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SOME PROPERTIES OF THE CHEBYSHEV METHOD

MATTHEW LI1U AND B. E. RHOADES

Several properties of the Chebyshev method of summa-
bility, defined by G. G. Bilodeau, are investigated. Specifi-
cally, it is shown that the Chebyshev method is translative
and is a Gronwall method. It is shown that the de Vallee
Poussin method is stronger than the Chebyshev method,
and that the Chebyshev method is not stronger than the
(C,1) method. The final result shows that the Chebyshev
method exhibits the Gibbs phenomenon.

Let X(—1)u; be an alternating series with partial sums s, =
7o (—L'u,. Define a sequence of polynomials {P,(t)} by P,(t) =
S sautt, P,()=1, n=0,1,2, ---. The series XY(—1)u,; will be
called summable (P,) to the value s if lim ¢(P,) = s, where o(P,) =
S @S, Bilodeau [1] considered the following question. What are
sufficient conditions on P, for o(P,) to speed up the rate of conver-
gence of a convergent sequence {s,}? For sequences {u,} Wl}ich are
moment sequences, i.e., %, has the representation u, = Stnda: (t),
where «(t)e BV[0,1], he obtains the estimate |o(P,) —sol /7. £
(] 172]) Slt(l + )| da(t)|, where s = 32, (—1)u;, 7, =s, —s, and
M = mangtg}Pn(—t)l. Adopting /¢, as a measure of the value of
the method ¢(P,), the most desirable sequence of polynomials will
be those for which p, is a minimum, subject to the constraint
P,1) =1 for each m. The Chebyshev polynomials, defined by
T.(x) =cosnx, n=20,1,2 ---, 2 =cosf, form the best approxima-
tion to the zero function over the interval [—1,1]. When translated
to [0, 1] they give P,(t) = T,Ad + 2t)/T,(3) as the best polynomials
to minimize p,, where

(1) T, (x) =[x+ Ve =D + (@& — 12— 1)"/2,

and
T.8) = (" + a ™2, « =3 +1 8~ 5.828 .

The infinite matrix A = (a,.), associated with these polynomials,
has entries

YT.®), k=0
22k~1 n+k ‘m +k —1
(2) Ay = T(a){>2< >—( >J;O<k§n
n | n n—k
\ 0, k>n.
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214 MATTHEW LIU AND B. E. RHOADES

Bilodeau calls the associated summability method the Chebyshev or
o-method.

We begin by establishing some properties of the maximal entry
in each row of o.

LemMA 1. For each positive integer m > 2, there exists an
integer P such that
V2% < Qo k1 fo/)' 0 § k < P
Qi = Qpiyy fOr D=k <m.

Proof. For 0 <k <n we may write

22k=1y, <n + k — 1)

) R XCTR S

so that a,./a, ., =F+1)2k+1)/2(n*—k*). Treating k as a continuous
variable and differentiating with respect to k, it follows that a,./
@, s 18 increasing in k. The proof is completed by noting that
Uy < Apy < @,, and @, ,_, > a,, for each n > 2.

LEMMA 2. For each n, p = [x,] where x, = (—3 + (32n* — T7)"*)/8.

Proof. Since a,, < a,, and a,,,_, > a,,, there exists a real posi-
tive number x, such that a.,., = a,,.,+, Which implies 2z} + 3x, + 1 =
2n® — 2x2.  Since x, is positive, x, = (—3 + (32n* — T7)'%)/8.

LEMMA 3. For each n > 6, p = [x,] > n/2.

It is sufficient to show that z, — 1 = »/2;i.e., 82n*—11ln—16)=
0, for » > 6. With g(n) = 2n* — 11n — 16 we have ¢'(n) > 0 for
n > 11/4, hence ¢ is increasing for » > 11/4, and ¢ is positive for
n > 6 and % an integer.

LEMMA 4. With p and a,, as defined in Lemmas 2 and 3,
lim,a,, = 0.

