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L?-ESTIMATES FOR SOLUTIONS TO THE INSTATIONARY
NAVIER-STOKES-EQUATIONS IN DIMENSION TWO

CLAUS GERHARDT

In this paper we derive Lr*-estimates for solutions to
the instationary nonlinear problem which are known to be
valid for solutions to the linear problem. Since the esti-
mates do not depend on ¢ explicitly, they can be used to
prove an exponential decay of the solutions if ¢ goes to
infinity.

0. Introduction. The regularity of the weak solutions” to
the Navier-Stokes-equations is an outstanding problem in the mathe-
matical theory of fluid dynamics. In the three-dimensional case the
answer to this question is still unknown in general, though definite
answers have been given in the case of small data for arbditrary
large times, and in the case of large data and small time intervals,
cf. the remarks in [4, Chap. 6].

In the two-dimensional case the problem is much easier to
settle: it is well-known that the (unique) weak solution to the
Navier-Stokes-equations is regular provided the data are smooth
enough. However, the answer is not quite satisfactory since the
results of the L*-theory of the nonstationary hydrodynamic poten-
tials have not been carried over to the Navier-Stokes-equations, e.g.,
to prove that the solution has square integrable second derivatives
one has not only to assume that the external force is square inte-
grable but also that it has a square integrable time derivative.

Recently, v. Wahl filled this gap in proving that in dimension
two the solution of the Navier-Stokes-equations has »-summable
second derivatives if the right-hand side of the system is r-summa-
ble for 2 < 7 < o. Actually, he gave a detailed proof in the case
r =2, and indicated the steps necessary to prove the general
result.

The aim of this paper is to give a simple proof of v. Wahl’s
result. To prove the L"-estimates for arbitrary » =2 we apply
the results of Solonnikov [7,§17] valid for the limear Stokes-
equations.

In the interesting case » = 2 we shall give an elementary proof
relying only on Gronwall’s inequality and a well-known interpolation
theorem of Nirenberg. In this case we shall obtain an a priori
estimate which does not depend on time explicitly. From this result
we deduce a number of interesting conclusions concerning the solu-

L In the sense of Hopf [2].
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tion’s behaviour at ¢t = «.?

Section 1 is concerned with preliminaries and with the state-
ment of the L-estimates in the case of a bounded domain. The
estimates will be proved in §§2 and 3.

In §4 we prove that the solutions of the Navier-Stokes-equations
are uniformly bounded in x and ¢, and that an exponential decay
is valid for both

sgp lu(x, t) | and (SQIDu(x, t)Fdx)l/z .

In §5 we prove corresponding results for the Cauchy problem
with the only exception of the exponential decay.

" In §6 we show that the solutions vary continuously in the
space W2Y(Q,) N L>(Q,) if the data vary appropriately, under modest
assumptions on the data.

Finally, in § 7 we prove that stationary solutions of the Navier-
Stokes-equations can be obtained as limits of instationary solutions
in the space H“*(2)N L~(Q2) provided the norm in L*2) of the
external force is sufficiently small. The convergence in the respec-
tive norms is of exponential type.

1. Statement of the main results in the case of a bounded
domain. The fluid under consideration will occupy a cylinder Q,
in space-time,

Qr=2x(0,T),

where Q is a bounded open set in R* and 7 a positive real number.
The motion of the fluid will be governed by the so-called Navier-
Stokes-equations®

w; — du; + w.Du; + Dip = f; ,

divu =0,
(1) Ul =0,
u(0) = u,,

for 7 =1,2, where u = (u,, u,) is the velocity of the fluid, £ =
(f., f») the external force, u, the initial velocity, and where p is
the (unknown) pressure. We adopt the convention to sum over
repeated indices from 1 to 2.

The linearized form of (1) looks like

? v. Wahl’s estimate depends on time explicitly, so that he cannot control the
solution’s behavior at t=oo0,
3 For simplicity we assume the kinetic viscosity to be equal to 1.
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W; — du; + D'p = f;,

divu =o,
(2) Ulo =0,
u(0) = u,

In order to describe our results appropriately we recall the
following standard notations and definitions: H™"(2), m =0, » =1,
are the usual Sobolev spaces where m indicates the order of diffe-
rentiation; m 1is allowed to be an arbitrary nonnegative real
number. For m = 0 we obtain the usual Lebesgue spaces L"(Q2).

If V is a Banach space then L7(0, T; V) denotes the space of
all Lebesgue measurable functions w from (0, T') into V with finite

norm
(\nwlizae)”

for 1 <7 < « and with the usual definition for » = .

