ H)\to SK_1(S/I)H$.

In short, the prevalent definitions of $SK_1(-)$ are unambiguous where applied, but are not part of a general "subfunctor" of $K_1(-)$ on rings.

6. Exact sequences. If J is an ideal of a ring A, let GL(A,J) denote the kernel of $GL(A \to A/J)$, and let E(A,J) be the normal subgroup generated by elementary matrices in GL(A,J). Define $K_1(A,J)$ to be GL(A,J)/E(A,J). Suppose A is either commutative or an R order in a finite dimensional semisimple F algebra. Since $GL(A,J) \subseteq GL(A)$, $SK_1(A,J)$ may be defined as the kernel of the appropriate determinant, δ or det, on $K_1(A,J)$. A sequence of J. Milnor's [8, p. 54] restricts to the relative exact sequence:

$$K_2A \longrightarrow K_2(A/J) \longrightarrow SK_1(A,J) \longrightarrow SK_1A \longrightarrow K_1(A/J)$$
 .

Call a commutative square of surjective ring maps:

$$egin{aligned} A & \stackrel{\lambda}{\longrightarrow} A_1 \ \downarrow \downarrow \nu \ A_2 & \stackrel{\mu}{\longrightarrow} A' \end{aligned}$$

a surjective pullback if the sequence of additive groups:

$$0 \longrightarrow A \xrightarrow{(\kappa, \lambda)} A_1 \bigoplus A_2 \xrightarrow{\mu - \nu} A' \longrightarrow 0$$

is exact. If all four rings are commutative or $A_2 \stackrel{\kappa}{\leftarrow} A \stackrel{\lambda}{\rightarrow} A_1$ is in \mathscr{O} (see §4), there is an exact Mayer-Vietoris sequence [6, §4]:

$$K_2A_1 imes K_2A_2 \longrightarrow K_2A' \stackrel{\widehat{\partial}_m}{\longrightarrow} SK_1A \stackrel{(\kappa., \lambda.)}{\longrightarrow} SK_1A_1 imes SK_1A_2 \stackrel{
u./\mu.}{\longrightarrow} K_1A'$$

where κ ., λ ., μ ., and ν . denote $K_1(-)$ of the corresponding maps κ , λ , μ , and ν .

In particular a surjective group map $G \to H$ decomposes FG as a direct product of F algebras: $FG \xrightarrow{\approx} FH \times \Sigma$. Projections of RG to the two factors are the maps κ and λ in the following surjective pullback $[6, \S 5]$:

Consider its Mayer-Vietoris sequence:

$$(1)$$
 $K_2(R/nR)H \xrightarrow{\partial_m} SK_1RG \xrightarrow{(\kappa_-, \lambda_-)} SK_1RH \times SK_1\Lambda \xrightarrow{\nu_-/\mu_-} K_1(R/nR)H$.

Computation of the first term is complicated. In some cases, when $K_2(R/nR)H = 1$, this sequence has been used to prove $SK_1ZG = 1$ [6]. But when nontrivial generators of $K_2(R/nR)H$ are known, it is difficult to determine whether or not their images in SK_1RG are trivial.

Consider, rather, the maps to the right of SK_1RG .

7. Right exactness of $SK_1R(-)$. Since any ring map from RG to a commutative ring factors through $RG \to R[G^{ab}]$, the latter is the most informative about SK_1RG . Whether or not $SK_1R(-)$ is right exact is an open question, but the Mayer-Vietoris sequence provides a strong partial result:

THEOREM 1. If R is the ring of integers in a number field and

G is a finite group with abelian quotient H, then the quotient map induces a surjection: $SK_1RG \rightarrow SK_1RH$.

Proof. By inspection of the sequence (1), κ is surjective if and only if $\mu \cdot (SK_1RH) \subseteq \nu \cdot (SK_1A)$. If H is abelian, $\mu \cdot (SK_1RH) \subseteq SK_1(R/nR)H$. Since (R/nR)H is a finite commutative ring, $SK_1(R/nR)H = 1$.