From (3), and Stirling’s formula,

“. = n2?*'(n + p)
" PT,3)(n — p + 1)['(2p)

( 4 ) " ,n22p—1(,n+p__ 1)n+p—1e*(n+p—1)(2n(n+p_ 1))1/2
pa(n—p)* e " @n(n—p))*@p—1)" e (2z(2p—1))"
_L>“’2
1 (p 2 n

“2Vm  p (n+p—D(n—p)" szzr"p:p% >H (1/ nzzﬁ :1; >)2p,
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Both ((n + p — 1)Ja(n — p)*™*) and ((n + p — D/V a(p — 1/2)*) are
bounded above. Therefore lim,a,, = 0.

Cooke [3, p. 119] shows that a necessary and sufficient condition
for a regular matrix to be absolutely translative for all bounded
sequences {z,} is that the matrix A satisfies lim, >5-o| @pr— @,y | =0.

THEOREM 1. The o-method 1is absolutely translative for all
bounded sequences.

Proof. Bilodeau [1, p. 296] has shown that the o-method is
regular. From Lemma 1,

Ms

| @i — an,k»m[
k

Il

0

p—1 n

= Z (an,k+1 - a’nk) + Z (ank - an,k—H)
k=1 k=p

= 20pp — Qpo-

The regularity of A implies that lim,a,, = 0, and the result follows
from Lemma 4.

For unbounded sequences, we consider the class of sequences
{z,} satisfying |z,] <6, (0. real, positive, and increasing), where
S0 @uiFrsrs im0 Cniiibrsrs ANA 0y = 70| (@p — Cnpsr)brry| eXist for
each n. Cooke [3,p. 119] shows that a necessary and sufficient
condition for a regular matrix to be absolutely translative for all
(unbounded) {z,} satisfying |z,| < 6, together with conditions stated
above, is that lim, o, = 0.

THEOREM 2. The o-method is absolutely _t_'ranslative for all
(unbounded) sequences {z,} such that z,=o(V k). This result is
best possible.

With |z,| = 6,, and using Lemma 1,

p—1 n
[O'n = ]Zz)(an,lﬁ-l - a’nk)ﬁk—ﬂ +kz (a’nk - an,k+1)0k+1
o= =p

(5)

IA

p—1 n
01’—1,; (a"m,k%—l - a’nk) + 0n}§;)<ank - an,k—H)
= a'rb(amﬂ — Qpy + Qpp — 0) = 00/%_)(20/7”7 - a'no) .

It will be sufficient to show that lim, 2V 'na,, is finite. But
this follows immediately from (4), since lim, (n(p — 1/2))/p = 24,
and the remaining limits have already been shown to be finite.

To show that the result is best possible we shall replace o(V'k)
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by 1k and verify that o, does not tend to zero.

From (5), 0,= VD>, (@ — @uir) = V'Da,,, which does not
tend to zero.

Direct calculations verify that ¢ is not a weighted mean,
Norlund, Hausdorff, or generalized Hausdorff method.

Gronwall [4, p. 102] defined a general class of summability
methods, each member of which involves a pair of analytic func-
tions f and g¢. Specifically, the (f, g)-transform of a given series
Se-ou;, is the sequence {U,} defined implicitly by the formal power
series identity

(6) o) S f@)* = S b.U,w",

where f and g satisfy the following properties. Let 4 = {w]||w|<
1}. The function z = f(w) is analytic in 4 — {1}, continuous and
1 —1in 4, with f(0) =0, f1) =1, and |f(w)| <1 for we 4. More-
over, w = f'(z) has the representation w =1 — 1 — 2)[a + a,(1 —
z2) + +--], where x =1, a > 0, and the quantity in brackets is a
power series in 1 — z with a positive radius of convergence. The
function ¢ satisfies g(w) =0 for we4 and has the form g(w) =
(1 — w)™° + v(w) for some 4 > 0, where v(w) is analytic in 4. Also
g(w) = X2 b,w", with b, == 0 for each n. The series 3,7, u, is said
to be (f, g)-summable to s if lim U, = s.

