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H*(p) SPACES AND BOUNDED POINT EVALUATIONS

TAVAN T. TRENT

Let H?%(») denote the closure of the polynomials in L2(y),
where ¢ is a positive finite compactly supported Borel
measure carried by the closed unit disc D. For 1€ D, define
EQ)=sup{lp(})|/||p!l.}, where the suprenum is taken over all
polynomials whose L*(x#) norm is not zero. If E(1)<co we
say that # has a bounded point evaluation at 1, abbreviated
b.p.e. at .. Whenever E(1)<cc we may fix the value of
feH*p) at 2. We determine the set on which all functions
in H?(t) have (fixed) analytic values in terms of the parts
of the spectrum of a certain operator.

In the case that the support of g has a hole H bounded by an
exposed arc I" contained in 0D and E(z) is finite in H, we show
how to recover the absolutely continuous part (with respect to
Lebesgue measure on 0D) of dy, from a knowledge of the E(z)’s
in H. A corollary of this is that for such measures g the func-
tions in H?*(¢) behave locally near I" like those of classical Hardy
space. That is, they have boundary values and their zero sets near
I’ satisfy a Blaschke type growth condition. We apply this corol-
lary to measures of the form dy = GdA + wdo to study the local
behavior of functions in H?*Y) near I' (A denotes planar measure
on D, do denotes linear Lebesgue measure on 0D, and G and w are
in an appropriate sense not too small on D and I" respectively).

1. Bounded evaluations and analytic extensions of functions
in H*p). Let p be a finite positive compactly supported Borel
measure carried by the closed unit disc D. We note that for \ a
complex number, the point evaluation functional defined on poly-
nomials by

» — p(\)

is bounded with respect to the L*(¢t) norm if and only if E(\)<<eo.
In this latter case, by the Riesz representation theorem there is a
unique element of H?*(x), denoted by k,, satisfying

p(\) = {p, k)

for all polynomials p and ||k;|| = E(\N). We call k; the bounded
evaluation functional for g« at \, abbreviated b.e.f. for g at .

If ¢ has a b.p.e. at v with b.e.f. k, and fe H*), then we fix
the value of f at A by

279



280 TAVAN T. TRENT

(1) FO) = (f, )

We remark that if g has b.p.e’s on a set of positive ¢ measure
then the values f of f fixed by (1) agree t-a.e. with any represen-
tative of f. Also the “filling in holes” theorem due to Bram [1],
interpreted in this context, says that if H is a hole of the support
of z¢ then either

(2) #t has b.p.e.’s at every ve H
or else
(3) £ has no b.p.e.’s in H .

Whenever (2) occurs the functions in H?*) can be extended into
the hole H.

It is well known that if fe H*(x) then f is analytic in any
holes satisfying (2). We specify the largest open set on which all
extensions of functions in H?*(z) are analytic.

Let M, denote the bounded linear operator multiplication by z
on H*(p). A(M,), I'(M,), and II(M,) will designate the spectrum,
the compression spectrum, and the approximate point spectrum of
M,, respectively [see 12]. If O is an open set on which all exten-
sions of functions in H*(y) are analytic, then we call O an analytic
set for p. If G2 C then we denote the interior of G by int G.

THEOREM 1.1. The largest analytic set for g is int(l'(M,)—
II(M.)).

Proof. If O is any analytic set for ¢ and F'CO is compact,
then using the Banach Steinhaus theorem [16] we see that

sup{|lk;||: Ne F} < oo

Also if O is an open set and » — ||k;|| is bounded on compact sub-
sets of O, then using (1) and the Cauchy-Schwartz inequality it
follows that O is an analytic set for pe.

Assume that O is an analytic set for g It is well known that
Ocl'(M,). (This is just the statement that M}k, = Xk, for A€ 0.)
We show that

(4) onNnuM,) =@ .