- Note 1. There are algorithms for the computation of SK_1ZH when H is a finite abelian group [10].
- Note 2. Even if H is not abelian, a split surjection of finite groups G o H induces a split surjection of abelian groups $SK_1RG o SK_1RH$.
- 8. The image $\lambda.(SK_1RG)$. Example 1 shows that $SK_1ZG \to SK_1M$ need not be surjective, if it is induced by projection of ZG to its image Λ in a noncommutative factor of QG. Indeed, in that example, the composite $K_1ZG \to K_1(S \circ H) \to K_1(S/I)H$ kills SK_1ZG , but the second map does not kill $H \subseteq SK_1(S \circ H)$.

Suppose in the sequence (1) that μ .(SK_1RH) = 1, as happens when H is abelian. The following exact sequence may be extracted:

$$SK_1RG \xrightarrow{\lambda} SK_1\Lambda \xrightarrow{\nu} K_1(R/nR)H$$
.

This extends to the left as the relative sequence for λ . From the relative sequence of ν it is clear that $\lambda.(SK_1RG)$ is the image of the natural map $SK_1(\Lambda, J) \to SK_1\Lambda$, where J is the kernel of ν . If H is G^{ab} , J is generated by the set of all $ab - ba(a, b \in \Lambda)$.

9. Maps to semisimple artinian rings. Since SK_1RG is the kernel of $K_1(RG \hookrightarrow FG)$, it may be expected to appear in the kernel of $K_1(RG \to \Sigma)$ for other semisimple artinian rings Σ . Specifically, the Wedderburn theorems describe Σ as a direct product of matrix rings over division rings, providing a determinant map on $K_1\Sigma$. A connection might be expected between the map det and the composite $K_1RG \to K_1\Sigma \to \text{determinant}$ $(K_1\Sigma)$.

Theorem 2. If $\mathfrak P$ is a maximal ideal of R not dividing the order of G, then $K_1(-)$ of the quotient map $RG \to (R/\mathfrak P)G$ kills SK_1RG .

(My thanks to Frank Demeyer for suggesting the following use of localization).

Proof. Let E be a number field which splits every simple component of FG. Then there is an isomorphism $\rho \colon EG \xrightarrow{\approx} \prod_{i=1}^s M_{n_i}(E)$.

Let \mathfrak{G} denote a prime lying over \mathfrak{P} in the integers S of E. The order of G is a unit in the localization $S_{\mathfrak{G}}$; so $S_{\mathfrak{G}}G$ is a maximal $S_{\mathfrak{G}}$ order in EG [9, Theorem 41.1]. Since $S_{\mathfrak{G}}$ is a discrete valuation ring, $S_{\mathfrak{G}}G$ is conjugate in EG to the maximal $S_{\mathfrak{G}}$ order $\rho^{-1}(\prod_{i=1}^s M_{n_i}(S_{\mathfrak{G}}))$ [9, Theorem 18.7].

The following diagram of ring maps commutes:

The vertical maps in square a are conjugation followed by ρ . The left side of b induces the right side on the coefficient level. The left side of c sends $\mathfrak{G}S_{\mathfrak{G}}$ to itself, inducing the right side. Since $(R/\mathfrak{P})G$ is semisimple and finite $(\mathfrak{P} \nmid |G|)$, there is a top isomorphism in d, where the L_j are finite fields. The bottom of d is $(S/\mathfrak{G}) \bigotimes_{R/\mathfrak{P}} (-)$ of the top.

Apply $K_1(-)$ to the diagram above, and extend by the appropriate determinant maps δ to obtain the following commutative diagram of abelian groups:

abelian groups:
$$(2)$$

$$-K_{1}RG \to K_{1}R_{\$}G \to K_{1}(R/\mathfrak{P})G \xrightarrow{\approx} \prod K_{1}L_{j} \xrightarrow{\delta} \prod L_{j}^{*}$$

$$\downarrow \qquad \qquad \downarrow \beta \qquad \qquad \downarrow \alpha \qquad \qquad \downarrow \downarrow$$

$$K_{1}EG \leftarrow K_{1}S_{\$}G \to K_{1}(S/\mathfrak{G})G \xrightarrow{\approx} \prod K_{1}((S/\mathfrak{G})\otimes L_{j}) \xrightarrow{\delta} \prod ((S/\mathfrak{G})\otimes L_{j})^{*}$$

$$\downarrow \emptyset \qquad \qquad \downarrow \emptyset \qquad \qquad \downarrow \emptyset$$

$$\prod K_{1}E \leftarrow \prod K_{1}S \to \prod K_{1}(S/\mathfrak{G})$$

$$\downarrow \delta \qquad \qquad \downarrow \delta \qquad \qquad \downarrow \delta$$

$$\to \prod E^{*} \leftarrow \prod S_{\$} \xrightarrow{7} \prod (S/\mathfrak{G})^{*}.$$
Since $SK(-)$ of any product of fields or local commutative ring