Examples of (f, g)-methods are the Cesidro methods of order
k, (C, k), for k real and greater than —1; (&, 8) (Euler-Knopp) for
0 < B £1; de la Vallée Poussin summability (V); a generalized (V)-
summability (Vk), introduced by Gronwall; and a method of sum-
mation of Obrechkoff. We will now show that the Chebyshev
method is also a Gronwall method.

Writing s, = >r-,u;, the (f, g)-method can be expressed as a
sequence to sequence method by rewriting (6) in the form

(7) o)1 — f@)] 3 s [f @) = 3 b,U,w" .
Using (7), (f, g9) can be expressed as a triangular matrix trans-

formation of the form U, = 37, a..8;, With a,, = 7../b,, Where 7,
is defined by

(8) [L = f@g)Lf )] = 37wt .

(See, for example, the discussion on page 40 of [2], where the
roles of v,, and a,, have been interchanged.) From (8) it follows
that
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(9) W = [SO]"/bs, n=0.

THEOREM 3. The Chebyshev method is a Gronwall method with
fw) = wla — 1)@ —wy, gw) =1 —w)™"+v(w), and Y(w) = w/
(@ — w), where a =3 + 18,

Proof. If (6) is a Gronwall method, then, from (8) with &k =0
and (2),

[L— f)lgw) = 3 baanw* = 3 b,w"/T,(3) .
Thus

Fw) =1 = [g@)]" 3 b,w"/T,(@) ,
(10 ; .
£/(w) = [g'w)/g*w)] 3 baw*/ Tu(3) — [9w)] ™ T b,/ T, (3)

and f'(0) = [9'(0)/g°(0)1(bs/ T(3)) — b,/g(0)T\(3) = 2b,/3b,, since T\(3) = 1

and T,(3) = 3.
From (9) and (3),
11 b, = (2b,/3b)"T,.(3)/2*»~* = (b,/6b)"(a™ + a™™) .

In particular, b, = b,/b,, which implies b, = 1, since each b, = 0.
One can also deduce that b, = 1 from (9), since a, = 1.
Thus

glw) =1 + 2 b, w"

—1+ i [(baw/6)* + (byw/6a)]
b,aw b,w
6 — baw 6a — bw

_ 6 bw
6 —baw 6a—bw

For ¢ to have the required form choose b, = 6/a.
From (10), and (11), with b, = 6/«,

F0) =1 = [g)] | 1 + 3 2(w/a)" |
=1— [ {1+ 22|

:1_(a+w) (1A= w(a® — w)
a—w (a® — wP)
= w(@—=w) _ wla-—1) )

(@ — w) (@ — w)’

=1
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We now show that f is a 1 — 1 selfmapping of 4. If f(w, =
Sfwy), ie.,
w(a — 172  w(a — 2)

- ’

(@ — w,)? (@ — w,)’

then (w, — w,)(a* — w,w,) = 0. Since w,, w,e€ 4, wW,W,#0%, SO W,=W,.
By the Maximum Modules Theorem, it is sufficient to show that
[ fw)] =1 for w = €. |f(e")] = (@ — 1)*(a®* — 2cosf +1) < 1.

We now verify that w = f'(z) is regular on 4 — 4, except
possibly at z =1, and that 0e 4. f' is regular except at z = 0, so
now we must show

min | f(e?)|=d > 0.

0sh<ern
[ f(e?)] = (@ — 1)*/T(@), where T(0) = (a + 1)* — 4 cos®0/2. A direct
calculation certifies that the maximum of 7(f) occurs at ¢ = x, and
T(n) = (¢ — 1)/(¢ + D > 0.

It remains to show that at 2 =1, 1 —w = (1 — 2)/[a + a,(1 — 2)
+--], v =1, a>0. z=f(w)=(—1w/(a— w? From the
equation z = f(w) we obtain 1 — 2z = (1 — w)(a® — w)/(a@ — w)?, which
when solved for 1 — w yields

—(a—-11-2z2—a)+(a—1)(a+1)V'1—4a(l— z)/(onrl)2
1—w= —

Now divide the numerator and the denominator by —2 and write
z in the denominator as 1 — (1 — 2).