We denote with W2'(Q,) the space of all measurable functions
u = u(x, t) defined in @, having generalized derivatives up to order
two with respect to x and up to the first order with respect to ¢
such that the norm

lwllwz @t =4[] (ulr + [aldedt + | flullz.ae |

is finite for 1 < » < o, where ||-||.,, indicates the norm in H™"(Q).
Vector valued funections u have always two components %, and
u,. We remark that we also use the notations for spaces of real
valued functions to indicate spaces of vector valued functions, e.g.,
uc H™~"(2) means u; € H™"(2) for j =1, 2.
Finally, let

Jo (2) = {ue H*(2): divu = 0},

let J,(2) be the closure of J,,(2) in L*2), and let G(2) be the
gradient fields of all real valued functions @€ L}.(2) such that
Do e L*2).

If 2 is a bounded open set in R* with 02 € C? then L*Q) is
decomposed into the orthogonal complements G(2) and J,(Q), i.e.,

(3) L(2) = G(2) D J(2)

(cf. [4, Chap. 1]).
With these definitions in mind we can state the first theorem
which is due to Solonnikov [7, § 17].

* Solonnikov proved this theorem in the case n=38. The corresponding result for
n=2 can easily be deduced from it as we shall show in the Appendix.
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THEOREM 1. Let Q2 be a bounded open set in R* with boundary
02 e C% Suppose that fe L' (Q), uye H**'""(2), 1L < r < o, r # 3/2,
such that u),, =0 and divu, = 0. Then, there exists a unique
solution u, p of the equations (2) satisfying

ue W(Qr), DpelL (Qy)
and

(4) Hqurf_’l(QT) =+ ”DpHL’“(QT)
= C‘{Hf”LT(QT) + || m2-2rrmi@y)
where the constant ¢ depends on 02, r and on T.

We shall prove a corresponding result for the solution of the
Navier-Stokes-equations, namely,

THEOREM 2. Let the assumptions of the preceding theorem be
satisfied for 2 < r < c. Then, the equations (1) have a unique
solution u, p such that for 2 < r < o

ue WQr), DpelL(Q)
and

HuHWf,’l(QT) + HDp]]LT(QT)

= c'(HfHL"(QT) + | wol2—2rrr2)

(5)

where the constant C depends on 02, r, T,
T 1/2
S <S |f|2doc> dt, and on S |u, |’ dx .
0 Q2 2
In the special case » = 2 we can prove

THEOREM 3. Let u, p be a solution of the equations (1). Then,
the following a priori estimate 1s valid
Huliwi’l(QT) =+ HDPHLZ(Q;M

6
( ) = 401‘11<T){1 + Co'cl'Iz<T)'eXp (Co'cf'Iz(T))} ’

where the constants only depend on 2, and where
1) :S | Du, 'dz + H \f Fdede
2 0J R

and

L(t) = sup Sg | ulzdx-g L | Dul*dzds .

t
0
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The proof of the theorems will be accomplished with the help
of the following lemmata.

LEMMA 1. Let fe L'0, T;L*Q)) and u,c J,(2). Then the solu-
tion u of the equations (1) satisfies the estimate

B e[ ) ()|

with some numerical constant ¢, where

luly,: = sup <§p ju{“‘dw)l/z + (STS,J Dul2docdt>1/2 .

0st=T

LEMMA 2. Let ue L*0, T; Hy*(Q)), QC R’ Then
(8) HuHL4<QT)§0'|u!QT
with some numerical constant c.

LemMA 3. (1) Let ue L¥¥0, T; H>*3(Q)), where 2 is a bounded
open set in R* with Lipschitz boundary. Then

T
0

T 1/3
(9) [l rdt = o[ lu e sup (] fupas)”,
0 0St=T 2
where the constant ¢ depends on 2, and where

lu(®)|: = sup |u(z, 1) .
(ii) Let 2 be as above and let ue L*0, T; H**(Q)). Then
(10) S} u(t)'dt < ¢, sup S |u|2dw-ST|!uH§_zdt
0 0St<T JQ2 0
where ¢, depends on £.

LEMMA 4. Let & be the projection operator from L*2) onto
Jo(2), where 2C R* is a bounded open set with 02 ¢c C?:. Then for
any vector ualued function uecJ,,(2) we have the estimates

11) ||.Fau| 2000 < || dut]lp20) £ || FPAu| 1200

where the constant ¢ only depends on £.

Lemma 1 can easily be derived by multiplying the equations
(1) with u, integrating over the cylinder 2 x (0, t), using the fact
that the integral containing the nonlinear term vanishes, and apply-
ing Gronwall’s inequality, finally.



380 CLAUS GERHARDT

Lemma 2 is an immediate consequence of a general interpolation
theorem of Nirenberg (cf. [6, p. 126] and [1, Thm. 10.1]). The esti-
mate (8) can be found in [5, p. 75, formula (3.4)].

Lemma 3 also follows directly from Nirenberg’s interpolation
theorem.