If (4) fails then there exists a \ in O and a sequence of polynomials
p, satisfying

1

(5) Iz = Mpa(2)I* < =
"
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and
(6) Pz 3
Let B be the closed disc of radius 7 centered at \ and contained in
0. Since O is an analytic set for g,
sup{||k.|: ze B} = C < e .
For w with |w — \| =17,

% > 11 — Npu(@)|f 2L MAPCOE 5 7 e

1. | - c

So by the maximum modulus principle,

(7) PO
nr

for all we B. But using (5) and (7),

Ipale =ik + | p,rdp

<1 1@ up.
rn nr

Letting n —, we see that (6) is contradicted so (4) holds.

Conversely, assume that O is an open set satisfying ONII(M,)= @
and OcI'(M,). By our opening remark in the proof, it will be suf-
ficient to show that \ — ||k;|| is bounded in a neighborhood of .
Fix a€ 0. Since a¢ II(M,) there is a C < o so that

A= Cli(z — a)f(2)]]
for all fe H*¢). A computation shows that
(8) Al =2C||(z — w)f(2)]]

whenever |w — a] =< 1/2C.
Let q(z) = (p(z) — p(\)/(z — \) for » a polynomial and let C,=
min{1/2C, 1/(4C ||k, 1))}. By (8), for [N —a| < C, = 1/2C,

lg(@)| = Ilk. | lgll = [|k.][2C [[(z — Ma(2) |
= 2C ||k llllpll + [T -

Hence
IpV| = [p@)] + v —a| 2C ||kl 2]l + [pW]] .
So for |» —a| < C,
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12| < 1kl 2] + %mpu + 1] -

Thus
[kl = 2lka|l + 1

so we are done.

COROLLARY 1.1. If H s a hole of the support of p and
Hc A(M,) then H is an analytic set for ft.

Proof. AM,) = HI(M,)U '(M,). If xe H then 1/(2 — \)e L*(t)
and hence ¢ II(M,).

Denote the essential spectrum of M, by A4,(M,) [9].

COROLLARY 1.2. If M, has mo point spectrum, then the max-
imal analytic set for p is AM,) — A,(M,).

Proof. If M, has no point spectrum then [9] says that
int(I'(M,) — II(M,)) = A(M,) — A,(M,). Now apply Theorem 1.1.

Let M, denote the pure subnormal part of M, [7].

COROLLARY 1.3. The maximal analytic set for p is A(M,)—
Ae<M/:)‘

Proof. It is easy to see that the maximal analytic sets of M,
and M, are equal. If M, is a pure subnormal operator, then M,
has empty point spectrum so Corollary 1.2 applies.

If <# denotes the set of b.p.e.’s for p, the obvious question is
whether int <7 is the largest analytic set for . While we cannot
answer this, we have the following partial result.

THEOREM 1.2. There exists a dense open subset &~ of Z so
that &7 is an analytic set for pt.

Proof. We show that if .&¥ = {ze€ &#: there is some neighbor-
hood U of z with Uc.<# and sup{||k;||: ne U} < «}} then & is a
dense subset of <Z. Let V be any open subset of .7 with Vc.<z.
We are done if we show that VN .&” = @. Define

Ey ={zeV: ||k.|]| = N}.
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Clearly,

Now
.|| = E(z) = sup{ p(z)|/l|p|}

where the suprenum is taken over polynomials p» with rational
complex coefficients and ||p|| # 0. Thus z — ||k,|| is a lower semi-
continuous function on <%, so K, is a closed set. An application
of the Baire category theorem completes the proof.

It may be useful to note that by Corollary 1.3 .&9 = {z¢€ D:
2 — M, is a Fredholm operator and ind(z — M,)=—1}.

2. Recovering a part of the measure gt from E(z). It is a
well known result of Bram [1] that the operator M,, multiplication
by z on H?*(st), is a model for a general contractive cyclic subnormal
operator. Some subnormal operators have been shown to have
(nontrivial, closed) invariant subspaces by establishing that if
H?*(yt) =+ L*(f¢) then st has a bounded point evaluation [2], [3], [4].
This provides a basic motivation for the study of the relationship
of the measure ¢ to the possible existence of b.p.e.’s.