Since $SK_1(-)$ of any product of fields or local commutative ring is trivial, the determinants δ are all isomorphisms. So α and hence β , is injective. The distinction between $EG = E \bigotimes_F FG$ and $\prod E \bigotimes_{C_i} \Sigma_i$ (from §4) is just a duplication of components. So the kernel of the composite Δ is SK_1RG . This is killed by the composite $K_1RG \to K_1R_3G \to K_1(R/\mathfrak{P})G$, which is $K_1(RG \to (R/\mathfrak{P})G)$.

COROLLARY 3. Let $f: RG \rightarrow \Sigma$ be a surjective ring map, where

 Σ is a semisimple artinian ring of characteristic coprime to the order of G. Then $K_1f(SK_1RG)=1$.

Proof. The ring Σ is a direct product $\prod \Sigma_i$ of simple artinian rings. The center of each is a field which is a finitely generated abelian group $(\Sigma_i$ being an image of RG). So f(R) is a direct product of finite residue fields $\prod R/\mathfrak{P}_i$. Since the characteristic of Σ is the least common multiple of the characteristics of the R/\mathfrak{P}_i , no \mathfrak{P}_i divides the order of G. Because f factors through $RG \to (R/\prod_{\mathfrak{P}_i})G = \prod (R/\mathfrak{P}_i)G$ (where the product is taken over distinct \mathfrak{P}_i), and because $K_1(-)$ respects direct products, the corollary follows from the case $f: RG \to (R/\mathfrak{P}_i)G$.

Let M be the set of maximal ideals of R not dividing the order of G. If $\mathfrak{P} \in M$, the (unrestricted) relative exact sequence, $K_2(R/\mathfrak{P})G \to K_1(RG,\mathfrak{P}G) \to K_1(RG,\mathfrak{P}G) \to K_1(RG,\mathfrak{P}G)$, provides a natural identification of $K_1(RG,\mathfrak{P}G)$ with the kernel of $K_1(RG \to (R/\mathfrak{P})G)$, since K_2 of a direct product of full matrix rings over finite fields is trivial. Using the restricted relative sequence (§6), Theorem 2 says $SK_1(RG,\mathfrak{P}G) = SK_1RG$.

THEOREM 4. If M_0 is any infinite subset of M, $SK_1RG = \bigcap_{\mathfrak{B} \in M_0} K_1(RG, \mathfrak{P}G)$.

Proof. The preceding paragraph shows $SK_1RG \subseteq \bigcap_{\mathfrak{F}\in M_0} K_1(RG,\mathfrak{P}G)$. Let x be in this intersection. For each \mathfrak{P} in M_0 there is a prime \mathfrak{P} of S over \mathfrak{P} , and a diagram (2). Then $\Delta(x)$ is in the kernel of γ . Since $\Delta(K_1RG)\subseteq \prod S^*$ [1, p. 153], the components of $\Delta(x)$ are in $S^*\cap (1+\mathfrak{P}S_{\mathfrak{P}})\subseteq 1+\mathfrak{P}$. If M_0 is infinite, $\Delta(x)$ must be 1, and $x\in SK_1RG$.