Lemma 4 will enable us to give a proof of Theorem 2 in the
case r = 2 being independent of the general result of Solonnikov.
The lemma is proved in [4, p. 67].

2. Proof of Theorem 2. We shall only give a priori estimates
since we can always assume to work with a solution ue W>'(Q,)
by assuming u, and f to be sufficiently regular. As we shall show,
this will imply we W2'(Q,;) for any 7€ (2, «) provided feL"(Q;)
and u,€ H**""(2) N J,,.(2).

We shall consider the cases »r =2, 2 <7 <4, and 4 <7 < oo,
separately.

First case. r = 2. We observe that the nonlinear term u,D'u
in (1) is summable to the power 4/3 in @, since

(12) S | |Du[“3dxdt§<g lul‘dxdt)1/3-<g [Du|2dxdt)2”.
Qr Qr Qr

From Lemma 1 and Lemma 2, and from Theorem 1 we thus obtain

(13) ullwaion = c°{HfHL4/3(QT) + o || z2-320300) + 1}
4/3

where ¢ depends on 2, T, g lu,’dz, and on STGQ | f)Pda >‘”dt. Apply-
2 o
ing Lemma 3(i) we then get the estimate

(14) S| u(t) 't < ¢, ,

the constant ¢, depending on the same quantities as the right-hand
side of (13).

Now, multiplying the equations (1) with —.Z4u and integrating
over @, = 2 x (0,t) we obtain

S | Du(t) |*de + S | FAu*dxdr

(15) ? e

< c{g |u[*| Du*dede + S |f|2dxdr+§ | Du, e |
Q¢ Q 2

with some numerical constant ¢,, where we used an appropriate
version of Cauchy’s inequality and the fact that u(-,t)eJ, (2) for
a.e.t.

We conclude that for any te[0, T'] the inequality
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t
0

S | Du(t) dz < ¢, {S ]u(z‘)lz-ggl Duldzdc
(16) ’
+§ | Du, ' + S |f Pdads |

2 Qr

is valid. Gronwall’s inequality then gives

S | Du(t) Pdx < ¢, - {S | Du,|* do + S |f2dxdz'}

] 2 Qp
- exp (cz- H:)l Dudedr) .
0

Inserting this estimate into the right-hand side of (15) and
using (11) and (14) we obtain a bound for

amn

(18) g:'nunz,zdt .

To get the final estimate, we multiply (1) with &, thus deriving
a bound for

S it [Pdeedt
Qr

in view of (16) since u(-, t) € J,,(2) for a.e.t.
The estimate for |[Dpl|,2e,, then follows directly from (1).

Second case. 2 < r < 4. As ue W2 Q, and 2cCR? we know
that ue L%(Q,) for any finite ¢, and that

(19) | u HL‘J(QT) = C'H“HW;"(QT) ’

where the constant ¢ depends on ¢ and on vol @,. This follows
either from a general result in [3, p. 186, Thm. 3.4], or can easily
be proved directly by using Stampacchia’s version of De Giorgi’s
truncation method taking into account that u,e H**""(Q) for » > 2

implies u, € L=(Q).
Moreover, from Nirenberg’s interpolation theorem [6, p. 126] we

deduce
§g]Du!‘dx < c-llulli.- L]Du}zdx,

where ¢ depends on 2, thus getting an a priori bound for
(20) H-Du”l."(QT)

in view of (17) and (18).
Holder’s inequality then shows that the nonlinear term wu,D'u
belongs to L"(Q,) for any 2 < » < 4 with an a priori bound for the
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norm depending on |[u||;21q,, Vol @7, and on 7.

Hence, applying Theorem 1 we conclude that ue W2'(Q,) and
that an estimate of the kind (5) is valid.

Third case. 4 <r < . We already know that ue W2'(Q;)
for any 2 < q < 4. Therefore, u is bounded in @, and Duc L (Q,)
for any se[l, «), where the respective norms can be estimated by
s and known quantities (ef. [3, p. 186, Thm. 3.4]). Thus, we know
that w,D'ue L"(Q;) for any 7 €[4, ) with a known a priori bound
for the norm. The final result then follows from applying Theorem
1 once more.