Let do denote normalized Lebesgue measure on 0D. For a
measure vy carried by oD, it is a classical result of Szego and Kol-
omogorov |see 13] that H*() == L) if and only if log h ¢ L'(do),
where h denotes the absolutely continuous part of v with respect
to . Whenever H*v) == L*»), then v has b.p.e.’s in D with b.e.f.’s
k; for ne D. It was observed in [14] that % can be recovered from
i1k;!! as follows:

(9) Lim (1 — APk | = for o — a.e. e

el h(e™)
where M- - ¢’ nontangentially. Suppose that ¢ is a measure carried
by D. Let

dpe = dpj, + <fif—‘->d0 + dye,
do
where dpt, is carried by 0D and is singular to do. Just as in the
classical case (v as above) a result of Clary [6] says that ¢ has a
b.p.e. at xe D if and only if dg¢ — dp, does. Since dy, is not in-
volved in the existence of b.p.e.’s, it is clear that there is no hope
of recovering dy¢, from a knowledge of the norms of b.e.f.’s for
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dpee (in fact, E*(\) = E*#(\) for all \).

We are interested in the interplay between g, and z|,, and the
existence of b.p.e.’s in D. By the previous discussion g, has no
bearing on this problem. We investigate a class of measures g for
which the absolutely continuous part of g with respect to o can
be recovered on an arc of 0D in an analogous fashion to (9).

DEFINITION. Let K be a compact set. Then K contains an ex-
posed arc J if there exists a simply connected open set < such
that 2 NK = J and J is the range of a smooth Jordan curve.

Let ¢ be a measure carried by D satisfying:

(A) there is a hole H of the support of /¢ so that H has an
exposed arc I" with I" C oD.

(B) ¢ has b.p.e.’s in the hole H.

We remark that by a result of Brown, Shields, and Zellar [5], it
is possible to construct a measure g carried by D whose support
has a hole H for which (B) holds, p#(0D) =0, and 0H>oD. For
such a measure, it is clear that g|,, is not involved in the existence
of b.p.e.’s in H. Thus condition (A) is a guarantee that if (B) is
to hold, then x|, and g/, must interrelate in some way. Hence if
¢ satisfies (A) and (B), it is plausible that a knowledge of the
norms of b.e.f.’s in H would lead to a recovery of the absolutely
continuous part of © with respect to o restricted to I'. This is
indeed the case. Before proving this result, we will need a few
lemmas.

Suppose that @ is any measure whose support contains a hole
H. Assume, furthermore, that « has b.p.e.’sin H. For ne H, k;, is
the b.e.f. of a at A\. Denote the orthogonal projections of L*«)
onto H*«a) and H*a)* by P, and P, respectively. We have the
following lemma.

LEmMMA 2.1. (i) Let acH. If geH*a)" and {1/)(z — a), g) #0
then

10) k= P(ZE 1 £)[(g. L

z2—a

where f is any element of H* )" .
(i) If g = P,(1/(z — a)) then {1/(z — N\), g(2)> = 0 for at most a
countable number of N's in H.

Proof. Let g(a) denote <{1/(z — a), g(z)). If p is a polynomial
then (p(z) — p(a))/(z — a) is a polynomial so

0= (RE_2@ o)y, ;’%@ — p(@)i(a) .

zZ—a
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Hence

o = (1 (23 )

for all polynomials p. Now 1/(z —a) is in L*(@) since ac H, so
9/(z — @) e L*). Thus (10) follows by the uniqueness of the b.e.f.
at a.

Let g = P,(1/(z — a)). Since « has a b.p.e. at a, 1/(z—a) ¢ H¥«).
(Else we would have 1 =<1,k =z —a)Q/(z —a)), k) = (@ —a)
)z — a), k,> = 0.) Thus

1\
P2

G2 )=

Now we need only notice that »— {(1/(z — \), g(2)) is analytic and
not identically zero in H to complete the proof of (ii).

