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A CHARACTERIZATION OF R2 BY THE
CONCEPT OF MILD CONVEXITY

SJUR D. FLAM

Let S be an open, connected set in a locally convex,
Hausdorff topological vector space L. If the boundary of S
contains exactly one point not a mild convexity point of S
and this point is not isolated in bd S, then dim L = 2.

NOTATION. [S] denotes the convex hull of S. <S> denotes the
interior of [S] relative to the affine closure, aff S, of S. intS, clS,
and bd S represent the interior, closure and boundary of S, respec-
tively, while extS and expS denote the sets of extreme and exposed
points of S. codim S denotes the codimension of aff S.

DEFINITION. Let S be a set in a topological vector space L.
A point x is called a mild convexity point of S if there do not exist
two points y and z such that x e (y, z) and [y, z] ~ {x} £ int S. [1].

The proof of Theorem 2 proceeds through some lemmas. Easy
proofs are omitted.

LEMMA 1. A topological vector space over R induces a locally
convex, relative topology on every finite-dimensional linear snbspace.
Hence the relative topology on every finite-dimensional subspace is
coarser than the standard Hausdorff topology on the subspace.

Proof. Suppose the subspace M of L has finite dimension m
and U is an arbitrary O-neighborhood of L. Choose a balanced 0-
neighborhood V such that

m+l

Σ VQU.
1

Then by Caratheodory's theorem [1]

LEMMA 2. Let S be an open set in a topological vector spaces.

Suppose [x, y] U [y, z]Q S and [x, y, z] Π bd S contains mild convexity

points of S only. Then (x, y, z) £ S.

Proof. If x, y, z are collinear then there is nothing to prove;
otherwise S intersects aff {x, y, z) in a set which is open relative
to the standard Hausdorff topology by Lemma 1. Therefore
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[x, y, z] ~ S is compact relative to this topology and so is its convex
hull C. It is known that C = [ext C]. If ext C £ [x, z] then the
inclusion ext C £ cl exp C demonstrates the existence of a point e e
exp C Π (x, y, z). Since exp C £ ext C £ [x, y, z] ~ S this point be-
longs to bd S and is not a mild convexity point of S. This contradic-
tion implies ext C £ [x, z] and the conclusion follows.

LEMMA 3. If the nondegenerate interval [x, y] does not intersect
an affine subspace M of a vector space, then there is a point x' such
that x e (xr, y) and [x\ y] Γ) M = 0 .

LEMMA 4. // [x, y] (J [y, z\ U [z, w] is contained in an open set
belonging to a topological vector space over R and u is an arbitrary
vector, then y, z may be moved somewhat in the direction of u to the
points y', z' so that [x, yr] U W, zr] U [zf, w] still belongs to the same
open set.

LEMMA 5. If S is an open, connected set in a topological vector
space over R and T is a subset of the same space with codim T ̂  2,
the S ~ T is polygonally connected.

Proof. S is polygonally connected. If an interval [y, z] inter-
secting aff T belongs to a polygonal path, then by Lemma 4, y and
z may be replaced by y' and z' so that the new path is in S ~ aff T.

LEMMA 6. Let S be an open, connected set in a topological
vector space over R. Suppose that the set N of points in bd S which
are not mild convexity points of S is empty or has codimension at
least 3. Then if x,yeS and [x, y] Π aff N = 0 we have [x, y] Q S.

Proof. By Lemma 5 there is a polygonal path in S from x to
y which does not intersect aff (N\J x) ~ x. If [x, xj, [xlf x2] are the
first intervals in this path, then by application of the Lemmas 3 and
2 (in that order), [xf x2] lies in S and clearly does not intersect
aff (N U x) ~ x. Proceeding in this manner we eventually obtain
[x, y]Q S. A digression is given here.

THEOREM 1. Suppose S is an open, connected set in a topologi-
cal vector space over R, and suppose bdS contains only mild con-
vexity points. Then S is convex.

REMARK. This theorem which follows immediately from Lemma
6 is established in [1] with the additional assumption that the space
is Hausdorff.
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LEMMA 7. Let S be an open, connected set in a locally convex
Hausdorff space over R. Suppose the set N of points in bd S which
are not mild convexity points has the property codimcl aίϊ N ^ 3.
Then for every xe N there exists a closed hyperplane H and an x-
neighborhood U such that U ~ H Q S.

Proof. Choose two points xlf x2 both different from x such that
x e [xlf xz] Q S U x- The set (cl aff N) U Xι is contained in a hyperplane
H. Call the corresponding open halfspaces H+ and H" respectively.
Choose an ^-neighborhood Vt £ S. Then the union of U+ —
[(V, U V2) (Ί Jff+], U~ (defined similarly) and H gives the required U
by Lemma 6.

The announced result may be stated forthwith.

THEOREM 2. Let S be an open connected set in a locally convex,
Hausdorff space over R. If bd S contains exactly one point which
is not a mild convexity point of S and this point is not isolated
in bd S, then the dimension of the space is 2.

It is trivial to exhibit such a set in i?2, and it is easy to show
that the set is star shaped.
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