3. Proof of Theorem 3. From the considerations in the first
part of the proof of Theorem 2 we immediately conclude

lultsion < o-{] | Dutde
(21 . T,
+ SS \Flrdade + Sg |ul*| Duldzd)
0J 2 0J2
where the constant ¢, depends on 2 only. The last integral on the
right-hand side of this inequality can be estimated from above by

SO (o) - gl Dul'dedr

t t 2
< £ . s 1. S S 2
=5 golu(‘f)ldf—k o {0<Q[Duidx>dr}
where ¢ is any positive number.
Now, we apply (10) and choose ¢ equal to

{co-clsup g |u]2dm}
0=t JO

to obtain

Hu”:“vg’l((gz) = 01{2‘11@)
(22) , \
4 eor6, SUD S |ui2dx-g <g lDuide> dz}
0=ttt JQ 0 0
for any 0 <t < T. I,(t) is defined as in Theorem 3.
On the other hand, we have the trivial estimate

|,/ Duta, ide = | | Dusfide + [lulliig, -

Assuming ¢, to be greater than 1 we therefore deduce from (22)
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[ | Dute, tde < - 3.1
(23) ’ . .
+ 06, SUD Lm;w- 36 | Du 'da > df} .
Gronwall’s inequality and (22) yield to the desired estimate (6).

REMARK 1. There is still another variant of estimating the
nonlinear term

S:&)] w[*| Dul'dzdr

in (21). Namely, from Nirenberg’s interpolation theorem it follows
that

| et = ([ uae ) ([ pusie)

< o lullu | 1Dupde )" - ({ jultae )",

where ¢ = ¢(2). Hence, we obtain from (21)

(22)

- a2, g o {L' Du,Pde + S:SQ] fPdads|
+ SOU Duf2dw’§9|ul‘dxdr

from which we deduce an a priori bound as before, since

T
0

(S Sg}uj‘dxdfyu < c-luly,-

4. Boundedness of the solutions in the case of a bounded
domain. Assuming the conditions in Theorem 2, the boundedness
of a solution u of the Navier-Stokes-equations in any finite cylinder
Ry, 0 < T < oo, would be guaranteed provided » > 2. But, unfor-
tunately, the bound will depend on 7T since the L’-estimate for u
depends on T in general. Though we are convinced that one must
be able to prove (4) with a constant independent of T, the estimates
in [7] are not of this kind.

Nevertheless, we shall be able to prove uniform boundedness of
u with respect to « and ¢ for all ¢, 0 <t < -, and even an ex-
ponential decay with respect to ¢ assuming some further restrictions
on f. The proceeding is as follows:

First we shall prove that

(24) Swg i |rdzdt < const
0JR
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for all 2 < r < 4. Then, in the second step, we look at the station-
ary equations

(25) —du+Dp=F

obtained from the instationary’s by shifting the nonlinear term and

i to the right-hand side.
For solutions of (25) it is known (cf. [5, p. 67]) that

(26) [lullgzer + | Dol = c|| Fllzrio

for all »,1 <7 < o, where the constant depends on £ and .
Combining (24), (26), the condition on f, and the a priori estimates
for the nonlinear term, we conclude

(27) HuHWi’l(Qm) + || Dp|lz7.) = const

for some » = 2, where
Q. = 2 x(0, ).

From this estimate the boundedness of u in Q.. follows immediately.

In a third step we shall repeat these proceedings showing that
the same results are also valid for v = ue® where A is some (small)
positive constant depending on £. Thus, we shall have proved the
exponential decay of the solution, and not only the exponential
decay of the supremum’s norm but also the exponential decay of

qu Du(z, t)'de .
The first precise result is the following
THEOREM 4. Let u,€ H*""(Q), f, fe L0, «; L¥2)), and fe

L*Q.) N L Q.) for some v > 2. Then, the solution u, p of the
equations (1) satisfies the estimates

(28) Hunﬁ'HQw) + || Dp||sg.) < const
and
(29) [|u]|z=q.) = const

for s = min (7, 4), where the constants depend on the data.

Proof. According to what was said above it will be sufficient
to prove the estimates not for u and p but for w=u-7, and ¢g=p-7,
where 0 <7(t) <1 is a smooth real valued function vanishing in
the interval [0, 1] and being identically equal to 1 for values of
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t = 2. w satisfies the equations
(30) w—Jdw+uDw +Dg=Ffn+un=g.
We note that we W2'(Q.,) since u has this property, that

(31) w0) =w0) =0
and
(32) S:(SQ g >mdxdt < const

in view of the assumptions on f, and due to the fact that i} has
compact support.

Thus, multiplying the differentiated version of (80) with w and
integrating over @, we obtain

g bz, ) e + ﬁ | Div 'dwdc
Q2 0Je
) t " 1/2 S i 1/2 StS )
(33) <e¢ {So(gglyl dx> < glw] da:) dt + . QIu]‘ dxdt
+ Stgolu'zlzlulzdxdz'} ,
where we used the relation
uDw = wDu — u-7Du

and an appropriate version of Cauchy’s inequality after integrating
by parts in a couple of terms.