2

>0.

Suppose that y¢ is a measure supported on D satisfying (A) and
(B) for a hole H of the support of g with exposed arc I'. Let
a ¢ H and denote P,(1/(z — a)) by g and {1/(z — a), 9> by §(a).

LEMMA 2.2. g wvanishes on no subset of I' with positive Lebes-
gue measure.

Proof. Define

e i@
e PR

Then dfB is a complex representing measure for evaluation at a on
the space of the polynomials with respect to sup norm on the sup-
port of g [see 10]. It follows from Theorem 2.2 of [10] that there
exists a positive representing measure dy for evaluation at o which
is absolutely continuous with respect to |dB|. It is easy to see
that v has a b.p.e. at a. Applying Lemma 2 of [17] shows that

S log £d0> — oo
r, do
for every closed subare 7', of I'. This completes the proof.

We are now ready for the main result of this section. Assume
that ¢ is a measure supported on D satisfying (A) and (B) for a
hole H of the support of g with exposed arc I'. Let w denote
the Radon-Nikodym derivative of the absolutely continuous part of
tly with respect to o. Fix a point eeH and again denote
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P,(1/(z — a)) by g and {1/(z — a), g> by §(a).
THEOREM 2.1.

11) Lim (1 — (M) k1 = L __for sae. el
i—oet (31 )

as — e’ nontangentially.

Proof. By a theorem of [14] it is shown that for any measure

B on D,

(12) Lim (1 — [MHEN)) = 1/%(6”) for o-a.e. e’ €dD

2—>etf
where ) — ¢ nontangentially. Thus we need only show that

(13) Tim (1 — M)l < (16

2—etl

— for g-a.e. e’el’
)
where )\ — ¢’ nontangentially. From Lemma 2.1 we see that

9 Fna
(14) el = [—2[ ngovre.

z2—N
(Note that from Lemma 2.1, §(\) can vanish on at most a countable
set of H. If for some \e H, g(\) = 0, then the right hand side of
(14) is to be interpreted as co.) Denote (1 — |[N[]D)/|1 — Ne ¥ Dby
P(x, €). Define 2 to be the support of £ minus I". Then
I
15) (1 — |\ >‘L__\ SFPOV, ¢ g(e™) Pw(e)da(t)
Ny
+ |, F= 2o o)
2|\ — 2

Now

o) = <— ,g> <z—7\, —X)_»z' g>

since z— \/(1 — \z) is analytic in D and g = P,(1/(z — a)) is in
H*p)*. Writing this out, we see that

(16) 0 = | PO ee g uie)da()

1—np
+ So (z — M1 — xz) g(z)dp(z) .

Since ¢’ ¢ 2 it is easy to see that the second integrals of (15)
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and (16) converge to 0 as )\ —e“. Hence by a theorem of Fatou
[see 13], we get

an Lim (1 — ()22 = ge) e
(18) Lim g(\) = e “g(e®w(e’’) for c-a.e. e’el

et

where )\ — €' nontangentially. Recall that by Lemma 2.2, ¢ cannot
vanish on a subset of I' with positive Lebesgue measure. Thus,
combining (14), (17), and (18), we establish (13) to complete the
proof.

Suppose that y is a measure on D satisfying (A) and (B) for a
hole H of the support of p¢ with exposed arc I'. Assume that dy,
is absolutely continuous with respect to do. In [17] it was shown
that if fe H*¢t) and f does not vanish identically on I” then

gr log | £ ldo> — o

for I, any closed subarc of I". Thus the functions of H?*(zt) exhibit
one of the properties of Hardy space functions locally on I". Thus
if fe H*(¢t) the question is raised as to whether f can be recovered
as the boundary values of f on /. J. Thompson and R. Olin have
informed us that the answer to this question is yes. Subsequently,
we have established this result together with a Blaschke type
growth condition based on Theorem 2.1 and a result of Kriete and
Trutt [15].