- Note 3. The same arguments prove Theorems 2 and 4 and Corollary 3 when RG is replaced by its image Λ under a projection to a direct factor of FG, and $\mathfrak{P}G$ is replaced by $\mathfrak{P}\Lambda$.
- Note 4. It is unclear when SK_1RG is a finite intersection of relative groups $K_1(RG, \mathfrak{P}G)$. But for \mathfrak{P} in M, SK_1RG is the torsion part of $K_1(RG, \mathfrak{P}G)$ exactly when reduction modulo \mathfrak{P} restricts to an injection tor $R^* \to (R\mathfrak{P})^*$. (This follows from C. T. C. Wall's result [11, Proposition 6.5]: tor $K_1RG = SK_1RG \times \text{tor } R^* \times G^{ab}$.)
- 10. Groups with a cyclic direct factor. There is an isomorphism $Z[G \times H] \xrightarrow{\approx} ZG \bigotimes_{\mathbb{Z}} ZH$, but $SK_{\mathfrak{l}}(-)$ does not respect tensor products. Although $SK_{\mathfrak{l}}ZG$ and $SK_{\mathfrak{l}}ZH$ are direct factors of $SK_{\mathfrak{l}}Z[G \times H]$, there is generally more.

THEOREM 5. Let C_r denote a cyclic group of order r. If n is a square free rational integer coprime to the order of G, then there is an isomorphism: $SK_1Z[C_n \times G] \xrightarrow{\sim} SK_1AG$, where A is the integral closure of ZC_n in QC_n .

Proof. Let ζ_r denote a primitive r root of unity. The decomposition of QC_r induces a surjective pullback of rings:

whenever R is the ring of integers of a number field F not containing ζ_p . The maps λ and κ take a generator of C_p to ζ_p and 1, respectively; μ and ν are reduction of coefficients modulo p and $1-\zeta_p$, respectively.

Suppose R is $Z[\zeta_t]$ and that p divides neither t nor the order of G. Then p is unramified in R; so (R/pR)G is finite and semisimple of characteristic p. Therefore $K_2(R/pR)G = 1$.

Since $Z[\zeta_t]$ and $Z[\zeta_t][\zeta_p](=Z[\zeta_{pt}])$ are the rings of integers in number fields, Corollary 3 says $\mu.(SK_1Z[\zeta_t]G) = \nu.(SK_1Z[\zeta_{pt}]G) = 1$. The Mayer-Vietoris sequence becomes an isomorphism:

$$SK_1Z[\zeta_t][C_v \times G] \stackrel{\approx}{\longrightarrow} SK_1Z[\zeta_t]G \times SK_1Z[\zeta_{vt}]G$$
.

Reasoning by induction on t yields the composite:

$$SK_1Z[C_n \times G] \xrightarrow{\approx} \prod_{r \mid n} SK_1Z[\zeta_r]G \xrightarrow{\approx} SK_1(\prod_{r \mid n} Z[\zeta_r])G$$

where $\prod_{r|n} Z[\zeta_r] = A$.

REFERENCES

- 1. H. Bass, Algebraic κ-Theory, W. A. Benjamin, Inc., New York, 1968.
- 2. ———, The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups, Topology, 4 (1966), 391-410.
- 3. M. M. Cohen, A Course in Simple-Homotopy Theory, Springer-Verlag, New York, N. Y., 1973.
- 4. I. N. Herstein, Noncommutative Rings, Carus Monograph 15, Math. Assoc. America, 1968.
- 5. T. Y. Lam, Induction theorems for Grothendieck groups and Whitehead groups of finite groups, Ann. Scient. Ec. Norm., Sup. 4 serie 1 (1968), 91-148.
- 6. B. A. Magurn, SK₁ of dihedral groups, J. Algebra, 51, 2 (1978).
- 7. ———, Whitehead groups of nonabelian finite groups, Ph. D. Dissertation, Northwestern University, June, 1976.
- 8. J. Milnor, Introduction to Algebraic K-Theory, Annals. of Math., Studies Number 72, Princeton University Press, Princeton, N. J., 1971.

- 9. I. Reiner, Maximal Orders, Academic Press, Inc., London, 1975.
- 10. M. R. Stein, Whitehead groups of finite groups, Bull. Amer. Math. Soc., to appear.
- 11. C. T. C. Wall, Norms of units in group rings, Proc. London Math. Soc., 3, 29 (1974), 593-632.
- 12. S. Wang, On the commutator group of a simple algebra, Amer. J. Math., 72 (1950), 323-334.

Received January 24, 1978. This work has been partially supported by the National Science Foundation under Grant MCS 77-00961.

THE UNIVERSITY OF OKLAHOMA NORMAN, OK 73019