Moreover, increasing the constant by the factor two we see
that we can replace the left-hand side of (33) by |wly,,. Then,
using the interpolation inequality for L*-spaces we estimate

12
@ lultdeds < 5115, 1wl
= 110 10 1853 sy

for some a€(0,1). Young’s inequality and (8) now yields

ot o [ e o ] o) o
+ g:gglui‘dxdf + S:OSDIwl’dxdz'(S:SQ[ul"dxdz' >1/3(1-M} .

Hence, we conclude

(34) |t ], = const
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and
(35) we LYQ..) .

Thus, we settled the first step of the announced proceeding.
For the second step we first note that in view of (34)

sup g | Dw(x, t)['de < 3(8 |Dw(2dxdt)”2 - (S | Dw |*dedr )”2 < const .
t 2 Qoo Qe
Nirenberg’s interpolation theorem then shows

mg[ Duw'dodt < c-(S:IIwH%,zdt )" <gj§g|Dw{3dxdr>s/5

o -sup GQ |Dw|3>4/5 < const .

From (35), (36) and in view of the assumptions on f we there-
fore conclude

37) —dw + Dg = F
where
Fe LY(Q.,)

for s = min (7, 4).
Using (26) we then obtain the desired estimate (28) for w and

hence for u.
u is therefore a solution of the equations

(38) — du+uDu =g,
u(O) = U,
where g ¢ L*(Q..) and s > 2.
If s is strictly less than 4 then the nonlinear term could be

absorbed by g but we do not need this.
We shall prove the final result as an extra lemma

LEMMA 5. Let uecL*0, T; J,,(2)) be a weak solution of (38),
where u, € J,(2) N L*(2). Then

_ 1/2—1/8
(39)  supo, jul = VB + o [lgllepe (] uidedt) e
Qr

where k, 1s any number greater than supg|u,|. The constant ¢
only depends on s. T can be any positive number the value plus
infinity not excluded.

Proof of the lemma. Let ¢ be the vector with components
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@; = sign u;-max (|u,| — k, 0)

for 7 =1, 2 and for k = k, > supy |u,|. Then
Sqquﬁdw = SOuDdxﬁdx —0,

so that we get from (38)

1

: §| &z, 1) ['dw + S:Sg‘ Dé ['ddz

( ) t (s—1)/s
K = 1 lmen-(] | 81 dwas) "

Let
Ak, t) = {(x, 7) € Q¢: |uy(x, ©)| > k or |uy(z, 7)| > k}

and denote with | A(k, t)| the Lebesgue measure of this set.

Since the integration in the last integral on the right-hand
side of (40) is only performed over A(k,t) we conclude with the
help of Holder’s inequality

% - Sg' é(x, O)'de + S:M Dé|*dwdz

t 1/4
= Hg|IL3(QT)'<§OSQ|¢I4 dxdf) | Ak, t)| o
hence

t 1/4
(#lt, = 4llgllen(| | | dodz )" aGh, By
Using (8) twice and Holder’s inequality we obtain for h>k=k,

— Il < <
w R Ak, o)l = | 1gldede = | |gldeds
< |$lusiap-| Ak, ) < 4-6- 1|9 ||secap-| Ak, 82 ,

where ¢ is the constant in (8).
Now, we can apply a lemma due to Stampacchia [8, Lemma
4.1] to deduce

(42) supq, |u| = 12k, + ¢-¢* || gllzaop | Ak, O) 7

where the constant ¢, depends on s.
On the other hand, it is evident that

| Ak, )] < zcr-SQ |uldadr .

Thus, (39) is proved.
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For the prove of the exponential decay, we start with the
equations (30). Let
v = we
for x> 0. Then, v satisfies

(43) D— 4 —xw+uDv+Dj =g,
v(0) =0,

where we have set
q = qe* and § = ge* .

Multiplying (43) with v we deduce

1. Lw(x, £) s + S:Sg|Dv{2dxdT - ?»S:SQIU Fdedr

2
< (3o (] oo

Since 2 is a bounded domain, it follows that for small )\ the
estimate

(44)

[, 10 tde + '] | Dordzar

s o (a0 (] e

is valid, where ¢ = c¢(\).
We therefore conclude

(45)

t - 1/2
(46) vl S e (| 191de) dr .
The right-hand side of this inequality is bounded provided
t 1/2
2 o pAT
47 goqg |f| dx) e*dr < const

in view of the definition of g.
If (47) holds uniformly for all ¢ = 0, we obtain from (46)

(48) |vl., = const

and

(49) SMSQI v*dxdt < const ,
0

since £ is bounded.
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Thus, we deduce from (43) with the help of Theorem 3
(50) [[ollw2t0m + || Dl z2, = const
having in mind e.g.. that
(51) uel Q. forall 2<7r < .

We then proceed as in the proof of Theorem 4. Differentiating
(43) with respect to ¢ yields

(52) b — 40—\ + vDo + @Dv + D§ = §

from which we obtain

Sgl b(x, t)'de + S SQ! Db dwdr

< C{HQW 2. v Pdadr + §<SQI il )“Zm - (Sg |6 'dw )"ET} ,

where ¢ = ¢c(\).