Let p satisfy the hypothesis of Theorem 2.1. Also assume that
dylr is absolutely continuous with respect to Lebesgue measure.
We have the following regularity theorem for extensions of funec-
tions in H?*(p).

THEOREM 2.2. Let fe H*(t).

(i) Lim,_ FON) = fe) for oc-ae. ¢?el where N — e’ mon-
tangentially.

(ii) Assume that f is not equal to 0 c-a.e. on I'. If I', is

any proper closed subarc of I' and f vanishes on the set {z,}v which
has no limit points outside of I', then

S —lzDp, <

where p, is the multiplicity of z, as a zero of f
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Proof. The proof will be established by showing that any f
in H*¢) may be viewed as an element of a space H*B). The cor-
responding extensions of f as an element of H?*(¢) and H*B) have
the same values at the points which are bounded point evaluations
of both ¢ and A. Once this is done it will be sufficient to show
that extensions of functions in H?*Q) satisfy (i) and (ii). This will
follow from a conformal mapping argument.

Let I', be any closed subarc of I'. Let a and b be elements of
I' — I',, one on each side of I',, for which equality holds in (11).
Let M denote the arc connecting a with b and containing I',. By
hypothesis (B) on the support of z, we can find a polar rectangle
R with int RC H, and 0R N oD = M. Let L denote ¢R N D.

Define a finite Borel measure, dB, with support oR by

ag =1 — |zP)dzl| + 22 jdz||

where |dz| denotes arc length measure.
Let » be a polynomial. Then

Ipl = | 19 = 12pidzl + | 1pPwdo
= Uipli| kA~ 2Pzl + 1215

Now the hypothesis that ¢ and b satisfy the equality in (11) enables
us to find a constant K < = so that

(19) Ioll; = Kilplli -

Hence by (19), the mapping defined on polynomials by » — » extends
to a bounded linear map T of H?*(y) into H*B).
Notice that

SM |log w| |dz| + SL |log(1 — [2]")] |dz| < oo .

The first integral is finite by Lemma 2 of [4] since ¢ has b.p.e.’s
in H and the second integral is finite by a routine computation.
Thus if

w(z) zeM

W) = {<1~|z|2> sel

then

(20) dg = W(z)|dz| where SaP llog W(z)| < e .
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If 4 is a simple conformal mapping of D onto R extended to a
mapping of D onto R then 4 is bounded above by a modification
of Theorem 9.8 of [18]. Using a theorem of Szegé [see 13] and a
conformal mapping argument, it is not hard to show that g8 has
b.p.e.’s in R if and only if log[(Woq)|4'|]e L*(do). By Theorem
3.12 of [8] (since + is rectifiable), v € HY(do) so log || e LY(do).
Combining (20) and the boundedness of ' we see that

S uogWowdo=2i§ llog W1 || |dz| < <.
oD 7T Jor

Fix fe H*y¢). By the definition of T, a sequence of polynomials
converging to f in H*() will converge to Tf in H?*B). Also the
existence of b.p.e.’s in the hole R implies by Theorem 1.1 that the
convergence of polynomials is uniform on compact subsets of int R.
Hence f = Tf in R.

To show that extensions of functions in H?*B) satisfy (i) and
(i), we refer to the proof of Theorem 8 in [15]. This completes
the proof.

3. An application. Let dA denote planar Lebesgue measure
on D and let I" be an open subarc of D. We shall apply the re-
sults of §2 to finite positive measures of the form

dy = GdA + wdo
satisfying

1) log G is in L(dA) and EF log wdo > —co .

THEOREM 38.1. Suppose that dy = GdA + wdo satisfies (21).
Then

for o-a.e. e?el’

Lim (L — M)l P =

2—e

w(eiﬁ)
where N — e nontangentially.

Proof. Remove the open region S from D which is bounded
by a proper closed subarc I, of I' and the chord connecting the

endpoints of I',. Define 7 =y|5_s. Clearly, ||p|l. =< ||p]. so by de-
finition

Ev(z) = ||kl = E(2) .