_ (@—Dpaq (@ — D _ _
1—w={@=Dpq —2) - @+ )+ Lo L e +1)2< 2)
1 16a? . Y
Using the negative branch,
—w = =D —p @ =1 4 1 (e—1) 16a
1-w={@-Di—2- e - g Ay

R NP R RN

—(1— _p_aa=-1 .3 _ )
1 z){(a D - =D Sha -2 }
Theorefore 1 — w = (1 — 2)[a +a,1 —2) + ---] where A =1 and
a = (@ — 1)/(e +1) > 0.
Theorem 3, along with Theorems 1 and 2 of [2] show that the
Chebyshev method is neither an [F, d,] nor a Sonnenschein method.
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One of the important properties of (f, g)-summability is the
following [5, p. 267]:

Let (f,9), (fi, 9. be two Gronwall means which map regions
D, D, and with exponents \, n,. If A >\, and D is interior to D,

then (f, g) is stronger than (f,, ¢.); i.e., (f, 9) D (f1, 90)-

The de la Vallee Poussin method (V) [4, p. 103] is a Gronwall
method with 6 =27, f(w) =1 —-V1—-w/l—-vV1—-w), gw) =
1 — w)™” and » = 2.

THEOREM 4. (V) > (o).

Proof. Since My, = 2, My, = 1, it is enough to show that D(V)
is interior to D(o), that is,

1—1’1—'“713 (e —1Dw
1+vV1I—w! | (@—w)

It suffices to consider |w| = 1; thus we need to show

1 < (a—1y
(1+V1I—=w]~ |[(@a—w?|

(12)

Writing 1 — w = pe?, where —7 < ¢ < m, (12) becomes
@ — 1+ e < (@ — 1P|1 + e,
i.e.,
2(a —1)coso + p < 4a(207%cos ¢/2 + 1) .
Since cos ¢/2 > 0, it is sufficient to show that 2(a —1)cos ¢ + p<4a,
which is readily verified.

THEOREM 5. ¢ 2 (C, 1).

We shall make use of the well-known result that if A and B
are regular summability methods, and B is a triangle, then (4) 2
(B) if and only if AB™' is regular.

Consider D = AC™', where A is the Chebyshev method and C
is (C,1). C' has entries

—n, k=n—1
ci=<An+1, k=mn
0, elsewhere .

Then
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k+Lay—Fk+Da, 0, E<n
dnk = (’n + 1)anm k=mn
0, elsewhere .

We shall show that D has infinite norm.

Sl = 50+ D@ — @) + 3 (6 + D@ — pse)
+ a,,(n+1).

Now,
5 6+ D@ = aw) = 5k + Day s — 3k — S an

P, r—1 p—1
= Z JCp; — kzokank - ’ZO (429"
= =

I

p—1
pa%p - kz_‘Joa’nk .

n—1 n—1 n—1 n—1
Z‘p(l{’ + 1)(a‘nk - aﬂ,k+1) = Ig;)ka%k +k=2p 2293 _kgp (k + 1)a/n,k+1

3
-

n—

1 n
= kank + Z L 2% Z JQy;
» ke=p j=p+1

=
i

n—1
DAy — NAyy =+ kz Qp «
=p

Therefore,

n p—1 n—1
kZ:) [d«nlz[ = pa'np - IZO L2%% + panp — Ny, + kz. (129" + ann(/n’ + 1) .
= = =p

Since the Chebyshev method has row sums equal to 1,

n—1 p—1
Zawk:l_l;;ank_a'rm'

k=p

Thus

n —1
> d. = 2pa,, —ZPZan“L 1.
k=0 k=0

immediately from (2), since limvn = c and the remaining limits
have already been shown to be finite and nonzero.
The Fourier series

But X2ta,, <1, so it is sufficient to show pa,, — co. This follows

kisinkt/kz(n~t)/z, 0o<t=m,

converges for all ¢, and the function has a jump at ¢ = 0. Hence
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the convergence is nonuniform at ¢ = 0; that is, the sequence
{s.(t.)}, where {¢,} is a positive null sequence and

(13) 5.(t) = k}_: sinkt/k, s, =0,

has several limit points, depending on the manner in which ¢,
approaches 0.