Since @t € L*(Q.) for some s > 2 and ve L"(Q..) for all 2<7» <
the first integral on the righ-thand side of this inequality is bounded
uniformly in ¢. The integral involving § is bounded provided

(83)

(54) f-et, fet' e L0, o ; L¥Q))

in view of the definition of g.
Proceeding then in the same way as in the proof of Theorem
4 we have thus proved,

THEOREM 5. Suppose, that besides of the assumptions in Theo-
rem 4, the conditions (54) are satisfied. Then, for small values of
N the estimates

(85) sup |u(x, 1) < c-e™*
and
(56) (SolDu(x’ B dw>1/2 < geo

are valid for all 0 £t < oo, where the constant ¢ depends on \, 2,
and on the data.

5. The Cauchy problem. The results of the preceding sec-
tions except that of the exponential decay are also valid for the
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Cauchy problem,” where the equations (1) are to be satisfied in the
whole plane R>. The reason is that the estimates for the corres-
ponding linear problem hold as follows:

Let for r = 2 the expressions |uly21,, and |u,|, ., be defined
through the assignments

T T 2
o :S S \ulrdadt + g S S | DiDiul dudt
0Je 0JRi,5=1
and
|u0|;_2/ = S g |Duy(x) — Duy(y)|” dxdy
v Jele le —yl"

if »> 2, and
a2, = ﬂg; Du,'de .

Note that in our case 2 = R%
Then, for the solution of the linear Cauchy problem the estimate

(87) ”ulwi'l(QT> + HDpHL"(QT) = e {luglogrr + Hf”L"(QT)}

is valid with some constant depending only on 7. It is the same
estimate as for solutions to the heat equation (cf. [7]). The proof
of (57) is rather simple since the pressure can easily be expressed
with the help of a Newton potential in this case. The Calderon-
Zygmund inequalities and the estimates for solutions to the heat
equation then yield the result.

Moreover, the Nirenberg-interpolation-theorem which we used
so extensively above also holds in 2 = R?* involving only derivatives
of the highest order in the respective norms, e.g., the estimate (10)

is valid with ||u|j3, replaced by ;.. Sng"D"ulzdx.

Therefore, the Theorems 2 and 3 are also valid in this case
without any change in the proofs, if we observe that the estimates
should be read as indicated in (57).

Since the estimates hold uniformly in ¢ we conclude from
Lemma 5 that the following theorem is valid.

THEOREM 6. Let u,€ L*(R* N J,(R?), Du, € L*(R*), and let |u,|y_s/.,»
be finite for some r>2. Assume moreover that f e L'(0, «; L*(IR*))N
L*Q.) N L"(Q.). Then, the solution u, p of the equations (1) satis-
fies the relations

5 We shall only prove a priori estimates. For the existence of a solution we refer
to a forthcoming paper treating the Cauchy problem in arbitrary dimension.
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(58) |ul,. = const,
(59) |ulW§’1<Qw) + [| Dp|l1s(q = const
for all 2< s <7, and

(60) llull =g, = const .

6. Continuous dependence on the data. We shall show that
the solutions of the Navier-Stokes-equations depend continuously on
the data in the norms of the spaces W}'(Q,) and L~(Q,). The
value plus infinity for T is allowed.

THEOREM 7. Let u, p,1 =1,2, be solutions of the Navier-
Stokes-equations to the data u, and f,, and let u, p, u, and f be
the differences of the corresponding terms.

Then, the following estimates are valid
T
0

ult, = e {| julde + ([ £ rdw) a .

()i 4 § (1, e ) e exo ([ ) )}

T
©2) [[ulliztan + D8 llsep = & {luly, + | |Dusfide +{ | |fpdodt],

(61)

and
(63) sup, [ul = V2, + ok ulf, ,

where ¢, is a numerical constant, ¢, depends on 2 and ||u;l[yz1 g,
i =1, 2, ¢; depends on ||u;|lp2iq, and || Dp;|lzrqm, k is any positive
number greater than ||u,ll;~0), and @ and B are positive numbers
depending on 7.

We omit the proof of the theorem since the estimates either
follow directly from the preceding theorems and their proofs, or

can easily be deduced with the help of similar techniques. We only
13

note that to prove (62) one has to estimate an integral like g S [u,? -
0JQ
| Du*dxdt as follows

t
(64) SOSQI u1|2. I Du |2dxdf = H ul“iﬁ(Qt)' H Du”i?'(Qt)

= [ [lisig | DullFig, +11 Dul 3457

2a
LA(Qy) L2(Qy)

with some appropriate number a € (0, 1).
As a corollary we obtain
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THEOREM 8. Let the data u,; and f,, i =1, 2, be such that the
constants in the preceding theorem are finite. Then, the expressions
on the left-hand side of the estimates (61), (62), and (63) tend to
zero if u, converges to u, in L~(2) N Hy*2) and £, to f, in L* Q)N
LY0, T; L*(Q)). T might be infinite.