Appealing to (12), it is enough to show that
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(22) Lim (1 — MP)E (V) =

2—etl

(t”) for c-a.e. e'el,
where N — ¢ nontangentially.

The support of the measure 7 satisfies condition (A) with re-
spect to S and I', by definition. If we show that z satisfies (B),
then we may apply Theorem 2.1 to establish (22). The remainder
of the proof is a lengthy calculation to show that (B) holds.

First we need some notation. Without loss of generality let us
assume that for some a with —1 <a <1,S={zeD:a < Rez <1}
For —1 < x < @, let L, denote the chord {zc D: Rez = x}. Choose
—1 < B <a so that for every 2 with g =<2 < a L, intersects
I' — I, in two points. (Sinee ' is an open arc and I', is a proper
closed subare of I' this can be done.) For —1 < z < a, let S, denote
the open segment of D with chord L, and containing S. Denote
oS, NaoD by I,.

Let E, = {te[B, al: S Gt + iy)|dy| < o andg log w2 || dz| +

llog G(t + iy)| |dy| <n). It is clear from the hypotheses on G

and w that for some n < oo, m(H&,) > 0, where m is linear Lebesgue
measure. Let E be any set E, with m(E,) > 0. If teE, define
the measures v, with support a8, by

dy, = 2—%7‘; \dz| |-, + m(E)G(E + iy)|dy] |z, -

Let
Y on r,
h, =+2xm
m(BE)G( + 1y) on L, .
Then
ay, = h, |dz] |5s,
and

|, loghilldz] S < o= .
384

Notice that v, has b.p.e.’s in S, (and hence in S) by an argument
similar to that employed in the proof of Theorem 2.2.
Fix any aeS. For any polynomial p

(23) [p(a)? < ||E2 || p]l2,
where te¢ E. Integrating (23) on E with respect to dm, we obtain
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m(B) | p()* < sup [k | | 1pPGmE)dylam + m@)| |prwdo |
<sup ||z FrCE) [ -

We need only show that sup,.p |/ k:|]® is finite to establish (B). Let
r, denote the simple conformal map of D onto S, with «(a) = a
and i(a) > 0. Denote sup{[4:"(z)|: 8=t =<a,ze8S,) by C. Let 4
stand for the set of angles measured in radians of the corners of
S, with te|[B, «]. Referring to the proof of Theorem 9.8 of [18],
we see that C < o, since 0 < inf A <sup A <x. (Because these
conformal maps can be given explicitly, this also follows by a
direct computation.) It follows from a conformal mapping and a
theorem of Szego [see 13] that

exp — SaS P(a, i (2)log h(z) |4V (2)] l';l—;'*
| = 2n(1 — |a|)|vi(a)]

SO

1+ a]
e (Eom
sup ||k = 2z(1 — |a|)?

This completes the proof.

We remark that functions in H*dA) do not in general have
Hardy space properties. However, if dyv = GdA + wdo satisfies (21)
then we have the following theorem.

THEOREM 3.2. Suppose that dv = GdA + wdo satisfies (21). Let
fe Hv). B

(i) Lim, . f(2) = f(e”) for o-a.e. e’cl.

(ii) Suppose that f is not the zero function. If I', is any
proper closed subarc of I' and f vanishes on the set {2z} which
has no limit points not in I',, then

S = lzhp, <
where the p, is the multiplicity of z, as a zero of f.

(iii) Suppose f is mot the zero function. Let I, be any proper
closed subarc of I', then

Sr log | f|do > — oo .
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Proof. The proof is similar to that given for Theorem 3.1 and
will be omitted.

These results extend a part of the author’s dissertation sub-
mitted in partial fulfillment of the requirements for the Ph.D.
degree at the University of Virginia. The author wishes to express
his appreciation for the encouragement and guidance of Professor
Thomas L. Kriete, III.
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