If lim nt, = = = 0, then lim s,(z,) = g“(sin t/)dt, and the maximal
0
limit is attained when 7 = 7, in which case

(14) lim s,(t,) = g Si? tap = L X 117897--- .
0

On the other hand, (# —¢)/2—>7w/2 as t | 0. Thus the limit points
of {s,(t,)} cover an interval which extends beyond f(0+) if f(0+)=-0.
This situation is called the Gibbs phenomenon relative to the par-
tial sums.

We shall now show that the corresponding phenomenon occurs
for the Chebyshev means.

THEOREM 6. The Chebyshev means of (13) satisfy
TIVE o1
(15) lim o,(¢,) = S : 51—1;—}/—(12/ as nt, — 7 and nti — 0,
0
and

"31ntd

0

lim sup o,(¢,) < S :.

The lim sup inequality is an immediate consequence of (14)
and the well-known fact that, for any totally regular matrixz A,
and any sequence x = {x,}, lim sup A,(x) < lim sup z,.

The proof of the theorem is similar to that of [6]. One may
write s,(t) in the form

_ “sin (n + 1/2)x
su(D) = 2 + S 2 sin (@/2)

Since sin (k + 1/2)x = _“(exp (i(k + 1/2)x)),

K 1 < ikz ,iz/2
> aete e | .

oty = —tiz+ (o

From [1,p. 297], >iiesane™ = T,1 + 2¢*)/T,(8), where T,(x) is
defined by (1).
Define
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0e® =1 + 2¢* + [(1 + 2¢*)*—1]"
=1 + 2¢™ + 2¢"/2""/*(2 cos x/2)'? .
Let @ = (2cosx/2)”. Then pcos B8 =1+ 2(cosx + a cos (3x/4)),
1e6) o0sin 8 = 2 (sin x + a sin (3z/4)) ,
and
an 0* =5+ 4(cosx + a cos (3x/4)) + 8 (cos (x/2) + a cos (x/4)) .

Therefore 1 + 2¢™ — [(1 + 2e™)* — 1]"2 = p7'¢™%, and assume 0 <2 <
t < x/2.

_ 1 E 1 Can o
o,.(t) + t/2 = 5T.(3) SO 5 sin (2/2) [o” sin (nB+x/2)
-1 — 1 : 7 H
07" sin (nB—x/2)]dx = 17.3) {gop cot (x/2) sin nBdw

+ Stp" cos nBdx + — St‘o‘" cot (x/2) sin nBdx + St‘o"“ cos nﬁdw} .
0 0 0
From (17), p is monotone decreasing in 2 for 0 <z < 7/2.
Therefore for 0 <z < 7/2, p < a. Thus

{—z—Ti(T)S:p” cos nBdx| < S:(P/a)”d% <t,

so that there exists an 7 satisfying |7| < 1 such that

1 S‘
———\ p*cosnBdx = Nt .
T3\ cos e =1

Now assume that ¢t =¢,, nt,->7, 0 =7 =< oo, and ntz — 0.
Since, from (17), o = V5,

1 (. Eyn
‘M&p cos nRdx l < /4B = o(1) .

1 St
_ t .
R onﬁ’ cot (x/2)dx
We wish to show that g <x. For 0< 2 =<r/2 from (16),

psin B <21 + a)sinz. From (17), if cos (3x/4) + 2cos (x/4) = 2,
then o > 2(a + 1). In the interval [0, 7/2],

(18) ‘07" cot (2/2) sin ngdz) [ <

@)

cos (3x/4) + 2 cos (x/4) = cos (37/8) + cos (7/8)
= cos (7/8)(4 cos® (7/8)—1) .