Proof. We only need to prove the third assertion: Since in
view of (61) |ul,, tends to zero we conclude from (63)

(65) lim sup (sgp lu) =V 2k,,

where %, can be an arbitrary positive number for lim ||u,|| =@ = 0.
Letting %, go to zero we obtain the result.

7. On the attainability of stationary solutions. It is well-
known that solutions of the stationary Navier-Stokes-equations

—4dv +vDv + Dp =f,
(66) dive =0,
Vo =0
exist and are of class H**Q) provided that fe L*2) and that £ is
a bounded open set with 02 e C? Physically, stationary solutions

are only of interest if they are obtained as the limit of instationary
solutions if ¢ goes to infinity. We shall show in the following that

this is always the case if only (S [f{%)”z is sufficiently small de-
Q2
pending on 2 and the viscosity.

THEOREM 9. Let u be a solution of the instationary Navier-
Stokes-equations corresponding to the data u, and f, where u,¢c
H*omr(2) for some r > 2, and where f = f(x) € L¥(R2). Then, if t
goes to infinity u tends to a solution v of (66), which will there-

1/2
fore be unique in this case, provided <golf |2dx> 18 sufficiently small.

For the difference w = u — v the estimates

67) (SQ1Dw(x, Hlde)” 5 ooe
and
(68) sup lw(x, t)] < c-e

are valid, where the constants depend on 2 and the data.

Proof. Let v be a solution of (66) and let w = u —v. w satis-
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fies the equations

w — Adw + wDw + vDw 4+ wDv + Dp = o
(69) Wl =0,
w0) =u, —w =w, .

Multiplying (69) with w we obtain

%D w(z, 1) ds + ﬂq] Dw/tdxdc
(s (o)

But, from the Sobolev imbedding theorem we obtain

(1) (5; w |4dx)”2 < ¢, L; Dwlide

and from (66)

[ae = ([ irvae) " ] i)

s () ([ oevan)
or
(73) (Sn; Dv|2dx>”2 < ¢, <§0 \F P >”2 .

Assuming therefore

1/2 1

2 < Bl . —1
) (1, 1z )" = Terve
we conclude from (70)
(75) S \w(z, t)*de + SS | Dw ['dedr < S |w, 'de

Q2 0JR2 Q2

from which we obtain
(76) lwly, < 2-g0| w, 'z .

We can now argue as in the proof of Theorem 3 to deduce

(77 we W3(Q..), Dpel*Q.),

namely,
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Jwllize, + || Dpllixg,
(78) < c-{gglpwmdx ¥ S:SQ(wP{Dw[zdxdz' + g:gg]vl2-|lezdxdr
+ S:Sﬂ|w|2-|Dvl2dxdr} .

Since v is bounded the only difficulty arises from the last
integral on the right-hand side. But, using the Sobolev imbedding
theorem twice we conclude

S:Sﬂ; wt-| Do dedr < g:(b w|'dz )”2 - (U Do 14dx)”2df

(79) t
< c'llvH;,z-SogQI Dw *dxdzt .
Following now the arguments of the proof of Theorem 3 we
get (77).
Moreover, arguing as in the proofs of the Theorems 4 and 5,
it can easily be checked that the results of those theorems are
also valid for w and we” if M\ is sufficiently small. The estimates

(67) and (68) now follow immediately.

REMARK 2. If p and ¢ are the pressures corresponding to u
and v then p’ = p — ¢ is the pressure corresponding to w. In view
of (77) we know Dp’ e L*Q.), and the same result holds also for
D(p'e®). p'e* is the pressure corresponding to we*. Moreover, let
7 =7n(t) be a smooth function vanishing in neighborhood of zero
and being identically equal to one for t greater than two.

Then,

w=we'-n and p = p'et-y
satisfy an equation from which we can rather easily deduce, after
having differentiated it with respect to ¢, an a priori bound for
lewg"mw) -+ I!DﬁHLZ(Qoo) .

For the proof we have only to use the already known estimates
for |@lq,, and lelwg'l(Qw)'
We therefore conclude

(80) ol e ?de = 2-(|"] | DB dwar )"

(S §9| Dﬁ]%lxdt)l/z <¢

hence
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(81) <S.ol Dp'(z, t) [%lw)w < c-e®

for all ¢t = 2.

Thus, we have an exponential decay not only for the velocities
but also for the pressures.