Since cos (7/8) = V2 + 1/2/2, it is sufficient to show that
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Va+1 24 5
—2—<Z(2 +12) — 1) =2,
which is easily verified. Therefore 0 < sin < 8(0/2(1 + a)) sin 8 <

sinz, and B < «.
For 0 < <n/2, 2= a/sin(x/2) <r/1/2. Substituting in (18)

we have

1 t —n . n =/2
lZT(?,)Sop cot (x/2) sin nBdx <m§ cos (x/2)- on (x/2) dx
nwt _
S Wy
and

0ut) + (L = M2 = T,, ), S 0" cot (x/2) sin nBdx + o(l) .

Using (17), and the values of a and «,

1 — (o/ay = [1T + 122 — 5 — 4 (cos ¢ + a cos (3x/4))
— 8 (cos (#/2) + a cos (x/4))]/a?

= 1 — cos @ + 2(1 — cos (¢/2) + VEL — cos (3x/4)/c03(a]2)

+ 2V/2(1 — cos (x/4)V cos (2/2))] .
Since 0 < cos (x/2) < 1,

1 — cos (x/4)1 cos (z/2) = 1 — cos (x/4) cos (x/2)
=1 — (cos (3x/4) + cos (x/4))/2 .

Similarly, 1 — cos (3x/4)1V cos (#/2) = 1 — (cos (5x/4) + cos (z/4))/2.
Therefore,

1 — (ojay < _&47[2 sin (2/2) + 4 sin® (@/4) + /2 sin® (52/8)
+ 2 sin *(2/8))/2 + 12 (2 sin® (8x/8) + 2 sin? (x/8))]

= po [2(95/2) + 4(z/4)* + 1V 2 ((5x/8)* + (x/8)%)

+ 2V/2((3x/8)* + (x/8)1)]

461/2>2 x?
1 x<4.

=2 (31 +
[44

Since 0 < p/a <1, 1 — p/a <1 — (o/a)?, so that 1 — p/a < 2%/4. 0 <
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1— (p/a)" = 1 — pla) Sz (ola): < n(l — pja) < nx*/4. Therefore 1—
(o/a)” = vna* for some X\ satisfying 0 < M < 1/4, so that we may
write

1 (. . ar T ]
2T.(3) SOP cot (x/2) sin nBdx = T UO cot (x/2) sin nBdx

— nStMcz cot (x/2) sin n,@dx:l

X n‘ St)uxz cot (x/2) sin n,@dxl <mn Stxz cot (x/2)dx
0 0

< “:'}’;_Stdx < ntt = o(l),

since lim nt2 = 0. Note that lim «"/27,(3) = 1.
Using (17),

o8 _ 2 V2 Vy = L(5—sing) — Z(x — si
5 a<1+__4__>w a(ﬁ’ sin B) a(w sin x)

- 2‘1/2_<§49£ — sin (3z/4)V cos (90/2)> ’

[44

so that

o8l — el < L] g —sin | + 2|z — sina|
[44 a

+ 21;5— —?’f- — sin (8x/4)1 cos (®/2) | »
where » = 2(1 + 3V 2/4)/a = (4 + 3V 2)/2a = (4 + 3V2)(8 — 21 2)/2=
102,

But 0 < 3x/4 — sin (8x/4)1 cos (x/2) < 3x/4 — sin (3x/4) cos (x/2),
sin (3x/4) = 3x/4 — (3x/4)*/3!, and cos (/2) = 1 — x*/4, so that

| 8x/4—sin (3x/4)1V/ Cos (@/2)] < 3w/d— (3x/4 — (3u/4)*/6)(1—2%/4)
= 332°/128 .

Since 0 < ¢ — sinx < 2° and B < x,
|pBla — x/V'2| < (0B° + 22° + 331/ 22%/64)/ac < 2a° .

Also, |8 —x[V2] < |oBla —x/V2] + (1 — pla)B < 2x° + o* = a°, so
that 8 = 2/V/2 + pa®, where |p| < 3.

The remainder of the proof of (15) is the same as that of [6],
beginning with formula (2.7), and will therefore be omitted.
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