Similar arguments are also applicable in the case of Theorem
5 provided the external force f is such that in addition to the old
assumptions 9/dt(fe*n) is square integrable over Q..

Appendix. Here, we shall show, how the L*-estimates of
Solonnikov valid for solutions of the three-dimensional Stokes-equa-
tions can be used to derive the same estimates in the two-dimen-
sional case.

Let u = (u,, u,) be a solution of the equation

U—du+ Dp=T°F,

divua =0,

(A1)
u‘aa =0,
u(0) = u,

in a cylinder Q, = 2 x (0, T), where 2 CR* is a bounded open set
with C*boundary. p is the corresponding pressure.
We extend (Al) to a three-dimensional problem by setting

u(@, @, @, t) = (u,(, 27 1), u,(at, 2% 1), 0),

o, 22, 2°, t) = p(at, 2%, t) .

u, and f are similarly Adeﬁne;d. ~
Then @ solves in Q, = 2% (0, T), 2 = 2 xR the equation

>

diva =0,
(A2) -
ulp =o0
u(0) = u,

Unfortunately, O is unbounded so that the results of Solonnikov
cannot be applied directly. Truncating the domain would yield a

nonsmooth boundary, also.
Therefore, let { be a cut-off funetion, 0 < <1, ¢0) =1, and
set

8(%1, mzy xg, t) = ﬁ(wly xzy wsy t)'C(xa) .

Then, v satisfies
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divo = D'(4,0) = D'al + 4D =0 4+ u,- D¢ =0,
since u; = 0, and
4o = du- + 2DuDC + udl
= 4uf + a4,
since DaDC = 0.

~

Hence, v solves

$ — 4D + D(PC) = F+C + 84 + pDC ,

(A3) <A11v v=0,
v =0,
5(0) = a

and has compact support with respect to «°.
Applying the estimates of Solonnikov [7,§17] we obtain for
l<r< o, r+3/2 and for all £, 0=t < T,

ﬁﬁ]f dwde + g’gwardxdr + StSA[D(ﬁC)[’dxdr
0J 02 0J 2 0J2
t A
(A9 = o {l@C iz anmn + | | 17171 ¢ dude
t t
+ ||, Jaricrdade + || 1511 Dt rdude |
0J 2 0J 2
where ¢ = ¢(r, T, 02, {).
To simplify the estimates we observe that e.g., SAIﬁdex is equal
2

to
Sglul’dx- Sfm]crdf .
Thus,
t t
Sogglu]’dxdr + Soggldurdxdr
(45) + || | Dolrdade < o {llmlisnro

t t t
+ S S |f|"dadT + S S lu|"dxdr + S S Ipl’dxdz'}
0J Q2 0J 2 0J2
with some new constant c.
To estimate the integral involving p on the right-hand side we
go back to (Al) taking the divergence to obtain

dp =divf in 2

9p =f-y + du-y on 082 .
oy
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Fixing p by requiring that S pdH, =0
aQ
we see that

(A6)  p(, t) = LN(x, y) div Fdy + &QN@, WOIF-v + du-v)dH, ,

where N is the Neumannkernel, e.g., if 02 is straight N(z, y) =c¢-
log (| — y|). In any case N satisfies

|DN(, y)| = —2 and |D°N(, y)| = —%—,
|z — y| |z — vyl

provided 02 is of class C2 The symbol D*N means the second
derivatives of N.

Integrating by parts in (A6) we coneclude
p(x, t) = ~SQDyN(x, y)dudy — quyN(x, y)fdy

from which we derive (cf. [7, Lemma 9] and observe that n =2
in our case)

X [p|"de < ES | du|"dx + Ceg | Du|"dzx
02 2 2
(AT) + c-g \flrde < eg | dulds + eS | dulrde
Q2 2 fod
+ c:S u|rds + c-g \frde
2 0o

where we used Nirenberg’s interpolation lemma e.g., to deduce the
second inequality. ¢ is any positive number.

Inserting this estimate in (A5), where ¢ is appropriately chosen,
we obtain

(A8) \|,[ulrdate + ] | durdods + [ | Dprdods

S fltanne + [0 (] ).
Now, using the simple estimate
[t e < | jul+ e | al-luldode
< Sg‘ w|" - ¢ S:Sg[u rdadr + csgzgg{ul’dmdf
and taking

HuoHLT =ec- HuOHZ—Z/r,r
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into account, we conclude from (A8)

S lu(z, t)|"dx < c- {HuoHQ—z,w,r + StS |f|"dxdT + Stg Iu’dxdz'} .
Q 0J e o)
Gronwall’s lemma then yields to

|,Ju@, Orde < o-{['| £ 1rdzdz + [l }-e
0
forall0 <t
Going back to (A8) with this estimate we obtain the final result.
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